16,840 research outputs found

    Gaussian process hyper-parameter estimation using parallel asymptotically independent Markov sampling

    Get PDF
    Gaussian process emulators of computationally expensive computer codes provide fast statistical approximations to model physical processes. The training of these surrogates depends on the set of design points chosen to run the simulator. Due to computational cost, such training set is bound to be limited and quantifying the resulting uncertainty in the hyper-parameters of the emulator by uni-modal distributions is likely to induce bias. In order to quantify this uncertainty, this paper proposes a computationally efficient sampler based on an extension of Asymptotically Independent Markov Sampling, a recently developed algorithm for Bayesian inference. Structural uncertainty of the emulator is obtained as a by-product of the Bayesian treatment of the hyper-parameters. Additionally, the user can choose to perform stochastic optimisation to sample from a neighbourhood of the Maximum a Posteriori estimate, even in the presence of multimodality. Model uncertainty is also acknowledged through numerical stabilisation measures by including a nugget term in the formulation of the probability model. The efficiency of the proposed sampler is illustrated in examples where multi-modal distributions are encountered. For the purpose of reproducibility, further development, and use in other applications the code used to generate the examples is freely available for download at https://github.com/agarbuno/paims_codesComment: Computational Statistics \& Data Analysis, Volume 103, November 201

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86

    Nonparametric Bayesian Deep Learning for Scientific Data Analysis

    Get PDF
    Deep learning (DL) has emerged as the leading paradigm for predictive modeling in a variety of domains, especially those involving large volumes of high-dimensional spatio-temporal data such as images and text. With the rise of big data in scientific and engineering problems, there is now considerable interest in the research and development of DL for scientific applications. The scientific domain, however, poses unique challenges for DL, including special emphasis on interpretability and robustness. In particular, a priority of the Department of Energy (DOE) is the research and development of probabilistic ML methods that are robust to overfitting and offer reliable uncertainty quantification (UQ) on high-dimensional noisy data that is limited in size relative to its complexity. Gaussian processes (GPs) are nonparametric Bayesian models that are naturally robust to overfitting and offer UQ out-of-the-box. Unfortunately, traditional GP methods lack the balance of expressivity and domain-specific inductive bias that is key to the success of DL. Recently, however, a number of approaches have emerged to incorporate the DL paradigm into GP methods, including deep kernel learning (DKL), deep Gaussian processes (DGPs), and neural network Gaussian processes (NNGPs). In this work, we investigate DKL, DGPs, and NNGPs as paradigms for developing robust models for scientific applications. First, we develop DKL for text classification, and apply both DKL and Bayesian neural networks (BNNs) to the problem of classifying cancer pathology reports, with BNNs attaining new state-of-the-art results. Next, we introduce the deep ensemble kernel learning (DEKL) method, which is just as powerful as DKL while admitting easier model parallelism. Finally, we derive a new model called a ``bottleneck NNGP\u27\u27 by unifying the DGP and NNGP paradigms, thus laying the groundwork for a new class of methods for future applications
    corecore