852 research outputs found

    Study of two robust controls for an hydraulic actuator

    Get PDF
    Two robust control design methodologies are analyzed and compared in this article: the H-infinity control system design and the CRONE control system design. The aim of this article is to give practical considerations that will help a designer to choose between these two methodologies. The example of an electrohydraulic actuator is given in order to evaluate the implementation of each methodology and to compare the final performance

    Unified control/structure design and modeling research

    Get PDF
    To demonstrate the applicability of the control theory for distributed systems to large flexible space structures, research was focused on a model of a space antenna which consists of a rigid hub, flexible ribs, and a mesh reflecting surface. The space antenna model used is discussed along with the finite element approximation of the distributed model. The basic control problem is to design an optimal or near-optimal compensator to suppress the linear vibrations and rigid-body displacements of the structure. The application of an infinite dimensional Linear Quadratic Gaussian (LQG) control theory to flexible structure is discussed. Two basic approaches for robustness enhancement were investigated: loop transfer recovery and sensitivity optimization. A third approach synthesized from elements of these two basic approaches is currently under development. The control driven finite element approximation of flexible structures is discussed. Three sets of finite element basic vectors for computing functional control gains are compared. The possibility of constructing a finite element scheme to approximate the infinite dimensional Hamiltonian system directly, instead of indirectly is discussed

    Control optimization, stabilization and computer algorithms for aircraft applications

    Get PDF
    The analysis and design of complex multivariable reliable control systems are considered. High performance and fault tolerant aircraft systems are the objectives. A preliminary feasibility study of the design of a lateral control system for a VTOL aircraft that is to land on a DD963 class destroyer under high sea state conditions is provided. Progress in the following areas is summarized: (1) VTOL control system design studies; (2) robust multivariable control system synthesis; (3) adaptive control systems; (4) failure detection algorithms; and (5) fault tolerant optimal control theory

    Beyond singular values and loop shapes

    Get PDF
    The status of singular value loop-shaping as a design paradigm for multivariable feedback systems is reviewed. It shows that this paradigm is an effective design tool whenever the problem specifications are spacially round. The tool can be arbitrarily conservative, however, when they are not. This happens because singular value conditions for robust performance are not tight (necessary and sufficient) and can severely overstate actual requirements. An alternate paradign is discussed which overcomes these limitations. The alternative includes a more general problem formulation, a new matrix function mu, and tight conditions for both robust stability and robust performance. The state of the art currently permits analysis of feedback systems within this new paradigm. Synthesis remains a subject of research

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Evolutionary design of a full-envelope full-authority flight control system for an unstable high-performance aircraft

    Get PDF
    The use of an evolutionary algorithm in the framework of H1 control theory is being considered as a means for synthesizing controller gains that minimize a weighted combination of the infinite norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements) at the same time. The case study deals with a complete full-authority longitudinal control system for an unstable high-performance jet aircraft featuring (i) a stability and control augmentation system and (ii) autopilot functions (speed and altitude hold). Constraints on closed-loop response are enforced, that representing typical requirements on airplane handling qualities, that makes the control law synthesis process more demanding. Gain scheduling is required, in order to obtain satisfactory performance over the whole flight envelope, so that the synthesis is performed at different reference trim conditions, for several values of the dynamic pressure, used as the scheduling parameter. Nonetheless, the dynamic behaviour of the aircraft may exhibit significant variations when flying at different altitudes, even for the same value of the dynamic pressure, so that a trade-off is required between different feasible controllers synthesized at different altitudes for a given equivalent airspeed. A multiobjective search is thus considered for the determination of the best suited solution to be introduced in the scheduling of the control law. The obtained results are then tested on a longitudinal non-linear model of the aircraft

    Turbofan engine control system design using the LQG/LTR methodology

    Get PDF
    Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired Target-Feedback-Loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail

    Robustness and performance tradeoffs in control design for flexible structures

    Get PDF
    The design of control laws for the Caltech flexible structure experiment using a nominal design model with varying levels of uncertainty is considered. A brief overview of the structured singular value (µ) H∞ control design, and µ-synthesis design techniques is presented. Tradeoffs associated with uncertainty modeling of flexible structures are discussed. A series of controllers are synthesized based on different uncertainty descriptions. It is shown that an improper selection of nominal and uncertainty models may lead to unstable or poor-performing controllers on the actual system. In contrast, if descriptions of uncertainty are overly conservative, performance of the closed-loop system may be severely limited. Experimental results on control laws synthesized for different uncertainty levels on the Caltech structure are presented

    Vibration damping and robust control of the JPL/AFAL experiment using µ-synthesis

    Get PDF
    The technology for controlling elastic deformations of flexible structures is one of the key considerations for future space initiatives. A vital area needed to achieve this objective is the development of a control design methodology applicable to future structures. The mu -synthesis technique is employed to design a high-performance vibration attenuation controller for the JPL/AFAL experimental flexible antenna structure. The results presented deal primarily with the control of first two global flexible modes using only two hub actuators and two hub sensors. Implementation of the multivariable control laws based on a finite-element model is presented. All results are from actual implementation on the JPL/AFAL flexible structure testbed
    corecore