research

Clustering-based Source-aware Assessment of True Robustness for Learning Models

Abstract

We introduce a novel validation framework to measure the true robustness of learning models for real-world applications by creating source-inclusive and source-exclusive partitions in a dataset via clustering. We develop a robustness metric derived from source-aware lower and upper bounds of model accuracy even when data source labels are not readily available. We clearly demonstrate that even on a well-explored dataset like MNIST, challenging training scenarios can be constructed under the proposed assessment framework for two separate yet equally important applications: i) more rigorous learning model comparison and ii) dataset adequacy evaluation. In addition, our findings not only promise a more complete identification of trade-offs between model complexity, accuracy and robustness but can also help researchers optimize their efforts in data collection by identifying the less robust and more challenging class labels.Comment: Submitted to UAI 201

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/01/2018