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Turbofan Engine Control System Desim Using the LQG/LTR Metllodolonv 

Sanjay Gargl 

Sverdrup Technology, Inc . 
NASA Lewis Research Center Group 

Cleveland, Ohio 44 135 

Abstract 

Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery 

methodology to design of a control system for a simplified turbofan engine model is 

considered. The importance of properly scaling the plant to achieve the desired 

Target-Feedback-Loop is emphasized. The steps involved in the application of the 

methodology are discussed via an example, and evaluation results are presented for a 

reduced-order compensator. The effect of scaling the plant on the stability. robustness 

evaluation of the closed-loop system is studied in detail. 

Tontrols Engineer, Member AIAA. 
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Nomenclature 

= diagonal scaling matrices for calculating p 

Expected value of [.] 

plant transfer function matrix 

identity matrix 

compensator transfer function matrix 

filter and regulator gains 

transfer function matrix for stability robustness evaluation 

diagonal matrices for scaling plant inputs and outputs 

loop transfer function matrix 

parameters used in LQG/LTR design 

laplace variable 

process noise distribution matrix 

stability robustness measure 

it h singular value 

minimum and maximum singular value 

frequency, rads/sec 

E commanded value 

implementation compensator 

5 plant 

scaled plant 

reduced-rder 

E scaled value 
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Introduction 

The Linear-Quadratic-Gaussian with Loop-Transfer-Recovery (LQG/LTR) 

methodology provides an integrated frequency4omain and state-space approach for 

design of multi-input multi-output (MIMO) control systems. Since the development of the 

methodology by Stein and Athans [1,2], various applications of the methodology to 

aerospace systems have been considered, see for example Refs. [3,4]. The advantages of the 

methodology lie in its ability to directly address design issues such as stability robustness 

and the trade-off between performance and allowable control power. However, as discussed 

in Ref. [4], blind application of the methodology can result in totally unacceptable 

compensator designs. So it becomes important that the control system designer exercise 

certain precautions in the application procedure. 

One of the important steps in the application of the LQG/LTR methodology is 

determining reasonable scaling parameters for the control and output variables. The main 

objective of this paper is to point out how the choice of scaling parameters impacts the 

selection of the Target-Feedback-Loop (TFL) which is the starting point of the 

methodology. Another objective is to go through each design step in detail via a simple, yet 

insightful, example study so that the practicing engineer will have a ready reference 

available to assist in more complicated applications. 

In the following, the turbofan engine model is discussed and the design specifications 

are stated. The effect of scaling in the selection of the Target-Feedback-Loop is then 

presented and a full-order compensator is obtained using the LQG/LTR procedure. A 

reduced-order compensator is then obtained using a frequency-weighted, 

internally-balanced realization approach, and the closed-loop system performance, with 

this low-order compensator, is evaluated. Detailed stability robustness evaluation results 

are presented to demonstrate the effect of scaling on the stability margins "guaranteed" by 

the LQG/LTR procedure. 
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Engine Model 

The engine model to be considered for the control system design is a simplified 

linear model of a turbofan engine for a modern fighter aircraft. The engine model has the 

following state-space form [5] : 

- X = A x  + B G  ; y = C X  
P P P  P P  P P P  

where the state vector is 

P 
T - 

x = [ N l ,  N2, TM45, TM3, TM5, TM6, [EpR] 

with 

N1 = fan speed (rpm) 

N2 = low pressure compressor speed (rpm) 

TM45 = burner metal temp. (OR) 

TM3 = high compressor metal temp. (OR) 

TM5 = turbine inlet metal temp. (OR) 

TM6 =high pressure turbine metal temp. (OR) 

EEPR = state associated with pressure sensor. 

The control input vector is 
T - 

u = [WF,AJ]  
P 

with 

WF = main burner fuel flow (1000 #/hr) 

AJ = nozzle exit area (in ), 2 

and the outputs to be sensed and controlled are 
T - 

y = [Nl ,  EPR] 
P 

with N1 as before and 

EPR = sensed engine pressure ratio. 

The numerical values for the system matrices A B , and C are listed in the Appendix. 
P’ P P 

The design specifications for the feedback control system were chosen as follows: 
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Track N1 and EPR commands ( N l c  and EPR, respectively) in a decoupled manner 

and with zero steady-state error for step commands. Based on performance 

requirements, stability robustness to unmodelled dynamics such as actuators and 

sensors, and open-loop analyses of control effectiveness, the desired control 

bandwidths were chosen as 10 rads/sec for the N1 loop and 20 rads/sec for the EPR 

loop. 

Maintain "adequate" stability margins in all control loops to  guarantee stability in 

the presence of unmodelled dynamics and variation in model parameters. 

Avoid "excessive" control input commands and rates to prevent non-linearities 

(and instabilities) due to control input command and/or rate limiting. 

LQG/LTR Compensator Design 

In this section, an LQG/LTR compensator will be designed for the engine model 

discussed above such that the closed-loop system meets the design specifications. The steps 

involved in the LQG/LTR design procedure will be discussed by way of this example. 

Since the engine model has no integrators and a zero steady-state error for step 

commands is desired, integral control action (see Ref. [6]) is provided by appending two 

integrators to the plant - one in each control channel. The augmented plant has the form : 

- 
Z = A Y + B L  ; y = C X  

where 2 = [zT UTIT with x and U as defined before, and 7 The system matrices A, 
P' P P P P' 

B and C are given by : 
A =  [,pop] A B  ; B =  [:] ; c = [ c  01 

P (3) 

The LQG/LTR procedure is based on solving for the optimal compensator that 

minimizes the performance index 

J = E{ 1 im  - I /[(z -T- z + qy -T Vy) - + pUT;ldt} 
P T-tm T o 

(4) 
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for a system of the form 

- 
x =  A x +  B u +  

( 5 )  
- - 
y = C X + v I i  ; z = H %  

where are zero-mean Gaussian whitenoise processes with identity intensity, 7 are 

the measurements available as compensator inputs, and E are the controlled plant outputs. 

V is any positive definite symmetric weighting matrix, and Y, q, p and the process noise 

distribution matrix I' are the design parameters that are used in the LQG/LTR procedure 

to synthesize a compensator that would meet the desired specifications. The procedure 

consists of first designing the Kalman filter such that the filter loop satisfies the 

performance and stability robustness requirements, and then recovering this loop 

asymptotically by tuning the regulator. The Kalman filter gains (KF) and the regulator 

gains (KC) are obtained by solving the appropriate algebraic Riccati equations [6]. Note 

here that the numerical value of J and the process noise matrix I? have no physical 

significance. The Kalman filter is not actually being designed for state estimation, rather 

the formulation in (4) is used strictly to exploit the known properties of the quadratic 

optimal control solution. The block diagram for the LQG compensator design is shown in 

Fig. 1. In Fig. 1, G (s) is the transfer matrix for the augmented plant given by G (s) = 

C (SI-A )-'BP, K(s) represents the transfer matrix of the compensator, and Su and S 
P P Y 

and 

P 

P P 

are scaling matrices which will be discussed in a later section. For the engine control 

problem being considered here, the controlled variables are the same as the measurements, 

i.e. H = C, and the matrices A, B and C are as defined in (3). 

Target Feedback Loop Specification 

The Kalman filter loop transfer matrix (GKF) is given by 

GI(F(s) = C(sI-A)-lKF 

When - o[GKF] >> 1, the Kalman equality can be used to show that 

oi[GI.F(S)I ai[GF'()L(S)l (7) 
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where 

Here, ui[ J denotes the ith singular value of [ -1, defined as 
7 

ui[F] = 4Xi[F F] 

where X denotes eigenvalue and superscript * denotes complex conjugate transpose, and 

and - u are the maximum and minimum singular values, respectively. TheKalman filter 

loop is to meet the design specifications, then I? and v shall be selected in such a way that 

the maximum and minimum singular values of GFOL meet the performance and stability 

robustness specifications. GFOL is hence referred to as the Target Feedback Loop. 

From the design specifications stated in the previous section, the requirement on 

Le. bandwidth of 10 rads/sec for the N1 loop and 20 rads/sec for the EPR loop, k/s like 

behavior at loop cross-over for stability robustness, and large low-frequency gain for 

accurate tracking of commands. This translates into the requirement that z[GFoL(jw)] 

In Ref. [a], it is shown that if I? is partitioned as 

= [:;I 
where the partitioning in (10) is consistent with that in (3),  then letting 

r H  = CP(CPCP) -' and rL = -(C P P  A-lB P )-l 

will result in a Target Feedback Loop such that ai[GFoL(jw)] M ;.I 1 

(11) 

at very high and very 

T 

low frequencies Le. in the limits w --t 03 and w -+ 0. With the above choice of r, u is then 

selected to adjust the loop cross-over frequency to the desired specification. If different 

bandwidths are desired for the various loops, as is the case in the present example, then the 

above result can be extended to show that choosing r H  and rL such that 

r H  = c T (C c T ) -1 GBW and rL = - ( c ~ A ~ ~ B ~ ) -  1 GBW 
P P P  

7 



where GBW is a diagonal matrix of desired loop bandwidths, will result in a Target 

Feedback Loop such that ai[GFoL(jw)] = -.GBW in the limits w -t 03 and w --t 0. Thus the 

choice of r as in (10) and (12) will tend to meet the design specifications of the form (9) in 

1 
S 

the high frequency and the low frequency regions. 
[ 10 0 ] for the The application of the above procedure for selecting I?, with GBW = 20 

engine model, resulted in the singular values of GFOL(S) as shown in Fig. 2, From Fig. 2 it 

is clear that this choice of I? results in a target loop which does not satisfy the design 

requirements in the region of desired cross-over. (Although it is not apparent from Fig.2, 

the requirement (9) is satisfied in the two limits w --f 0 and w --t 03). Applying the LQG/LTR 

procedure with the design specifications as implied by this target loop will result in a 

totally unacceptable compensator design. Also, the large spread in the maximum and 

minimum singular values in Fig.2 indicates that adjusting Y will not be of any help in 

I getting the desirable loop-shapes since - 1 (in (8)) is simply a gain factor which raises or 
f i  

lowers the singular value plots. 

Scaling Effects 

Since the procedure for selecting I' only guarantees the loop shape in the limits w -$ 0 
l and w --t 03, the target loop will not reflect the design specifications if there is a large spread 

in the open-loop plant singular values (oi[G ( j w ) ] )  in the region of desired loop bandwidth. 

Such is the case for the engine model being considered here as seen from ai[G ( jw) ]  plotted 

in Fig. 3. The reason for this spread in the open-loop singular values is the physical units 

being used for the system input/output description. For instance, the nominal value for the 

fan speed is Nlo= 9637 rpm whereas the nominal value for engine pressure ratio is EPRo= 

3.08. Therefore, a unity change in the value of N1 will be insignificant, whereas a unity 

change in EPR will be considered a large perturbation. Thus, prior to using the LQG/LTR 

procedure, it is important that the plant inputs and outputs be normalized (scaled) by a 

P 

P 

I 

, , proper choice of values. For the example being considered here, approximate nominal 
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values were used to scale the plant inputs and outputs. The scaling is of the form 
- 
u = s ii ; yps= syyp 
Ps u P 

and the scaled system is given by 

where B = B S-’ and C = S C . The numerical values of the scaling matrices (Su and 

S ) used for this study are listed in the Appendix. 
Ps P u Ps Y P 

Y 
The singular values of the scaled plant (gi[Gp,(ju)] where 

G (ju)=C (jd-A)- B ) are also shown in Fig. 3. Note that the scaling has the effect of 

bringing the maximum and minimum singular values close together in the region of the 

desired bandwidth. The singular values of GFoL(jw) with Y = 1 and I’ obtained by 

applying the procedure discussed earlier are shown in Fig.4. The Target Feedback Loop in 

Fig. 4 has the desired shape as well as the desired bandwidth. The rest of the design steps 

are then performed with the augmented plant matrices, A, B and C, obtained by replacing 

the plant matrices A B and C , by the scaled plant matrices, A B and C , in (3). 

Kalman Filter Design 

1 
Ps Ps Ps 

P’ P P Ps’ Ps Ps 

After satisfactory values for and v have been determined, the filter gains are 

obtained by solving the following algebraic Riccati equation 

AC +  EA^ +rrT - ($cTcc = o ; KF = (;)zcT (14) 

The singular values of the filter loop ( ~ ~ [ G ~ ( ~ ( j u ) ] )  are then compared with the singular 

values of the Target Feedback Loop to make sure of a reasonable agreement between the 

two. 

The Kalman Filter designed using (14) with the scaled engine model resulted in the 

g i [ G ~ ~ ( j u ) ]  shown in Fig. 5 .  Comparing Fig. 5 to Fig. 4, we note that the Kalman filter 

loop shape is just like that of the Target Feedback Loop. 

Loop Transfer Recovery 

Having solved for the Kalman filter gains that lead to the desired filter loop-shapes, 
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the next step in the LQG/LTR procedure consists of solving for the full state feedback 

regulator gains, Kc. With V chosen to be identity and p=l for convenience, and for the 

case where the controlled variables are the same as the measurements, i.e. H H need not 

be considered separately in Eqn. (4), the regulator gains are obtained as the solution to the 

following equation 

T 

(15) 

(16) 

P A + A  T P + q C  T C - P B  T B P = O  ; K C = B T P  

KLQG/LTR( S) = Kc[SI-( A-BKC-KFC)]-lKF 

The LQG/LTR compensator transfer function matrix is then given by 

and the loop transfer function matrix, with the loop broken at  the output is given by 

To(s) = G(s)KLQG/LTR(s) (17) 

where G(s) = C(sI-A)-lB is the transfer matrix for the augmented scaled plant. 

In the synthesis procedure for the regulator gains, under certain restrictions (see 

Ref. [l] for details), as q -+ 03 the loop transfer function approaches the Kalman filter loop 

transfer function, i.e. To(s) + GKF(s) pointwise in s. Thus, if the filter loop meets the 

desired specifications, then asymptotically the LQG/LTR procedure will result in a 

compensator that will also meet the specifications. 

For the engine control problem, the singular values of the loop transfer function 

matrix (ci[To(jw)]) for q=10 are compared with the Kalman filter loop singular values in 

Fig. 5 .  Clearly, the LQG/LTR compensator loop matches the Kalman filter loop. The 

compensator corresponding to q=10 will be considered to be the design LQG/LTR 

compensator for this example and will be evaluated further. This design compensator will 

have the guaranteed stability margins of the Linear Quadratic Regulator (see Ref. [7]) at 

the design plant output since the compensator loop closely matches the Kalman filter loop. 

The closed-loop system frequency response to command inputs, with the design 

compensator, is shown in Figs. 6(a) and 6(b). Note that in Figs. 6(a) and 6(b), the 

command inputs and the responses are in terms of the scaled (normalized) variables ys. 
From these figures we note that the design compensator provides decoupled command 
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following with the specified bandwidths. 

Compensator Order Reduction and Evaluation 

The LQG/LTR compensator designed in the previous section is of order 9. It is 

desirable to reduce the order of the compensator in order to simplify its implementation. A 

numerical analysis of the LQG/LTR compensator showed that it is of minimal order, so 

direct simplification using a controllability/observability approach was not possible. A 

frequency-weighted internally-balanced reduct ion technique [SI was used to reduce the 

order of the compensator. This approach consists of designing a lower order compensator 

which approximates the frequency response of the elements of the matrix K(jw).W(jw) 

where W(jw) denotes the matrix of frequency dependent weightings and K(jw) is the 

frequency response of the full order compensator. The approximation is constrained to be of 

the form Kr(jw). W(jw) where Kr(jw) is the reduced order compensator. The 

internally-balanced realization algorithm of Ref. [9] has to be appropriately modified in 

order to obtain the desired form of the approximation. Based on closed-loop system 

stability considerations, it was postulated by Enns [SI that a reasonable choice for W(jw) is 

W = G(I+GIC)-l where G(jw) is the frequency response for the plant for which the 

compensator is being designed. A detailed step-by-step algorithm for applying this 

reduction technique is discussed in Ref. [lo]. 

th A visual comparison of the singular values of the full (9 ) order compensator and a 

5 order approximation, obtained using the reduction technique discussed above, showed a 

perfect match between the singular values of the two compensators. The eigenvalues of the 

full and the 5 order compensator are listed in Table 1. From Table 1 we note that the 

reduction technique preserves the high frequency modes of the full order compensator and 

lumps the slow modes (X1=-0.284 to A5=-5.025) into a single mode at A=-4.743. 

th 

th  
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Table 1. Eivenvalues - of Full and Reduced-Order ComDensators 

X - Full-Order (9) 

-7.64e+02 f j7.61e+02 
-9.29e+01 f j9.27e+01 

-5.025 4 . 7 4 3  
-1.260 
-0.881 
-0.742 
-0.284 

X - Reduced-Order ( 5 )  

-7.64e+02 f j7.61e+02 
-9.28e+01 f j9.29e+01 

It is interesting to point out here that initial attempts at obtaining reduced order 

compensators simply by residualizing the high frequency modes were unsuccessful. The 

results in Table 1 clearly demonstrate the importance of preserving the high frequency 

modes. Also, no further reduction in the order of the compensator could be obtained using 

the above frequency-weighted reduction procedure as qth and 3rd order approximations 

resulted in poor approximations in the region of the specified control bandwidth. In the 

following, closed-loop system evaluation results, with the 5th order compensator, are 

presented. 

The singular values of the loop transfer function (oi[To(jw)]) with the Eith order 

compensator were found to closely match those of the loop with the full order compensator. 

Therefore, the closed-loop system with the reduced order compensator should also have the 

desired stability robustness. Lehtomaki et al. [7] have shown that a reliable (but sometimes 

conservative) measure of stability robustness is the minimum singular value of the return 

difference matrix evaluated as a function of jw. Fig. 7 shows the minimum singular value of 

the return difference matrix, with the reduced order compensator, for the loop broken at 

the output (a[I+GKr(jw)]). The lowest value of the minimum singular value, in the 

frequency region of interest, is M 0.93 which is very close to 1, thus indicating that the 

closed-loop system stability robust ness with respect to unstructured uncertainties 

occurring at the design plant output will be quite close to the LQR guaranteed stability 

robustness. The lowest value of the minimum singular value of the return difference matrix 

at the design plant input (o[1+KrG(jw)]) - was found to be M 0.84, implying that the 
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closed-loop system will have adequate stability robustness for perturbations at the design 

plant input also. However, it is important to realize that these excellent stability 

robustness properties are guaranteed for the loops broken at the points (1) and (2) in the 

LQG/LTR compensator design block diagram of Fig. 1. The actual control system 

implementation will be as shown in the block diagram of Fig. 8, wherein the interface 

between the physical system (G (s)) and the control system (K (s)) is at the points (1') 

and (2'). It is at these points in the loop that we need "good" stability margins. 

If the compensator K(s), from Fig. 1, has the state-space representation 

P P 

(18) 
- - 
x c = A Z  c c  + B c E s ;  u = C Z  c c  

where e = ysc-ys, then through simple algebraic manipulation it can be shown that the 

compensator K (s), from Fig. 8, will have the following state-space representation 

- - -  
S 

P 
- - 
x = A  X + B  e ;  u = C  X 

CP C P  CP CP P CP CP 
where e = 7 -7 and the matrices A B and C are given by 

PC P CP' CP CP 

With the above form of the compensator, the stability robustness of the closed-loop 

system was analyzed using the return difference singular values. The minimum return 

difference singular value at the actual plant output (a[I+G K ( j w ) ] ,  for point (2') of Fig. 

a), shown in Fig. 7, has a lowest value of M 0.01 which indicates very low stability 

robustness to unstructured uncertainties occurring at this point in the loop. Recalling that 

the reduced-order compensator closely approximates the full-order LQG/LTR 

compensator, it would appear from this analysis that the claim that the LQG/LTR 

methodology recovers the guaranteed stability robustness properties of the LQR (Linear 

Quadratic Regulator) is misleading. The stability robustness properties are recovered, but 

not at the physical interface between the plant and the control system where the effect of 

the modeling uncertainties will actually occur. The minimum return difference singular 

value at the actual plant input (a[I+K G (ju)], for point (1') of Fig. 8) had a lowest value 

- P P  

- P P  
13 



of M 0.4 which is also much reduced from that for point (1) of Fig. 1. 

Although the above results indicate that the implementation system (as in Fig. 8) 

will have much reduced stability robustness with respect to unstructured uncertainties as 

compared to the design system (as in Fig. l), it will be shown in the following that as far as 

stability robustness with respect to structured uncertainties in the form of loop gain or 

phase variations are concerned, the implementation system will have the same guaranteed 

multivariable stability margins as obtained for the design system. A nonconservative 

measure of stability robustness for structured uncertainties, called p or the structured 

singular value, has recently been developed [11,12]. A detailed mathematical discussion of 

the definition and properties of p) and the form of structured uncertainties that can be 

analyzed using p can be found in Ref. [ll]. For the case of loop gain or phase variations, 

this stability robustness measure is given by 

p[M(jw)] = mi n a[DM(jw)D-'] 
D € K  

where M is the return difference matrix at the loop point where the gain or phase 

variations are being considered (for example, M=I+KG(jw) for point (1) of Fig. l), and 08 
is the set of all real diagonal matrices. In Ref. [12] it is shown that if 

~ [M( jw) ]  2 pUmin ) 0 < w < 00 (22) 

for some constant p ~ n  5 1, then the nonconservative guaranteed multivariable gain and 

phase margins are given by 

Gain Margin : GM = - 1 

*pmin 
-1 pmin Phase Margin : PM = *2sin (-) (23) 

Denoting the M-matrix at point (i) by Mi, and considering the point (2'), i.e. the 

actual plant output, we have 

M2' = I + G  K 
P P  

P U  s 
= I+G S -1 (-I)KSy 1 
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= I+S-'GKS~ Y 

= S-l[I+GK]Sy Y 

which implies that pmin2 - - pmin2. Hence the guaranteed multivariable gain and phase 
1 

margins at point (2) will be the same as those at point (2'). Proceeding in a similar 

manner, it can be shown that the above is true for points (1') and (1) also. 

For the special case of gain and phase variations being considered here, the optimal 
* 

matrix D corresponding to the minimum structured singular value p in Eqn. (21) can be 

obtained using a globally convergent algorithm developed by Osborne[ 131. This algorithm 

was applied to the return difference matrices at points (1) and (2) with the reduced order 

compensator Kr, and resulted in the following values of the optimal diagonal matrices 
0.072 0 0.96 0 4= [ 0 1.01 ; .a= [ 0 1.01 

With the above scaling matrices, the structured singular values resulted in pmin = 

= 0.93. Using (23), these results imply that the closed loop system will have 

guaranteed multivariable gain margins of -5.4 dB to 17.4 dB and phase margins of * 50.9 

deg for variations at the plant input, and gain margins of -5.7 dB to 23.1 dB and phase 

margins of h55.4 deg at the plant output. Note that pmin2 is equal to the lowest value of 

- o[I+GKr(jw)] which is to be expected since D2 NN I. However, it was surprising to find that 

is so close to the lowest value of - a[I+KrG(jw)] even though D1 is very different from b i n l  

the identity matrix. 

1 

o*86 and pmin2 

* 
* 

* 
One final note of interest is that, from (24),the optimal diagonal matrices D for 

points (2) and (2') are related as follows 
* * 

D2,=pD S-' 
2 Y  
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where p is a scalar. So, if the compensator K(s) in Fig. 1 was such that it exactly recovers 

the Kalman filter loop, i.e. inf(o[I+GK(jw)])=l, - then we will get D2=I and hence 

D2,=pSy , or in other words the structured singular value scaling matrix for determining 

nonconservative stability margins will be just the inverse of the diagonal matrix used to 

scale the plant outputs to do the compensator design. A similar result can be obtained for 

points (1) and (1'). 

* 
W 

-1 * 

Using the implementation form of the reduced order compensator, time-histories of 

the closed-loop system responses as well as control input variations for step command 

inputs were obtained. Fig. 9 shows the N1 response to step N1 and EPR commands 

(Nlc=lOO rpm and EPRc=0.03, approximately 1% of nominal values) while Fig. 10 shows 

the EPR responses to these commands. From these figures we note that the closed-loop 

system provides well-damped decoupled command following with fast rise-time and zero 

steady-state error. Fig. 11 shows the fuel flow required to track the step commands while 

Fig 12 shows the required nozzle throat area changes. The steady-state control variations 

are less than 1% of the corresponding nominal values and so can be considered to be quite 

reasonable. The initial control rate requirements, however, appear to be very high, 

especially the fuel flow rate (WF) required for tracking the N1 commands. Although these 

control rate requirements are within the maximum allowable limits, which are in the order 

of 15,000 #/hr/sec for WF and 248 in2/sec for A J  for the type of engine being considered, 

further evaluation with the fuel valve and nozzle actuator dynamics included in the closed 

loop system might be desirable to ascertain that the design compensator does not cause 

control rate limiting. 

Conclusion 

Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery 

(LQG/LTR) methodology to the design of a control system for a simplified turbofan engine 
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model was considered. The importance of properly scaling (normalizing) the plant to 

achieve the desired Target-Feedback-Loop was demonstrated. The application of the 

methodology was discussed in detail via the engine example. A gth order compensator 
th obtained by the application of the methodology was closely approximated by a reduced, 5 

order compensator using a frequency-weighted internally--balanced reduction technique. 

The closed-loop system with this reduced order compensator provides decoupled tracking 

of command inputs, well-damped and fast rise-time response, and zero steady-state error 

for step command inputs. Also shown via the example, was the inability of the LQG/LTR 

procedure to guarantee stability robustness properties with respect to unstructured 

uncertainties at the physical interface between the plant and the compensator. However, as 

far as structured uncertainties in the form of loop gain or phase variations are concerned, it 

was shown that the guaranteed stability margins for simultaneous gain or phase variations 

at the physical interface between the plant and the compensator are the same as those 

obtained at the interface between the design plant and the LQG/LTR based compensator. 

A = 

- 
-3.25e+00 1.98e+00 
4.73e-01 -2.88e+00 

4.64e-02 3.66e-42 
-9.72e-04 -1.32e-02 
-1.54e-03 -4.49e-02 

1.43e-02 8.82e-03 
1.43e-04 1.72e-05 

Appendix 

8.03e-41 1.94e-01 1.53e+00 1.65e+00 0 .0  
1.63e+00 2.30e-01 2.27e+00 -1.00e+00 0.0 

-8.99e-01 7.38e-04 7.44e-03 2.48e-03 0 .0  
5.35e-02 -2.76e-01 8.16e-04 - 4 . 1 7 d 3  0 .0  
1.81e-41 3.14e-02 -1.00e+00 -1.43e-02 0 .0  
1.34e-01 8.96e-03 7.01e-02 -7.02M1 0.0 
4.91e-05 1.16e-05 8.82e-05 9.24e-05 -1.00e+02 

B =  
P 

6.58e+02 2.76e+ 01 
7.56eS 02 2.0 le+ 0 1 
2.69e+00 -2.68e-01 
2.71eS-01 4.32e-01 
9.38e+01 1.48e+ 00 
2.70e+01 3.13e-01 
4 . 1 7 d 2  -7.72e-03 

0 0 0 0 0 0 100.0 
c = [  1.0 0 0 0 0 0 

P 
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Scaling Matrices 

The nominal operating values are : 

N l 0  = 9637 rpm ; EPRo = 3.08 

WFo = 20 (lOOO#)/hr ; AJo = 432 in 2 

Normalizing the inputs and the outputs by the nominal values results in the following 

scaling matrices 

0 0.0023 . 1 0.05 0 
Y 
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FIGURE 1. - BLOCK DIAGRAM FOR LQG/LTR COMPENSATOR DESIGN. 
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