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ABSTRACT 

This paper reviews the status of singular value loop-shaping as 
a design paradigm for multivariable feedback systems. It shows 
that this paradigm is an effective design tool whenever the prob­
lem specifications are 'spaciaUy round'. The tool can be arbitrarily 
conservative, however, when they are not. This happens because 
singular value conditions for robust performance are not tight 
(necessary and sufficient) and can severely overstate actual 
requirements. An alternate paradigm is discussed which over­
comes these limitations. The alternative includes a more general 
problem formulation, a new matrix function J.I., and tight conditions 
for both robust stability and robust performance. The state of the 
art currently permits analysis of feedback systems within this new 
paradigm. Synthesis remains a subject of research . 
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BEYOND SINGULAR VALUES AND LOOP SHAPES 

Gunter Stein 

Honeywell Systems and Research Center and Massachusetts 
Institute of Technology 

1. INTRODUCTION 
Ever since the basic work of Nyquist [1]. Bode [2] and others. the classical 

approach to feedback design has followed a frequency domain perspective. We 
are given a plant described by a rational transfer function. G(s). and wish to 
design a rational compensator. K(s). such that the closed loop feedback system 
is stable and meets certain performance and robustness requirements. 

As is well kno'wn. the stability requirement imposes structural constraints 
on certain transfer functions of the closed loop system, e.g. a Nyquist encircle­
ment count for the function det (I +GK) [3]. Like'wise. the performance require­
ment imposes magnitude constraints on certain other transfer functions. In 
particular. for disturbances and commands reflected to the output loop­
breaking point. the (output) sensitivity function 

S(s) ~ [I + G(s )K(s )]-1 (1) 

must be small for all frequencies. s =j:'). where the disturbances and/or refer­
ence commands are large. 

The third feedback design requirement -- tolerance for uncertainty -- also 
imposes magnitude constraints on transfer functions. A corrunon requirement 
in this case is that the "complementary (output) sensitivity function" 

T(s) ~ G(s )K(s) [I + G(s )K(s) ]-1 (2) 

must be small for all frequencies where so-called unstructured multiplicative 
model uncertainties are large [4]. 

For classical single-input single-output (SISO) systems. the meanings of 
"small" and "large" in these statements are. of course. understood in terms of 
the absolute values of the respective complex-valued functions at each fre­
quency. Hence. SISO designers working in the frequency domain have viewed 
the design problem as one of shaping the {Bode} magnitude plots of sensitivity 
and complementary sensitivity functions to be small enough to meet design 
specifications. Indeed. because IS (s) I ~ 11 I GK(s} I whenever I GK(s) i is large. 
and I T(s) i ~ I GK{s) I whenever I GK(s) I is small. the shapes of these magni­
tude functions are intimately tied to the shape of the loop transfer function 
GK(s). and the entire design process is often referred to simply as "loop­
shaping". 

Over the last few years. the loop-shaping process has been successfully gen­
eralized to multi-input multi-output (MIMO) design problems [4]. Key 
ingredients of the generalization include -- 1) the use of singular values as 
appropriate measures of magnitude for matrix-valued transfer functions. 2) the 

'rn.:s work we.s S"Jjl?o::-ted in pa::-t by HO:leyweJ In~e:':lal IR&J. e..,d by t.':te ~ASA A.'T.es e..,d 
Le.."1g:ey Resea::-ch Cente::"s .mder Gre..,t SAG-2-297. 
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development of formal mathematical conditions 'Which guarantee stability 
robustness and performance robustness of MIMO feedback systems in terms of 
these magnitude measures. and 3} the development of certain modifications of 
existing design procedures {e.g. LQG/LTR} which help to synthesize desired mul­
tivariable loop shapes. 

Design experience with these new results shows that loop-shaping is an 
effective MIMO design paradigm for problems 'Whose specifications can be 
reduced to "spacially round" requirements on S(s} and r(s} alone. Unfor­
tunately. many design issues which arise in MnW problems cannot be usefully 
expressed in this form. This paper describes some of these latter design issues 

. and develops a design framework and certain recently developed tools which 
promise to deal ,\ith them more effectively. 

The paper begins in Section 2 l\ith a brief review of the MIMO loop-shaping 
process. It then discusses some of the issues which are not easily handled by 
this process in Section 3. Finally. a more general design framework and associ­
ated research results are presented in Section 4 which promise to address these 
issues more effectively. Section 5 provides concluding comments. The paper 
presents no basic new theoretical results and should be viewed only as a brief 
look at the current status of this branch of frequency domain MIMO design. 
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2. THE MlMO IDOP-SHAPING GENERAlJZATION 
Our generic multivariable feedback design problem is illustrated in Figure 

1. The loop consists of a plant and a compensator in a unity feedback arrange-, 
ment. The plant can be any element from a set of plants characterized by a 
nominal operator. G. and a perturbation operator. 6G. These operators 'are 
modelled by rational transfer function matrices G(s) and 6 G(s). respectively. 
Similarly. the compensator. K is modelled by K(s). The design problem is to 
find a K(s) which makes the feedback loop internally stable for all possible 
plants G(s )+6 G(s) and causes it to respond well to external signals such as 
commands. r(s). disturbances. d{s). and sensor noise. n{s).· 

2.1. A Formal Design Problem 
This MIMO design problem can be formalized by specifying precise' 

mathematical statements for the qualitative performance objectives above. and 
by specifying a set of external signals. r(s). d{s) and n{s}. and a set of plants. 
G(s )+6 G(s). over which these objectives must be achieved. We will start with 
some very simple specifications for these three elements of the design problem. 
More complex situations are treated later. 

2.1.1. Performance Objectives 

As formal performance objectives. we "'ill require that the error signals 
from the feedback loop. e (s) = y{s)-r (s). be sufficiently small in the L2-norm 
sense. That is, we require 

II. ii, ~ [.( e(t)T.(t)d/]* < 6 (3) 

for all external signals and all plants in sets yet to be defined. The scalar 6 sets 
the desired level of performance. 

2.1.2. External Signals 
We also use the L2-norm to characterize the set of external signals. For 

the time being. this set "ill consist of a single vector-valued signal. r (s). with 
des) == 0, and n(s) == O. The signal res) will consists of all time functions which 
can be generated by passing the functions 

TJ = ~ TJ(t); t ~ 0 ~ vdth I! TJ !! 2 ~ 1 (4) 

through linear systems v.ith specified frequency responses. i.e. 

res) = wr{s)TJ(S) (5) 

Kote that these signals belong to a unit ball in L2 which has been distorted in 
frequency content by the system 'WrI. v.ith transfer function wr (s) I. to 
represent the spectral content of commands. Without loss of generality. 'WrI is 
assumed to be stable and to have a stable inverse. 

2.1.3. Magnitudes of Transfer Matrices 
The above choices of performance objectives and signal sets imply that 

singular values are the appropriate measure of magnitude for matrix transfer 
functions. This follows from the operator norm induced by L2-functions [5]. To 

• Tnro'.l8!lou~ t."rJe jle.pe:, x(t) e.."ld xes) ,,-:11 be used to des:g:la:e time t.L."lC~O:lS e.."ld their La-
place t:e.."lS!o:rr.s, reSjlectively. . 
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illustrate, suppose that 6G is identically zero. Then 

e(s) = S(s)r(s) (6) 

where S(s) is the feedback system's nominal sensitivity matrix defined in equa­
tion {l}. The performance objective for this case requires that 

sup I! e 112 = sup II Slrr I '17112 
"I h "I 

= II 51fr I ;12 .. 2 

= supa[S(jr.>}wr(jr.>}] < 6. (7) 
Iol 

Here the function a[) denotes the largest singular value of its matrix-valued 
argument. It follows that the performance objective is achieved (nominally) if 
and only if the Bode plot of this singular value for S(jr.» lies entirely below the 
Bode plot of 611 wr(j:.» I over the entire frequency range 0 s r.> < Q) • 

2.1.4. Set of Plants 
The operator norm induced by external Lz-signals also provides a con­

venient (and reasonable [6] ) way to express the set of plants. As a starting 
point, we will consider G+6G to be generated by unstructured multiplicative per­
turbations at the output, i.e. 

[G(s)+6G(s)] = [I+L(s)JG(s) (B) 

where L (s) is a perturbation matrix which satisfies 

L(s) = U;L(S)~(S) (9) 

for a specified stable invertible lrLI and some arbitrary stable' operator h v.1.th 
induced norm less than or equal to unily, i.e. 

l!h!!2"2 :: supa[~(j:.»] ~ 1 (10) 
Iol 

Note that this characterization makes L norm-bounded in the sense that L 2-
signals in the unit ball, as shaped in frequency content by lrL -1 I, produce out­
puts whose L2-norms are less than unity. 

2.2. Robust Stability and Robust Performance 
Given these specifications for performance objectives, external signal sets, 

and plant sets, we now seek a compensator K(s) which satisfies two require­
ments. First, it must achieve stability for all elements in the defined set of 
plants. This property will be called "robust stability". Second. it must satisfy 
the slated performance objective for all signals in the defined signal set and for 
all plants in the plant set. This latter property 'will be called "robust perfor­
mance". The process of finding such a compensator is greatly facilitated by two 
important analysis results. The first of these is the follo\\1ng theorem. proven in 
[4]. which provides necessary and sufficient conditions for robust stability. 

Theorem 1 
Suppose that the nominal feedback system in Figure 1 is stable (i.e. it is 
stable when 6 G(s) ;; 0). Then the perturbed system is stable for all aG(s) 
defined by equations (B)-(IO) if and only if 

• 'rne s:ab!l!!y req~emen! on h CIl.."l be !"e~e.xed to t.~e cond;~on :hat G Il.."ld (I+L)G have 
the sarr.e n'.l:nber o! u.."lS".aole modes. 
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a[WL{je..» T{je..»] < 1 for all e..>. (11) 

where T(s) is the complementary sensitivity function defined by equation 
(2). 

This result follows from the fact that the feedback loop remains stable if and 
only if the function det[J+U+L)GK] = det[J+GK]det[J+A'WLT] remains non­
zero along the j e..>-axis (and therefore in the right half plane) for all A. 

The second important analysis result provides a sufficient condition and a 
separate necessary condition for robust performance: 

Theorem 2 
Suppose that the feedback system in Figure 1 is robustly stable. Then the 
perturbed system satisfies performance objective (3) for all signals defined 
by (4)-{5} and all 6 G(s) defined by (B)-{10) if -

a[S{je..»wr{je..»] < 6 [l-a[WL{je..»T{je..>)]] foralle..>. (12) 

and it satisfies the objective for all signals and all plants only if 

a[S{je..»'Wr{je..»] < 6 [l-1[[WL(je..»T(je..>)]] foralle..>. (.13) 

where.Q.[] denotes the smallest singular value of its argument. 

These conditions follow directly from the perturbed sensitivity function 

5(s) ~ II+[J+L(S)]G(S)K(S)r
1 

= S(s)[J +L(s) T(S)]-1 (14) 

which shows that performance is maintained in the face of L (s) whenever the 
nominal performance requirement. a[Swr] s 6 from equation (7). is tightened 
sufficiently to offset the amplification of the factor [I + LT ]-1. Equations (12) 
and (13) simply reflect the worst and best case values this amplification can 
take_ Kote that these equations reduce to a single necessary and sufficient con­
dition whenever the complementary sensitivity function is "spacially round", Le. 
when its condition number satisfies -

,,[T] ~ a[T]/Q[T] ~ 1. (15) 

Even v.ithout this property. however. the sufficient condition (12) alone is not 
unduely conservative. This is so because the factor I-a ['WL T] must be positive 
for robust stability and is typically designed to be 0.5 or greater to provide some 
design margin. On the other hand, the factor l-Q[ wL T] is never greater than 
unity. Hence. the true robust performance requirement is t.ypically overstat.ed 
by less than a fact.or of two_ 

The significance of Theorems 1 and 2 is that they define robust stability and 
robust performance solely in terms of acceptable magnitudes for the nominal 
functions a [ T(j:.»] and a [S{j e..»]. In particular, we saw from equation (11) that 
robust stabilit.y is achieved if and only if 

a[-T(j CJ)] < I ~)' for all e..> - (16) 
wL :.> i 

Similarly. equation (12) shows that a linear combination of a [ T] and a [ S ] must 
be small enough to assure robust performance. namely 
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a [ 5 (j '-» ] + 6 I ~ ~ ~ ~~ ~ ~ I (j [ T (i '-»] < 6 for all '-> • {17} 
/wr(j '-» I 

As in the S180 case, therefore, the design problem defined by the specified per­
formance objectives, external signal sets, and plant sets in Sections 1.1.1-1.1.4 
reduces to one of shaping Bode plots of sensitivity and complementary sensi­
tivity magnitudes such that they lie below specified bounds over the entire fre­
quency range. 

2.3. Synthesis Methods 
While our simple Ml~O design problem is thus fundamentally the same as a 

S1S0 problem, the actual process of shaping MIMO functions is more difficult 
than shaping S1S0 ones. This difficulty has been demonstated over the years by 
a variety of attempts to generalize S1S0 synthesis concepts (e.g. inverse Nyquist 
methods applied to diagonally dominant systems [7], direct-Nyquist and Bode 
methods applied to characteristic loci [6], root-locus methods applied to mul­
tivariable functions [9], etc). 

It turns out that some of the most effective methods of shaping MIMO loops 
use modern optimization-based synthesis tools. For example, modified versions 
of the LQG problem can be used effectively to achieve trade-offs between singu­
lar values of 5(s) and T(s) across frequency [4,10]. More recent H.-methods 
have also been developed to synthesize compensators which directly minimize 
sup a [5(j '-»], or sup a[ T(j '-»], or singular values of weighted augmented combi-

c.; c.; 

nations sup a [5(j'-» ; w(j,-»T(j,",)] [11,12,13]. Eowever, no methods have been 
1.1 

developed to date which directly optimize sums of weighted singular .... alues, as 
might be suggested by equation (17). 

These various synthesis methods "'ill not be discussed further here. Rather, 
it is our objective to identify design issues which do not lend themselves readily 
to the MIMO loop-shaping generalization even if the associated synthesis prob­
lems could be solved effectively. 
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3. MORE COMPLEX PROBLEMS 
The design problem described above can be made more general and more 

useful for design purposes by including more complex performance require­
menls, signal sels, and/or planl sels. An obvious addition, for example, is to 
include dislurbances d (s) in the external signals. If lhese are generaled as in 
equation (5) by an L2-ball shaped in frequency conlent by w"I, then a robust per­
formance resull analogous to equation (17) applies, ",ith I Wei (s) I replacing 
Iwr{s)l. If bolh res) and des) exist simultaneously, then Iw,,:+!wrl replaces 
I wr ! alone. 

Another obvious addition is to include sensor noise, n{s}. Let this signal 
again be generaled by an L2-ball shaped by wnl. Wilh other signals zero, this 
input drives the error e (s) via 

e(s) = (J+L) GK[I+(I+L) GK]-l wn '7{s) 

= (J +L) T [I + L T ]-l wn '7{s) . (18) 

which (after some algebra) leads to the following sufiicient condition for perfor­
mance over all n (5) and all L (5): 

a[ T(jCo»] < 61 (j)' . ~)' {1 (j )') for all Co>. (19) wL Co> 1 + I Wn (.); + I wL c.> I 

Kote that this constraint on 0 [T] is tighter than the stability robustness con­
straint (16). 'Hence, it can be used in place of (16) to cover both design require­
menls. 

3.1. Di1IicuIties 

While the above two signal additions can be accomodaled quite easily in the 
MI~W loop-shaping setup, there are other generalizations which cannot. In fact, 
any performance requirement, signal set, or plant set which is not spacially 
round as seen at the feedback system's output can cause ditIiculties.· To illus­
trate this, we "ill consider the follo"ing more general specifications: 

Perf ormance Requirements 
Filtered versions of e (s) must be L2-norm bounded for all external inputs 
and all plants, i.e. . 

II t 112 < 6 "i th 
6 

t(s) = W. (s) e (s) , (20) 

where W, (5 ) is the transfer matrix of a stable invertible operator, W., which 
shapes the spacial directions as well as the frequency content of e (s). 

External Signals 
r(s) generated by 

r(s) = Wr{s) '7{s) , (21) 

where matrix Wr (s) shapes the spacial directions and frequency content of 
the commands. 

• Teci..,:cIWy, any S?ecmcatio::t o! periormance req-.i:'e:nents, sig::te2 sets, e.."ld ple..,t sets 
wxch e:e e::.>ter en spacie21y rO'JJld at t..>te outp".1t 0: all spacie22y rO"J..,d at the i."lput can be 
acco:nodated. In the lat~er case, the desig::t wo-.Ld be do::te w:.~ S e..,d T de!i."led at the in­
put. 
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Set of Plants 
Unstructured multiplicative perturbations at the output defined by 

L(s) = WLo{S)~(S) WLi{S) I (22) 

where WL\ (s) and WLo (s) shape the spacial directions and frequency content 
of inputs and outputs of the unit-norm perturbation ~, respectively. 

Mnm loop-shaping results for these specifications can be developed in a manner 
completely analogous to Section 2. Under the assumption that the nominal 
~eedback system is stable, the principal results are the following: 

(l) Kominal performance is satisfied if and only if 

u[W.{je.»S(j::'»Wr(je.»] < 0 for all e.> 

(2) Stability is robust if and only if 

u[Wl.dje.»T{j:.J)WLo{je.»] < 1 foralle.> 

(3) Performance is robust if (not only if) 

u[WgSWr ] <r",~,,,,, [l-a[WLiTWLoJ] foralle.>. 

(23) 

(24) 

(25) 

The result which causes difficulties here is (25). It is derived via the following 
manipulations: .... 

£(5) = W,(s)S(s)Wr (S)7](S) 

= W. S [1 + L T] -I W r 7] (S ) 

= W. SWr Wr -1[1 +LT ]-1 Wr 7](S) 

= (W. SWr )( W~I Wr )-1 [1 + 6( WLi TWLo )]-1 (W~l Wr ) 7](S} (26) 

The last of these equations shows that the tightest singular value bound which 
we can place on the transfer matrix from 7](S) to £(s) for all L (s) is 
u [W, SWr ] IC [W~I Wr ] I ( 1 -u [WL\ TWLo ]). This bound leads directly to Condition 
(25), and thus, (25) is the weakest sufficient condition for robust stability which 
can be established via singular values. 

Unfortunately, (25) can be arbitrarily conservative - requi!'ing much 
tighter nominal performance than is actually necesscry to assu!'e robust perfor­
mance. Examples which illustrate this difficulty abound [6]. Indeed, (25) is 
often found to be i~possibly tight in light of stability robustness constraints. 
The potential for this conservatism exists whenever the condition number 
IC[ WEal Wr ] is large.· This occurs when the external signals and/or the plant per­
turbations are not spacially round. 

3.2. Examples 
To conclude this section, we briefty consider two examples which give rise 

to problem specifications which are not spacially round. 

Example 1: Perturbations at the Input 
Suppose that the set of plants, G+oG, is described not by (8) in Section 2 
but rather by 

• 70 a lesser degree, the ~otentia2 also ex:s:s w~en IC [WLi T WLo ]) is large. As i .. 1 f:ction 2, 
however, the facto:- 1-a l WLi TWLo ] :s typice.:y des:gned to be 0.5 or gree!.e:o, e..."ld t.~".lS, its 
con~b',ltion to conse:ovetis:r. is no~ excesS:ve. . 
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[G(s) + 6G(s)] = G(s) [I + L(s)] (27) 

'with L(s) satisfying assumptions (9}-(10). Then a few manipulations show 
that the corresponding multiplicative perturbation at the output is given by 

L(s} = G(s)L(s} G(S)-1 {2B} 

Thus, L (s) satisfies Specification (22) with 

WLi(s} = l(s)G.(s)-1 and WLo(s) = G.(s)wL(s)/I(s) {29} 

where G.(s) is a minimum phase stable version of G(s} (v.ith all unstable 
poles and transmission zeros reflected about the j r.J-axis). and 1 (s) is a low 
pass filter which makes G. -1 proper at high frequencies. It follows that this 
specification of plant perturbations, which is spacially round at the input, 
will not be round at the output if the condition number of G{j r.J) is large. 

Example 2: Disturbances at the Input 
Suppose that the external signals consist of disturbances du (s) entering at 
the input and generated by an Lz-ball shaped "ith wul These disturbances 
can be represented by the follov.ing equivalent· disturbances reflected to 
the output: 

des) = G.(s)du(s) (30) 

This disturbance corresponds to Specification (21) with Wr(s) = 'Wu (s) G.(s}. 
Again. this eA-lernal signal is not round whenever the condition number of 
G{j:.;) is large. 

Both of these examples are, of course, common occurances in ~HMO feedback 
design, and there are many others. 

·Eq'J.:vefe::n. i., tile sense L'lta: c~osed loop respo::lSes y (s) v..1l have the sa:ne :r..ag:i~:ades fo:, 
ell s =) r.J. 
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4. AN ALTERNATE MIMO DESIGN FRAMEWORK 
The loop-shaping limitations described above can be overcome with an 

alternate design framework which has been developed in the last few years 
[6.14.15]. This alternate framework consists of a new problem description. a 
new measure of magnitude for matrix t.ransfer functions. and certain key 
analysis and synthesis results. These various elements are described briefly in 
this Section. 

4.1. Problem Description 
The new problem description is illustrated in Figure 2. It consists of a very 

general "plant". P. whose outputs and inputs comprise three pairs of vector 
variables. The first pair of variables consists of measured outputs. y (s). to be 
used for feedback and control inputs. u(s). to be commanded by the compen­
sator. K. The second pair consists of performance variables. t{s). and external 
input signals, 1](s). Finally. the third pair of variables consists of input signals. 
('i (s). to the perturbation operator. f:j, and outputs from this operator. ('0 (s). 
which feed back into the plant. The design problem is to find a compensator 
which keeps the signals t(s) in the unit L 2-ball for all signals 'T}(s) in the unit­
ball and all stable unit-norm operators f:j. 

This problem description is very general because the internal structure of 
P can be chosen to represent many different problem specifications. One 
example of this internal structure is sho'wn in Figure 3. This figure corresponds 
to the problem specifications in Section 3.1. P is seen to include the usual 
input-output description of the real plant G. but it also includes the weighting 
operators We a'ld Wr , which shape performance variables and e>..i.ernal signals. 
as well as WLo and 'WLi which shape the plant perturbation. The types of exter­
nal signals (whether r(s), d(s), n(s) and/or others) are also defined by the 
internal structure, as are the locations of perturbations (whether at outputs, 
inputs. and/or elsewhere). Various examples of internal structures of P for 
other problem specifications can be found in [6]. 

4.2. Analysis Results 
Beyond mere generality. Figure 2 is important because it comes equipped 

'with a non-conservative necessary and sufficient condition for robust perfor­
mance. In order to describe this new condition. we first close the compensator 
feedback loop in Figure 2 to get the closed loop system in Figure 4. The opera­
tor F(P.K) in this figure has a 2x2 block-structured transfer function matrix 
F(s) whose blocks are defined in terms of the original 3x3 partition of P{s) as 
follows: 

iij(s) = Pij(s) + Pi3(S)[I-K(s)PsS(S)]-lK(s)Psj(s) i.j = 1.2 (31) 

Suppose that this system is stable. Then the follovoing results apply: 

(1) Nominal performance is satisfied if and only if 

a[F22{j:J)] < 1 foralle.> (32) 

(2) Stability is robust if and only if 

a[Fll{je.»] < 1 forall:J 

(3) Performance and stability are robust if and only if 

J.L[F{j:J)] < 1 for all:J 

(33) 

(34) 
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'where J.I.[] is a function to be defined shortly. 

The first two of these results are self-evident. Result(32) follows by definition -
performance is satisfied for b(s} == 0 iff the induced norm II F22 112 .. 2 is less than 
or equal to unity. Result(33) follows from the stability condition 'with the b-loop 
closed -- namely det [I -bFl1 ] must remain non-zero on the j CJ-axis for all b. 

The more significant result is (34). This follows again from the definition 
that performance is robust if and only if the t./ "7 transfer matrix 'with the b-Ioop 
closed remains st.able and norm-bounded by unity. i.e. iff (33) is satisfied and 

a[F22+F21(I-bFll}-lbF12] < 1 forallCJ andallb (35) 

Notice that this last norm-bound is also a necessary and sufficient condition for 
continued stability if we chose to connect a second norm-bounded perturbation. 
say bo (s). across the t. and "7 terminals of Figure 4 (to see this. compare the 
form of (35) vdth our other stability conditions (11), (24), and (33) ). It follows. 
therefore. that robust performance is equivalent to robust stability in the face 
of two perturbations, band bo • connected around the system F{s) in the diago­
nally structured arrangement shown in Figure 5. 

These observations bring us to the function J.L n. This function was defined 
in [16] to pro\ide a magnitude measure for the smallest block-structured per­
turbation which "'ill make a system unstable. The full definition of J.I. for com­
plex matrices is the follo"'ing: 

( 

,det[I-6XU] = 0 1 
min 6! for some X = dia.,g[b1.b2, " .• bm ] 

i with a [~] ~ 1 for all i 

J.I.[J,f] ~ r (36) 

In words. this equation defines J.1. [] to be the reciprocal of the smallest value of 
scalar 6 which makes the matrix I -6XU singular for some X in a block-diagonal 
perturbation set. Kotice that this definition reduces to the conventional singular 
value in the absence of structure (i.e. when the number of blocks, m, in X is 
one). For this reason. J.I. has been called the "structured singular value". Note 
also that the value of J.I. depends on the number of blocks in the structure as 
well as on the dimensions of these blocks. Technically. therefore, J.I.'s argu­
ments should include not only matrix U but also a multi-index which describes 
the structure. By convention and fer ~ake of notational simplicity. this latter 
dependence is suppressed. 

It is clear from this definition that J.1. can be applied to the transfer 
matrices of Figure 5 to test whether det [I -dia.,g (b. bo ) F] remains non-zero 
along the j :J-axis. This establishes tight conditions for robust stability with 
respect to the two perturbation blocks. and equivalently, tight conditions for 
robust stabilit.y and performance (Condition (34)}. Formal details of this argu­
ment are given in [14]. Notice. however, that the definition of J.L is not limited to 
the 2x2 diagonal perturbation block structure in Figure 5. It can be used to 
test stability with respect to any number of diagonal blocks. This makes it pos­
sible to establish robust stability with respect to plant sets which are charac­
terized by several unstructured perturbations. and simultaneously. to establish 
robust performance with respect to several performance requirements·. 
Indeed. the only limitation on perturbation structures testable via J.L appears to 
be that each perturbation block must be allowed to be complex-valued. 
Research to remove this remaining potential source of conservatism is under 
way [17]. 

• The mea:ing o! seve:-ai ·periorma."lce blocks' is no~ en~e;y ciear. For S'.lch cases. J.L < 1, 
irTl?lies that the Hh periol'IDa."lce requirement is robust with respect to the ree.} per.u:ba-
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4.3. Numerics for j.L 
Like singular values. j.L is useful for practical numerical analyses as well as 

for theoretical ones. First-generation computer algorithms have been 
developed to evaluate the function for fixed complex matrices. When used 
repeatedly. these algorithms can generate Bode plots of j.L over frequency for 
matrix transfer functions such as F(s). This provides a practical Bode-like 
analysis test of stability/performance robustness for any given candidate 
design. 

To date. Jl-algorithms are based on the the follov.ing inequalities. proven in 
[16]: 

maxlX[UM]1 ~ j.L[/J] ~ minu[DIJD-1] {37} v D 

where 

Ui unitary 

d;, scalar 

u ~ dia.g [U1• U2.",. Um ] 

D ~ dia.g [dll l • d212 • ..•• dm.lm] 

Reference [16] shows that the left hand side of inequality (37) is tight and thus 
pro\ides a potential way to compute j.L. Unfortunately. the implied maximiza­
tion over the block-structured unitary matrices U has many local maxima. The 
right hand side of (37) is also tight. at least for structures with three or fewer 
blocks. Its implied minimization over the block-structured scaling matrices D 
is convex and thus provides a much nicer problem for numerial search solu­
tions. For this reason. current j.L-algorithms are based on the right had side of 
(37). The issues posed by four or more blocks in the structure remain under 
study. and further improvements in algorithms are forthcoming [18]. 

4.4. j.L-Synthesis 
Progress has also been made in the development of formal synthesis 

methods for the design framework in Figure 2. These methods seek to design 
compensators. K. to stabilize the nominal system. p. and to minimize j.L[FJ. 
While complete solutions of this problem are not yet available. an iterative 
scheme has been invented which yields useful answers [19]. The iterative 
scheme exploits the fact exhibited in (37) that j.L is a scaled version of (j v.ith 
block-struct-rred scaling matrix D. This fact suggests the follov.ing iteration: 

Step(l) 
Fix an initial estimate for DCj:.» 
Step(2) 
Solve a a-synthesis problem to find a stabilizing K(s} which minimizes 
sup u[D(j r.;)F(j :.>}D(j (.)}-l] 

Iol 

Step(3) 
Evaluate the j.L-properties of this solution against Condition (34). and 

Step(4) 
Stop if Condition (34) is satisfied. Else replace the D(j:.» estimate with the 
D(j CJ} values computed as part of the j.L-calculation in Step(3) and return 
to Step(2) 

tiO:lS 6 as weI: as the This is a S"..rO:l8e:- recr.lirement the..."l ac~·.reDy necessary. 
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These iterations are practical primarily because the a-problem in Step(2) has a 
numerically tractable solution. This a-solution has been completed only 
recently [15]. and is itself a significant step forward in MIMO design. It encom­
passes the various special H.-problems from Section 2 as special cases and 
provides state-space-based computational algorithms which can handle design 
problems of significant engineering size. Detailed descriptions of the solution 
are left to [15] . 
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5. S1JMMARY AND CONCLUSIONS 
This paper has provided a brief status review of the singular value loop­

shaping design paradigm for multivarible feedback control systems. It has 
shown that this paradigm is useful for design problems whose specifications of 
external signal sets. plant sets. and performance requirements are spacially 
round at the plant output or. by duality. spacially round at the plant input. For 
such problems. it is possible to "Tite tight necessary and sufficient analysis con­
ditions for robust stability and also reasonably light conditions for robust per­
formance. Both conditions take the form of Bode-like magnitude bounds on 
singular values of sensititivity and complementary sensithi.ty matrices of the 
feedback system. 

Unfortunately. when problem specifications are not spacially round. the 
singular value conditions for robust performance can be arbitrarily conserva­
tive. leading to highly overspecified design requirements. Design problems in 
this category abound. An alternate design paradigm is discussed which over­
comes these limitations. The alternate paradigm includes of a more general 
problem formulation. a new matrix function Il. and light. necessary and sufficient. 
conditions for both robust stability and robust performance in terms of this new 
function. Under current state of the art. J.L can be calculated numerically and 
thus provides an effective analysis tool for existing candidate designs. nowever. 
direct. synthesis techniques to design compensators which stabilize and also 
minimize J.L are not yet available. Research to provide this capability is under­
way. 
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