5 research outputs found

    A robustized vector recursive stabilizer algorithm for image restoration

    Get PDF
    The ill-posed problem of object reconstruction (or band-limited extrapolation) is reformulated in the framework of the general linear model in new recursive parametric forms. The resultant algorithms are shown to be natural stabilizers of the inherent instabilities of both the iterative and noniterative reconstruction/band-limited extrapolation methods. Both robustized and unrobustized versions of the algorithms are given. The recursive algorithms provide immunity to measurement noise outliers in burst noise of high variance. Unlike procedures suggested previously, these methods eliminate the need for stopping rule constraints and ensure convergence of the algorithms. The recursive formulation of the noniterative method of band-limited extrapolation is also found to be adaptable to multidimensional image restoration. Computer simulations verify the theory and demonstrate the computational efficiency of the method

    The usual robust control framework in discrete time: some interesting results

    Get PDF
    By applying robust control the decision maker wants to make good decisions when his model is only a good approximation of the true one. Such decisions are said to be robust to model misspecification. In this paper it is shown that the application of the usual robust control framework in discrete time problems is associated with some interesting, if not unexpected, results. Results that have far reaching consequences when robust control is applied sequentially, say every year in fiscal policy or every quarter (month) in monetary policy. This is true when unstructured uncertainty à la Hansen and Sargent is used, both in the case of a “probabilistically sophisticated” and a non-“probabilistically sophisticated” decision maker, or when uncertainty is related to unknown structural parameters of the model

    Robust recursive estimation in the presence of heavy-tailed observation noise

    Get PDF
    Includes bibliographical references (p. 33-41).Supported by the U.S. Army Research Office fellowship. ARO-DAAL03-86-G-0017 Supported by the U.S. Air Force Office of Scientific Research. AFOSR-85-0227 AFOSR-89-0276Irvin C. Schick and Sanjoy K. Mitter

    Estimation, Decision and Applications to Target Tracking

    Get PDF
    This dissertation mainly consists of three parts. The first part proposes generalized linear minimum mean-square error (GLMMSE) estimation for nonlinear point estimation. The second part proposes a recursive joint decision and estimation (RJDE) algorithm for joint decision and estimation (JDE). The third part analyzes the performance of sequential probability ratio test (SPRT) when the log-likelihood ratios (LLR) are independent but not identically distributed. The linear minimum mean-square error (LMMSE) estimation plays an important role in nonlinear estimation. It searches for the best estimator in the set of all estimators that are linear in the measurement. A GLMMSE estimation framework is proposed in this disser- tation. It employs a vector-valued measurement transform function (MTF) and finds the best estimator among all estimators that are linear in MTF. Several design guidelines for the MTF based on a numerical example were provided. A RJDE algorithm based on a generalized Bayes risk is proposed in this dissertation for dynamic JDE problems. It is computationally efficient for dynamic problems where data are made available sequentially. Further, since existing performance measures for estimation or decision are effective to evaluate JDE algorithms, a joint performance measure is proposed for JDE algorithms for dynamic problems. The RJDE algorithm is demonstrated by applications to joint tracking and classification as well as joint tracking and detection in target tracking. The characteristics and performance of SPRT are characterized by two important functions—operating characteristic (OC) and average sample number (ASN). These two functions have been studied extensively under the assumption of independent and identically distributed (i.i.d.) LLR, which is too stringent for many applications. This dissertation relaxes the requirement of identical distribution. Two inductive equations governing the OC and ASN are developed. Unfortunately, they have non-unique solutions in the general case. They do have unique solutions in two special cases: (a) the LLR sequence converges in distributions and (b) the LLR sequence has periodic distributions. Further, the analysis can be readily extended to evaluate the performance of the truncated SPRT and the cumulative sum test

    Robust Techniques for Signal Processing: A Survey

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryU.S. Army Research Office / DAAG29-81-K-0062U.S. Air Force Office of Scientific Research / AFOSR 82-0022Joint Services Electronics Program / N00014-84-C-0149National Science Foundation / ECS-82-12080U.S. Office of Naval Research / N00014-80-K-0945 and N00014-81-K-001
    corecore