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Abstract

Under the usual assumptions of normality, the recursive estimator
known as the Kalman Filter gives excellent results and has found an ex-
tremely broad field of application-not only for estimating the state of a
stochastic dynamic system, but also for estimating model parameters as
well as detecting abrupt changes in the states or the parameters. It is well
known, however, that significantly non-normal noise, and particularly the
presence of outliers, severely degrades the performance of the Kalman Fil-
ter. This results in poor state estimates, non-white residuals, and invalid
inference.

A first-order approximation is derived for the conditional prior distri-
bution of the state of a discrete-time stochastic linear dynamic system in
the presence of E-contaminated normal observation noise. This distribu-
tion is then used to derive a first-order approximation of the conditional
mean (minimum-variance) estimator. If the observation noise distribution
can be represented as a member of the e-contaminated normal neighbor-
hood, then the conditional prior is also, to first order, an analogous per-
turbation from a normal distribution whose first two moments are given
by the Kalman Filter. Moreover, the perturbation is itself of a special
form, combining distributions whose parameters are given by banks of
parallel Kalman Filters and optimal smoothers.
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1 Introduction

Time-dependent data are often modeled by linear dynamic systems. Such repre-
sentations assume that the data contain a deterministic component which may
be described by a difference or differential equation. Deviations from this com-
ponent are assumed to be random, and to have certain known distributional
properties. These models may be used to estimate the "true" values of the data
uncorrupted by measurement error, and possibly also to draw inference on the
source generating the data.

A method that has found an exceptionally broad range of applications-
not only for estimating the state of a dynamic system, but also for simulta-
neously estimating model parameters, choosing among several competing mod-
els, and detecting abrupt changes in the states, the parameters, or the form
of the model-is the recursive estimator known as the Kalman Filter [Kalman
(1960), Kalman and Bucy (1961)]. W'hile it has so far enjoyed greater popularity
within the engineering community than among statisticians, this versatile tech-
nique deserves more attention. Originally derived via orthogonal projections as
a generalization of the Wiener filter to non-stationary processes, the Kalman
Filter has been shown to be optimal in a variety of settings [e.g. Jazwinski
(1970: 200-218)]. It has been derived as the weighted least-squares solution to
a regression problem, without regard to distributional assumptions [e.g. Dun-
can and Horn (1972), Bryson and Ho (1975: 349-364)]; as the Bayes estimator
assuming Gaussian noise, without regard to the cost functional [e.g. Harrison
and Stevens (1971), Meinhold and Singpurwalla (1983)]; and as the solution
to various game theoretic and other problems. Indeed, Morris (1976) is led to
conclude that the Kalman Filter is therefore "a robust estimator," and proceeds
to demonstrate its minimax optimality "against a wide class of driving noise,
measurement noise, and initial state distributions for a linear system model and
the expected squared-error cost function."

One condition under which the Kalman Filter is not robust is heavy-tailed
noise, i.e. the presence of outliers: even rare occurrences of unusually large
observations severely degrade the performance of the Kalman Filter, resulting
in poor state estimates, non-white residuals, and invalid inference. There is
no contradiction between this fact and the findings of Morris and others. It
is well known that the squared-error criterion is extremely sensitive to outliers
[Tukey (1960), Huber (1964)], for reasons that are intuitively easy to grasp.
Squaring a large number makes it even larger, so that an outlier entering the cost
functional linearly is likely to rl-,rninate all -ther rbservatinns. Tn other words,
optimality relative to the "linear system model and the expected squared-error
cost function" must not be sought when the noise distribution is heavy-tailed.

Statisticians and engineers often confront the problem of dealing with out-
liers in the course of model building and validation. Routinely ignoring unusual
observations is neither wise, nor statistically sound, since such observations may
contain valuable information as to unmodeled system characteristics, model



degradation or breakdown, measurement errors, etc. But detecting unusual
observations is only possible by comparison with the underlying trends and be-
havior; yet, it is precisely these that non-robust methods fail to capture when
outliers are present. The purpose of robust estimators is thus twofold. To be
as nearly optimal as possible when there are no outliers, i.e. under "nominal"
conditions; and to be resistent to outliers when they do occur, i.e. to be able
to extract the underlying system behavior without being unduly affected by
spurious values.

Past efforts to mitigate the effects of outliers on the Kalman Filter range
from ad hoc practices such as simply discarding observations for which residuals
are "too large," to more formal approaches based on non-parametric statis-
tics, Bayesian methods, or minimax theory. Many, however, include heuristic
approximations with ill-understood characteristics. While some of these tech-
niques have been empirically found to work well, their theoretical justifications
have remained scanty at best. Their non-linear forms, coupled with the difficul-
ties inherent in dealing with non-normal distributions, have resulted in a strong
preference in the literature for Monte Carlo simulations over analytical rigor.

In this paper, a robust recursive estimator is derived formally, in an effort to
bridge the gap between appealing heuristics and sound theory. An asymptotic
expansion is used to derive a non-linear filter that approximates the conditional
mean estimator. The resulting estimator has good performance characteristics
both under nominal conditions and in the presence of outliers. Since its dis-
tributional properties are known (approximately), it is also possible to use this
estimator for statistical inference, such as failure detection and identification.

The paper is organized as follows: The problem is formally stated in Sec-
tion 2, and a survey of the literature is offered in Section 3. In Section 4, a
first-order approximation of the conditional prior distribution of the state given
past observations is derived. This distribution is used to derive a first-order
approximation of the conditional mean estimator of the state given past and
present observations, in Section 5. Minimax issues and the choice of noise dis-
tribution are addressed in Section 6, followed in Section 7 by some simulation
results, and in Section 8 by a brief summary.

2 Problem Statement

Let (Rd, B, A) be a measure space, where R denotes the real line, B the Borel
o-algebra. and A the Lebesgue measure. Below, the notation C(x) denotes
the probability law of the random vector x taking values in Rd, EV(jt, A) the
multivariate normal distribution with mean / and covariance Z, and Af(x; A, p )
its Radon-Nikodym derivative with respect to the Lebesgue measure. Finally,
the notation p,(X) denotes the probability distribution function of the random
variable x E R1 evaluated at X, although the subscript will be dropped wherever
there is no ambiguity.
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Consider the model
zn = H,,O + D,v,, (2.1)

where

_n+l = Fnn + Wn, (2.2)

n = 0, 1,... denotes discrete time; 0, E Rq is the system state, with a random
initial value distributed as L£(O) = N(0o, So); zn E R P is the observation
or measurement; wn E Rq is a random variable (the process or plant noise)
distributed as C(wn) = A(0, Q,); vn E RP is a random variable (the observation
or measurement noise) distributed as £(vn) = F, a given distribution that is
absolutely continuous with respect to the Lebesgue measure with E[vn] = 0
and E[Vnvn'] = R; {Fn}, {,,II}, {Dn}, {Qn}, o and R are known matrices or
sequences of matrices with appropriate dimensions; 0o e R q is a known vector;
and finally 00, w,, and v, are mutually independent for all n.

A well-known estimator e of the state On given the observations Zn =
{~zo, ... , ,} is the Kalman Filter, given by the recursion

,n = On + KnTn+ (2.3)

where
On = Fn,-ln,_ (2.4)

is the predicted (a priori) estimate of the state at time n (i.e. before updating
by the observation Zn) and

Mn = Fn - 1 Pn- ' + Qn - (2.5)

is the prediction error covariance at time n,

_In Zn - HnOn (2.6)

is the innovation at time n and

En = HnllnHT + DnRDT (2.7)

is its covariance,
Kn = MnII,Tnrn' (2.8)

is the gain, and
Pn = An - Kn rnKT (2.9)

iq ihl a pno.tqrinri etinnmation error cnvariance at Htime r (i e. aftor l1pdraling).

The initial condition 00 is given.
As is clear from equations (2.3) and (2.6), the estimate is a linear function

of the observation, a characteristic that is optimal only in the case of normally
distributed noise [Goel and DeGroot (1980)] or elliptical processes (sample-
pathwise mixtures of normal processes). Similarly, equations (2.5) and (2.8)-
(2.9) show that the gain and covariance are independent of the data, a property
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related once again to the assumption of normality. Finally, in the Gaussian case
F = An(O, R), the residual (innovation) sequence {1,..., y_,} is white and is
distributed as £(_y7) - NA(O, ri).

When SF is a heavy-tailed distribution, on the other hand, the state estima-
tion error can grow without bound (since the estimate is a linear function of
the observation noise), the residual sequence becomes colored, and residuals be-
come non-normal. Thus, not only is the estimate poor, but furthermore invalid
inference would result from utilizing the residual sequence when significant ex-
cursions from normality occur. A robust estimator should at the very least have
the following characteristics: the state estimation error must remain bounded as
a single observation outlier grows arbitrarily; the effect of a single observation
outlier must not be spread out over time by the filter dynamics, i.e. a single
outlier in the observation noise sequence must result in a single outlier in the
residual sequence; and the residual sequence should remain nearly white when
the observation noise is normally distributed except for an occasional outlier.

If F is unknown but can be expressed as a member of a class of distributions,
it makes sense to seek the optimal estimator f,n of On given Z, in a minimax sense
[Huber (1964)]. Huber shows for the static case 0, = 0 that under fairly mild
conditions, the minimax optimal estimator is in fact the maximum likelihood
estimator for the least favorable member of the class, i.e. for the distribution
with minimum Fisher Information.

In choosing a class containing F, a convenient model of indeterminacy similar
to that of Huber (1964) is the c-contaminated normal neighborhood

p,R = {(1 - 5)A(O, R) + H : H E S}, (2.10)

where S is the set of all suitably regular probability distributions, and 0 < E << 1
is the known fraction of "contamination." It is assumed in the sequel that
FT E p,R for some appropriately chosen e and R. The form of the observation
noise distribution is exploited in an asymptotic expansion, in order to obtain
a first-order approximation of the conditional prior distribution p(_, Zn-_ )
of the state variable A0 given the observations Zn-1 . A key property that en-
sures the finite dimensionality of this approximation is the exponential stability
of the Kalman Filter, i.e. the fact that the effects of past observations decay
fast enough. The resulting distribution is a perturbation from the normal, and
all the pertinent parameters are given by various Kalman Filters and optimal
smoothers that each make a specific assumption on the distribution of the noise
at each point in time. The relationship between Huber's estimator of a loca-
tion parameter, its recursive versions proposed by Martin (1972), Martin and
Masreliez (1975), Nevel'son (1975), and Price and Vandelinde (1979), and the
estimator derived here, is discussed in greater detail in Mitter and Schick (1992).

It is assumed that the observation noise is white, i.e. that outliers occur in-
dependently. While this assumption may be seen as limiting [other models have
been proposed, e.g. by Martin and Yohai (1986)], the principal goal of this effort
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is to derive a recursive estimator that can be used for inference on the linear
dynamic model in the presence of heavy-tailed noise: if outliers were allowed
to occur in "patches," the distinction between model changes and sequences of
outliers would become arbitrary, or might have to be based upon prior probabil-
ities for patch duration. This is not to say that patchy outliers do not constitute
a problem worthy of study-time series outliers can occur in patches, and an
approach to that case based upon time-scaling is currently under study.

It is also assumed that outliers only occur in the observation noise: process
noise outliers (also known as "innovational outliers," as opposed to observation
or "additive" outliers) would cause abrupt state changes that would not immedi-
ately be distinguishable from failures (except by observation of the subsequent
behavior of the model, i.e. non-causally). Nevertheless, dealing with process
noise outliers in real time is a problem for which satisfactory solutions remain
unavailable.

The first-order approximation of the conditional prior distribution p(n_ I
Z,- 1 ) is next used to obtain a first-order approximation of the conditional mean
of the state variable En given the observations Z,n-i.e. to update the predicted
estimate by the current observation z,,. This step uses a generalization of a
proof due to Masreliez (1975) and Mhasreliez and Martin (1977), made possible
by a change in the order of integration. A similar derivation also yields the
conditional covariance.

3 Literature Survey

Engineers have long had recourse to ad hoc methods aimed at downweighting
the influence of outliers on the Kalman Filter. The simplest way employed is
simply to discard observations for which the residual is "too large" [e.g. Meyr
and Spies (1984)]. T hus, the predicted estimate 0_ of the state n8 would not be
updated by z, if, for example,

I [f]i 1> ct/g (3.1)

for some i (where [,]i and [.]ij denote elements of a vector and a matrix, respec-
tively), or if

Tr-lF ,, > (3.2)

for some positive thresholds a and /3. This is equivalent to rewriting the Kalman
Filter in eriiatinn (2.3) as

n = n_ + Knbn(_y ), (3.3)

where 0 is an influence-bounding function that is linear between some possibly
time-dependent (e.g. as a function of the covariance) thresholds, and zero else-
where. There are several disadvantages to this approach, notably the absence
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of a firm theoretical basis or justification, as well as the lack of a rigorous way
to choose the thresholds. (Three standard deviations is sometimes used, but
more for historical reasons than due to statistical considerations.) Moreover,
no use is made of information contained in the observations if they fall outside
the thresholds, which may in some cases result in decreased efficiency: if some-
thing is known about the statistical properties of the outliers, then it might be
possible to extract some information from outlying observations as well, and
discarding them outright may not be appropriate. Finally, sharply redecending
influence-bounding functions of this type lead to a lack of continuity in the esti-
mates as functions of the data, giving rise to non-robust covariances [see Huber
(1981: 103)].

Somewhat more sophisticated approaches have also been advanced to pre-
process the data prior to its use in updating the Kalman Filter estimate. Thus,
for instance, Kirlin and Moghaddanijoo (1986) use the median, while Hewer,
Martin, and Zeh (1987) use Huber's M-estimator. Both papers report on ap-
plications to real data (target tracking in the former, glint noise in the latter),
where outliers were found to adversely affect the performance of the Kalman
Filter.

In recent years, a great deal of work has been published, investigating more
formal techniques for "robustifying" recursive estimators. Broadly speaking,
these methods can be grouped in three categories:

(i) Bayesian methods. When the noise is non-Gaussian, but its statistical
properties are known and not excessively complex, estimators can be de-
rived in a Bayesian framework, whereby observations are used to update
modeled prior information. The parameters of these estimators are often
chosen in accordance with some performance criterion, such as the risk.

(ii) Non-parametric methods. There are cases of practical importance where
the statistical properties of the noise are either entirely unknown, or
known only partially, or possibly known but very complex. In such cases,
distribution-free estimators are sometimes sought that remain valid in a
relatively broad class of situations.

(iii) AMinimaz methods. Another way of dealing with incomplete or absent
knowledge of the statistical properties of the noise is to choose a class of
distributions and derive the estimator whose worst-case performance is
optimal. If a saddle-point property can be shown to hold, such estimators
are refered to as minimax robust.

A review of the literature follows. It is worth noting that the recent literature on
robust statistics is vast, and a broad survey is not attempted here. Indeed, even
indirectly related works, such as those on robust regression or outlier detection,
are not discussed, except when they specifically focus on the robust estimation
of the state of a dynamic system. Published reviews include Ershov (1978b),
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Stockinger and Dutter (1983, 1987), Kassam and Poor (1985), and Martin and
Raftery (1987).

McGarty (1975) proposes a method to maximize the Bayes risk, eliminating
outliers and concurrently computing the estimate. His model assumes that
the state is totally absent from the observation when an outlier occurs, i.e.
that observations are occasionally pure noise and contain no information at all.
That differs from the model assumed here, where the state is always observed,
although the noise may occasionally contain outliers. Moreover, McGarty's
method is non-recursive, as well as computationally burdensome.

A Bayesian setting is also employed by Sorenson and Alspach (1971), Alspach
(1974), and Agee and Dunn (1980), who use a Gaussian sums approximation for
the prior distributions. There is some similarity between this approach and the
derivation of the conditional prior in this paper. However, while the number of
components in the approximating sum grows exponentially with time in these
papers, the formulation adopted here (which exploits the exponential asymp-
totic stability of the Kalman Filter) results in a bounded number of terms.
Although the option of truncating the mixture sums to reduce complexity has
been raised in the literature, little is known about the consequences of such
a move in the general case. Tanaka and Katayama (1987) use maximum a
posteriori (MAP) estimation to determine of which component of the sum the
noise was a realization. Their method is non-causal, but that is because they
assume both the process and the observation noise to be distributed accord-
ing to Gaussian sums. They also make the questionable assumption that the
conditional distribution of the state (given all past and present observations) is
normal. Pefia and Guttman (1989) propose to replace the posterior mixture by
a single normal distribution whose mean and variance are equal to those of the
mixture, and show that this "collapsing by moments" procedure minimizes the
Kullback-Leibler distance between the two distributions. While this method is
insensitive to outliers, the resulting loss of efficiency under nominal conditions
(normal noise) is unclear.

Meinhold and Singpurwalla (1989) also use mixtures of distributions, with
Student-t rather than normal components. This assumption yields the rather
elegant property that the posterior reduces to the prior at the limit as an ob-
servation tends to infinity; for finite observations, however, Student-t prior and
noise distributions would not result in a Student-t posterior, necessitating some
ad hoc manipulations both to ensure that the posterior distribution can be rep-
resented as a mixture of Student-I distributions, and to limit the number of
compnnnlts in the mixture. Fiirthirmrnre. the results onlv hrld fcr the scialar
case.

A simple way to decrease the influence of outliers is to adjust the noise co-
variance matrix used in the filter to reflect the greater variance due to them.
Suppose for instance that outliers occur with probability e, and that the covari-
ances of the nominal (underlying) and outlier models are denoted by Ro,, and
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Ro,,t, respectively. Then, using the inflated covariance

R = (1 - e)Rnom + eRout (3.4)

in the Kalman Filter recursion results in the deflation of the gain Kn and hence
a reduction in the influence of outliers. Unfortunately, of course, this results in a
reduction of the influence of all other observations as well, with the consequence
that very inefficient use is made of measurement information when no outliers
are present.

Guttman and Pefia (1984, 1985) and Peiia and Guttman (1988) propose a
more refined version of (3.4): they assume a distributional model for the ob-
servation noise, and compute a posterior observation noise covariance by using
the posterior probability that an outlier has occurred, conditioned on the mea-
surement. Similar approaches are discussed by Harrison and Stevens (1971,
1976) and Kliokis (1987), as well as by Athans, Whiting, and Gruber (1977),
who assume that measurements are occasionally independent of the state (i.e.
pure noise. Athans, Whiting, and Gruber also offer a comparison between their
Bayesian estimator and a simple outlier-rejection scheme based on a x2 test.)
One problem with this method is the need for an explicit model for the noise:
Guttman and Peiia use a two-component Gaussian mixture (scale contamina-
tion) model, which is somewhat limiting-although frequently used in the litera-
ture. Another problem is that inflated covariances and poor performance at the
nominal model may result when the "outlier" distribution contains significant
mass in the "center," as is the case with the Gaussian mixture.

A related method is proposed by Ershov and Lipster (1978) and Ershov
(1978a), whose framework is very similar to that of Guttman and Pefia, but
who make a hard decision at each step as to whether or not the observation is
an outlier. This approach has the distinct advantage of superior performance
at the nominal model, since the effective covariance is either Rnom or Rout, but
not a weighted combination of the two. Furthermore, although the published
derivation is for the scalar case, the multivariate extension is straight-forward.
The difficulty with this formulation is that the problem of choosing an outlier
model remains: Ershov and Lipster only consider the Gaussian mixture case. In
addition, it is probable that such hard decisions result in non-robust covariances,
in view of the fact that small deviations in the neighborhood of thresholds can
yield large differences in the value of the estimate. Indeed, abrupt switching of
covariances introduces transients in the filter dynamics which have apparently
not. been the olbject of stirlv.

It is worth noting that both1 the Guttman and Pefia and the Ershov and
Lipster filters can also be formulated in the form of equation (3.3)-the first with
a smooth and the latter with a piecewise linear il-function. Neither function is
bounded, implying that the performance of these estimators is poor when the
observation noise is very heavy-tailed.

Mixture models are also used by West, Harrison and Migon (1985) in the
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context of generalized linear models for non-linear time series in the presence of
outliers. Their discussion is brief, however, and their proposal rather sketchy.

A Bayesian framework is also used by Kitagawa (1987), who proposes to
approximate non-Gaussian distributions by piecewise linear functions, and select
the best among a set of competing models by means of the Akaike Information
Criterion (AIC). This method is computation-intensive. Furthermore, there is
little theoretical justification for using AIC in this context, although different
considerations, such as minimax optimality, could be used for choosing among
the competing models.

Another attempt at representing a distribution by simpler functions is that
of Tsai and Kurz (1983), where a piecewise polynomial approximation is used to
adaptively derive the influence-bounding function. Some connections between
this approach and AIC are discussed in Tsai and Kurz (1982). While adap-
tive methods are very appealing when modeling information is incomplete, this
particular application raises a problem: since outliers are rare occurrences by
definition, large samples are likely to be required for even moderate levels of
confidence, particularly in the tails. Furthermore, the derivation presented in
the paper is for the scalar case only (or, more precisely, for the case where the
elements of each observation vector are uncorrelated), and the multivariate ex-
tension is quite arbitrary; yet, such correlation could provide crucial information
in the event of an outlier that affects some measurements more than others.

The need to select probabilistic models for the noise is entirely circumvented
by the use of non-parametric, distribution-free estimators such as the median
[Nevel'son (1975), Evans, Kersten, and Kurz (1976), Guilbo (1979), Gebski and
McNeil (1984)]. Medians and other quantiles have very useful properties, such
as strong resistance to transients (like outliers) but perfect tracking of abrupt
changes (like step inputs or slope changes). Furthermore, the development of
recursive methods for estimating them has eliminated the computational burden
and memory requirements commonly associated with such statistics. However,
their performance remains ill-understood, as do their statistical properties.

A final class of robust filters is based on a minimax approach. Here, a class
or neighborhood of situations (e.g. noise distributions) is selected, and the esti-
mator with the best performance under the least favorable member of that class
is sought--where best and worse are defined in a certain sense. This paradigm
is very appealing, since, in view of the absence of precise knowledge of the
noise distribution, the essence of robust estimation is a quest for methods that
perform satisfactorily under a relatively broad range of conditions. Since the
leaqt fnvoravlle -ciation mav in farct not represent reality. and estimators cniflml
conceivably be found that perform better under some other conditions, this ap-
proach is necessarily conservative. However, it has the important advantage of
providing a lower bound on the performance of the estimator.

One group of papers [VandeLinde, Doraiswami, and Yurtseven (1972), Do-
raiswami (1976), Yurtseven and Sinha (1978), Yurtseven (1979)] assumes bounds
on covariances and obtains a minimax estimator under various conditions. Un-
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fortunately, these papers are opaque and not always consistent with eachother,
making their complicated methods somewhat inaccessible. Moreover, their non-
recursive nature makes them unsuitable for the present problem.

The literature most pertinent to this paper [Masreliez (1974, 1975), Mas-
reliez and Martin (1974, 1977), Toilet (1976), Stankovid and Kovacevid (1979,
1986), West (1981), Stepiriski (1982), Kovacevi6 and Stankovi6 (1986, 1988)]
uses stochastic approzimation of the Robbins-Monro type to get a recursive
approximate conditional mean (minimum variance) estimator having the form
of (3.3), with the influence-bounding function 4' given by the score of the
conditional distribution of the observation zn, i.e.

IP(z) = -z log pZ ( Iz | - 1) (3.5)

P ( I Zn-1)
(3.6)

-pz (z I Zn- 1) (3.6)

This estimator has been found to perform well in simulation studies [e.g.
Martin and DeBow (1976)], as well as with real data [e.g. (:etin and Tekalp
(1990)], but its theoretical basis has remained inadequate. Moreover, a crucial
assumption, that of a normal conditional prior for the state at each time step,
is insufficiently justified and remains controversial. [For a continuity theorem
regarding the near-normality of the conditional prior, see Martin (1979).] Fi-
nally, the one-step estimator is converted into a recursion in an ad hoc manner
that contradicts the assumption of conditional normality.

Similar filters are investigated by Agee and Turner (1979) and Agee, Turner,
and Gomez (1979), who eliminate the explicit relationship between the influence
function and distributional assumptions in the interest of versatility. As a re-
sult, however, these filters are not minimax and the choice of influence-bounding
function remains arbitrary. MIatausek and Stankovid (1980) also study related
filters for the case of non-linear, continuous-time, discretely-sampled systems;
their discussion of influence-bounding functions does not appear to be statis-
tically motivated either. Shirazi, Sannomiya and Nishikawa (1988) consider
models where both the process and the observation noises contain outliers; they
too make the questionable assumption of Gaussian conditional prior, and only
offer simulation results to support their algorithm. Levin (1980) investigates
methods for analyzing the accuracy of filters of the form (3.3) with bounded
4'-functions, including notably the minimax robust. estimators described above.

Ts'aknakis andl Papantoni-Kazakos (1989) Otart, cmt. frnm a rathrr different.

definition of robustness, based on the Prokhorov distance and on what they call
"asymptotic outlier resistance," and construct a minimax robust estimator that
is insensitive to bursty outliers of fixed duration. W\rhile the scalar estimator
is minimax, however, its multivariate generalization is ad hoc and does not
obviously share this property.
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Boncelet and Dickinson (1983) describe a minimax filter obtained by apply-
ing M-estimation techniques to the Kalman Filter reformulated as a regression
problem. However, the results are incomplete, and the crucial problem of up-
dating the covariance is not addressed; further results do not appear to have
been published as of this writing. Cipra and Romera (1991) similarly refor-
mulate the one-step update of the state as a least-squares estimation problem,
and apply M-estimation techniques to it. Some approximations allow them to
obtain recursions for both the state and its covariance.

4 The Conditional Prior Distribution

Before deriving a robust estimator of the state 0,n given the observations Z,,
it is necessary to define the sense in which optirnality will be sought. The
often-used linear-estimator least-squares criterion is not robust in the presence
of outliers, as mentioned earlier, while Huber's asymptotic variance (or alter-
natively the Fisher Information) criterion is not meaningful in the time-varying
case of equation (2.2).

The conditional mean estimator is well known to have several desirable prop-
erties, such as unbiasedness and minimum error variance [see for example An-
derson and Moore (1979: 26-28)], and is chosen to be the optimality criterion
here. The first derivation of a robust approximate conditional mean estimator
in the present context is due to Masreliez and Martin (1974, 1977), and is based
on Masreliez (1974, 1975); some generalizations are provided by West (1981).

A key assumption made by these and other authors is that at each n, the
conditional probability distribution of the state 0, given past observations Zn 1

is normal. This assumption allows some elegant algebraic manipulations that
yield a stochastic approzimation-like estimator. However, while the assumption
of conditional normality has been shown in simulation studies to be a good
approximation of the true density, it is only strictly correct for finite n in the
special case where j = f(O0, R) [see Spall and Wall (1984)], which is clearly of
no interest here.

In this section, a first-order approximation of the conditional distribution
prior to updating, p(0n I Zn- 1), is derived for the case where Y' is known and
belongs to the e-contaminated normal family Pc,R defined in equation (2.10).
While conditional normality is never exactly satisfied in the presence of non-
normal noise, it is shown that the zeroeth-order term in a Taylor series rep-
resentation of the distribution is normal. The small parameter arnund which
the l'aylor series is constructed involves E, the fraction of "contamination," as
well as a measure of the dynamic stability of the model. This approximation
is then used, in an extension of Masreliez's theorem, to derive a first-order ap-
proximation of a robust conditional mean estimator. It is initially assumed that
the "contaminating" distribution It is known. The choice of H in practice, a
problem whose solution remains incomplete, is further discussed in Section 6.
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It is first noted that the Kalman Filter recursions are exponentially asymp-
totically stable under certain conditions. This property ensures that the effects
of past outliers are attenuated rapidly enough as new observations become avail-
able. The stability of the Kalman Filter recursions has been studied by several
researchers, notably Deyst and Price (1968), Caines and Mayne (1970), Jazwin-
ski (1970: 234-243), Hager and Horowitz (1976), and Moore and Anderson
(1980). Hager and Horowitz (1976) relax the conditions of controllability and
observability, used below, in certain cases. See also Anderson and Moore (1981)
and Anderson (1982).

The following stability theorem is stated without proof:

Theorem 4.1 Let the matriz sequences {Fn), {Hn,, {Qn), and {Dn) be bounded
above, and let {Dn) also be bounded below. Let there exist positive integers t
and s and positive real numbers c and /3 such that for all n,

n+t i-l i-l

Fj HT(DiRDT)-Hi Fj > aI (4.1)
i-=n j=n j=n

(i.e. the system is completely observable) and

F Qi ( Fj > 3I (4.2)
i=n-s j=i+l j=i+l

(i.e. the system is completely controllable).
Then, given any O0 < oo, and defining the closed-loop recursion

,n+, = (I - Kn+l 1Hn+)Fn,n, (4.3)

(where Kn is the Kalman gain defined in equation (2.8)), there ezist A > 0 and
0 < 6 < I such that

11 On II< A6n, (4.4)

(i.e. the filter is exponentially asymptotically stable).

Proof. See Moore and Anderson (1980). U
This result is used in the following, slightly different form:

Corollary 4.1 Let the conditions of Theorem 4.1 be satisfied, and let a 0 <
q < oc ezist such that for all n,

i Fj < · (4.5)
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(i.e. the system is uniformly stable). For i = 1, 2, let &n and Ai, respectively
denote the estimators and error covariances of two Kalman Filters tracking a
dynamic system of the form (2.1)-(2.2), with respective initial conditions -0o and
A1I. Then, there is a 0 < 6 < 1 such that for any finite _,

K(o9 ') -2
_(-_; n_, /_f ) -= A(; -2n, X, 

2
) + O((6n) (4.6)

Proof. Theorem 4.1 leads in straight-forward fashion to

II nl- _ I 11= O(62n)

and

1 n- -n 2 II= Op(6'). (4.8)

Now, A/(_; g, E) is everywhere continuously differentiable with respect to At and
Z except at =- 0. But it can be shown [see Moore and Anderson (1980)] that
Mn is bounded away from 0 for all n, so that it is possible to write a first-order

1-2
Taylor series expansion of Af(0; _n , A1M) around the point (0, , AI2). Using (4.7)
and (4.8) concludes the proof. [For a detailed proof, see Schick (1989: 122-124).]

Define

(x; I, E) f ((x - E; ti, Z)dH(d). (4.9)

Note that this convolution integral yields the distribution of the sum of two ran-
dom variables, of which one is normal, and the other obeys the "contaminating"
distribution H. Note also that from (2.10), one can write

Vn = (1 - l7n)v + r7nH (4.10)

where r/n is a random variable independent of _O and {wun} obeying

0 w.p. (1-e) (4.11)
7/n: (4.11)1 w.p. C

and {v_} and {v_1 } are random variables independent of {r7n}, o0, and {wn}
with £(vJN) = A(0O, R) (for some R > 0) and L(vH) = H. Finally, loosely
defining a random variable distributed as H as an "outlier," denote the event
"there has h),--n nn oullifer arnng the first n. obervations" hv 'H,, = {r1n -
U, ... , tin = 0U, and the event "there has been exactly one outlier among the

first n observations, at time i - 1" by 1n / = {770 0 ,...,77i-2 = 0,77i- 1 =

13



1, 7i = 0,.. ., n = 0}. Then, it is easy to verify that

p(6 n, Z.-_)p(Zn- )

= p(n-_l)p(Zn_1 | En,-l)p(_n | Z-,1'Cn--1)

n (4.12)

+ p(7'n-il)p(Zn-1 1 i-)p(_ )P(n an-1,Hn-1)

i=l1

+ higher-order terms.

Clearly, the first term on the right-hand side of (4.12) is the distribution con-
ditioned on the event that there were no outliers, each term in the suinma-
tion to the event that there was exactly one outlier, and the higher-order
terms to the occurrence of two or more outliers. Moreover, defining Zn =

{0, · · i- 2 Xi, · * *· ., z. }, it follows that

P(-;n-1 Ht- 1 )P(n, I Zn-,lXn- 1 )

(4.13)
Note that the only non-normal term on the right-hand side of (4.13) is the last
one. It is shown in the sequel that this term corresponds to a convolution of
the form (4.9). Furthermore, since the distribution of a past event is expressed
here conditioned on subsequent observations, this corresponds to a smoother.
The second term on the right-hand side of (4.13), on the other hand, is the
distribution of a normal random variable (the state ,n) conditioned on normally-
distributed observations Z_l. It is therefore a normal distribution, whose mean
and variance are given by a Kalman Filter that skips the observation zi1. These
remarks are formalized below.

A first-order approximation of the conditional probability distribution p(0,
Zn- 1) is given by the following theorem:

Theorem 4.2 Let the conditions of Theorem 4.1 and Corollary 4.1 be satisfied
for the system given by equations (2.1)-(2.2), and let 6 be a real number for
which (4.4) holds. Let w be the smallest integer such that

6g <E (4.141)

(or alternatively w > log e/ log 6). If

we < 1 (4.15)
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and if the distribution H has bounded moments, then

p(O. I Z- 1 ) = (1 - C) ,KcO A(On n0 )

n
+6t1 ) 1- )mo l;n., K n A(.n q)

i=z (4.16)

E(Hi - 1"n'On; Cs Z) )

+Op(m2e
2 )

within = min(n,w) and = max(l,n-w+l), where, fori 0, 1,... and n > i,

qn Fn-Oin_- (4.17)

i= + K',i (4.18)

AI=: F,_ 1Pn_1 F,T_1 + Qn-1 (4.19)

TY = z. - In. n (4.20)

i" = HnA H T + DnRD T (4.21)

K AlnHTrn (4.22)

=Pn Aln-KirIK (4.23)

and
i i

, in =n 0n I n-1), (4.24)

and for i = 1, 2,... and n > i,

= 1 Pn- 1FT AI (4.25)

Lin = vIn-l + VniPKn-__l (4.26)~ri - yi 1 (ipi Tn T

Urn -In_ _l ' i~_ T J(4.27)- ;ri = n n 1 tn-1i

Tn - Zi-1 - H -i- 1 n (4.28)

Hi;'= Hi1 ( - lil_ + 1 T-f (4.29)

Z/ - Hi -I, --l'/il"iTtT _ (4.30)

subject to the initial conditions

-0
0,: = FOi~i_1i(4.31)
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=i -Fi_1 l°AiFT 1 + Qi-1 (4.32)

M,0i = j 1 F,1T L �-1i' (4.33)

$ -o
i = _1 (4.34)

i
iT = -A °_ 1 (4.35)

Ki = /%-1 (4.36)

for i > 0, and

so = -o (4.37)

MIoO = AoM (4.38)

= 1. (4.39)

The normalization constant satisfies

n

K_-1 ( )m ,K + e(1 - ,)m.-l _( n; 0O, Hi-1tnHT1). (4.40)

Proof. See Appendix A.

Some comments on Theorem 4.2:

(i) Equations (4.17)--(4.23) are a bank of Kalman Filters, each starting at a
different point in time i = 0, 1,.... Because of the way in which they are
initialized, the cases i > 0 correspond to Kalman Filters that start at time

n = 0 and skip the i- 1st observation. In other words, _n is the estimate

---of on based on the observations Zt - 1 and the event 2iH,_ 1. The case Z 0is based on all observations, i.e. _, estimates 0n based on the observations
Z,_ 1 and the event 7'n- 1.

(ii) Equations (4.25)-(4.27) are a bank of optimal fixed-point smoothers [see
for example Anderson and Moore (1979: 170-175)], each estimating the
state at a different point in time i - 1 based on all preceeding and subse-
quent observations. In other words, vE is the estimate of _i-1 based on
the observations Z-_ 1 and the event 7/'_-.

(iii) Thus, each term in the summation on the right-hand side of (4.16) is
a Kalman Filter that skips one ohservation. coupled with an optimal
smoother that estimates the state at the time the observation is skipped.
Some general results pertaining to conditional probability distributions of
the form (4.16) are given in Di MIasi, Runggaldier, and Barazzi (1983).
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F 6 0.001 0.005 0.01 0.05 0.1 0.5 

1.00 0.382 8 6 5 4 3 1
0.90 0.362 7 6 5 3 3 1
0.50 0.234 5 4 4 3 2 1
0.10 0.050 3 2 2 1 1 1
0.05 0.025 2 2 2 1 1 1
0.01 0.005 2 1 1 1 1 1

Table 4.1: Sample values for w.

(iv) Evidently, as n - oo, the probability of the event that only a finite number
of outliers occur vanishes for any E > 0. That the density can nevertheless
be approximated by the first-order expression in (4.16) is due to the expo-
nential asymptotic stability of the Kalman Filter: w represents a "window
size" beyond which the effects of older observations have sufficiently atten-
uated. Compare Martin and Yohai (1986, Theorem 4.2) and its discussion
in Kiinsch (1986), where weak dependence on temporally distant observa-
tions is exploited in the context of influence curves for time series.

(v) Sample values of the "window size" w appearing in Table 4.1 can give
an idea as to the dimensionality involved. These examples are for the
scalar time-invariant case, with H, = Dn = Q, = R = I for all n. A
6 is computed for each value of F, = F (by fitting a straight line to
log 0,n for large n), and an w is calculated for each pair of values F and
E (using (4.14)). As the table indicates, for a given e, a smaller F (i.e.
faster system dynamics) implies that a smaller "window" w is enough to
guarantee sufficient attentuation. Conversely, for a given F, a smaller E

implies that a longer "window" w is needed.

(vi) It is easy to show that

(1 -)nNno = p(7,n_l)p(zn-1 IC7n-1) (4.41)
(1 - ~)nf~nKnP(Zn- 1 )

= p( _n-1 | Z,_ 1 ) (4.42)

is the posterior probability, conditioned on all past observations Zn-i,
that. no outliers have occurred among the first n observations. Similarly,
it is easy to show that

-0 )'_i-nin(,~, 0, Hi_- T 1) =P(-H_ I Z,_ - 1 ) (4.43)

is the posterior probability that exactly one outlier occurred, at time i-
1. Thus, equation (4.16) is a sum of conditional distributions similar
to (4.12).
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5 The Conditional Mean Estimator

The approximate conditional prior probability distribution of the state On given
the observations 2n-1 is now used in an extension of a theorem due to Mas-
reliez. This results in a first-order approximation of the conditional mean (i.e.
minimum-variance) estimator.

The following notation is used, respectively for the a posteriori conditional
mean and conditional variance of 8n:

Tn = E[_l I Z.] (5.1)

n = E[(0, - T,)(,, - T,) T I Z,] (5.2)

In addition, the functional

(Z) = - 1 __ (Pz,(- I Zn-1),n- 1 ) (5.3)
n Pz (z I 2,_ Z ,,__n-_)

denotes the score function for the conditional probability of zn given that no out-
liers occurred during the first n- 1 observations. (Compare with equation (3.6).)
Similarly, for i = 1, 2,... and all n > i,

(Z)Ih| Z(,z) 7 4 -i -(z I Z', ) (5.4)

denotes the score function for the conditional probability of zi_1 given that
it was an outlier and that no outliers occurred among the remaining n - 1
observations. For i = 0, 1, 2,... and all n > i,

'kin (Z) = v n z (-) (5.5)

denotes the Jacobian of ai . Finally, let h denote the Radon-Nikodym derivative
-n

of the "contaminating" distribution H with respect to the Lebesgue measure,
provided that it exists.

Theorem 5.1 Let the conditions of Theorem 4.1, Corollary 4.1, and Theo-
rem 4.2 be satisfied for the system given by equations (2.1)-(2.2). If h exists
and is bounded and differentiable a.e., then

Tn = (1 - c)m K,- 
0

T
0

+ E(1 - E)m-yln+l E T' + Q(m 2 2 ) (5.6)
i=L

with m = min(n, i,) and f = max(l. n.-w + 1), where, for i = 0, 1, ... and n > i,

O = 6, + An.H1T-,(%Y) (5.7)

Tt=o_ + p;; _,_,(_,+,) T (5.8)
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7 =(1 - CE)K,+1 + CEK,=(yr; 0, HnAnHn) (5.9)

r = (1- E)n' +l- (n+lr Hi 1) (5.10)

and the score (or influence-bounding) functions are given by

(1 -)Af 
t (y; 0, r°)r y - EV ((; O, Hn, n H n

-n-°(- - -(1 - c) AE)A(; 0, rn) + e- (y; O, HnAIHT° H(T ) 5.11)

_7 ; 2, Hi-II n'+i
H i- )

' (z) - , (5.12)
n ( , Hi ,+ Hi - 1)

with e ni 0 J r1 , n 1',%, 1,, V', Wn, i' , and ,n as defined in equa-
tions (4.17)-(4.28) and (4.40), subject to the initial conditions (4.31)-(4.39).
Furthermore,

n
En (I E) Kn+l7rn o E(1 - E)m -l n+l s i n +
-, (1 - +e)m + r --1m 1

,c S r ± Op(m 2 e2 ), (5.13)
i=L

where, for i = O, 1,... and n > i,

,°, = 1/'o H- _rIHT o o (T n - T)(TT, T) T (5.14)

pSpt = It_ P~I>'J~t)('I T)Hi-17
7tiP, + (Tn-T)(T -T X)

T (5.15)

and 'k' is given by equation (5.5), subject to (5.11)-(5.12).

Proof. See Appendix B. 1

Some comments on Theorem 5.1:

(i) Both Theorem 4.2 and Theorem 5.1 are based on the assumption that
outliers occur rarely relative to the dynamics of the filter. In the un-
likely event that two outliers occur within less than w time steps of each
other, equation (5.8)-which shows that T__ is linear in _, and therefore
(by (4.17)-(4.18)) in zn-suggests that the estimate would be strongly
affected. This implies that the estimator developed here is robust in
the presence of rare and isolated outliers, but not when outliers occur
in batches. This important limitation is further discussed in Section 8.

(ii) It is easy to see that

(1 - c)n+,,+17r, = p(7,n-_ I Z ) (5.16)

and
E(1 - E)in-- n+n p(= n I Z,n), (5.17)

i.e. the estimator is a weighted sum of stochastic approzimation-like esti-
mators, with weights equal to the posterior probabilities of each outlier
configuration. These probabilities are conditioned on all the observations,
including the current one.
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(iii) Unlike the Kalman Filter, the estimation error covariance E, is a function
of the observations. Indeed, the Gaussian case is the only one where the
error covariance is independent of the observations. Note, however, that
the covariance is a function of a set of matrices {AMi}, {P},}, {r }, {V, },
and {WIV,}, which are themselves independent of the observations. Thus,
they can be pre-computed and stored, as is sometimes done with the
Kalman Filter. This would drastically reduce the on-line computational
burden.

(iv) The estimate of Theorem 5.1, as well as its error covariance, are both
fairly complex. In all but the simplest cases, obtaining them will be
computation-intensive. However, the structure given in Theorems 4.2
and 5.1 includes banks of parallel filters and smoothers that are entirely
independent of each other. This suggests that the estimator derived here
is well suited to parallel computation.

(v) The error covariance E, includes a weighted sum of quadratic terms of
the form (Tn - T )(Tn - TL)T. In some sense, this sum measures the
disagreement among the parallel estimators, weighted by the posterior
probabilities of each outlier configuration, and can be regarded as a price
paid for analytical redundancy.

(vi) The "robust Kalman Filter" of Masreliez and Martin (1974, 1977) is ap-
proximately equivalent to the zeroeth-order term in equation (5.6), i.e. to
To as given in (5.7). This may explain its good empirical performance, as
reported in the literature, despite the questionable assumption of normal
conditional prior on which it is based. It is also instructive to compare Tn
with the robust smoother of Martin (1979).

(vii) It is easy to verify that, for E = 0,

0 (70°) r~= 1 1 a, (5.18)

so that T_, reduces to the Kalman Filter in the Gaussian case.

6 The Noise Distribution

The significance of the functional Vl, lies in the fact that it processes the innova-
tion co as to mitigate the effects of observation outliers. "Overprocessing" the
data results in loss of efficiency at the nominal model, while "underprocessing"
makes the estimator excessively sensitive to outliers, i.e. non-robust.

In the case of Huber's M-estimator of location [Huber (1964, 1969, 1972,
1977, 1981: Chapter 4)] and its recursive versions [Martin (1972), Martin and
Masreliez (1975), Schick (1989: Chapter 3)], the goal is to estimate a determin-
istic parameter-either a time-invariant location parameter, or one that changes
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in a known and deterministic fashion-given observations corrupted by heavy-
tailed noise. Since the parameter itself is deterministic, asymptotic performance
measures are used, following the lead of Huber. Estimators are designed to min-
imize the asymptotic estimation error covariance under the least favorable noise
distribution, and these are shown to be saddle-points, i.e. optimal in the mini-
max sense.

In this paper, however, the goal is to estimate the state of a stochastic time-
variant linear dynamic system. In other words, the parameter to be estimated
is itself randomly changing, and the problem consists in optimally tracking it,
rather than achieving minimum asymptotic estimation error. Thus, approxi-
mations of a conditional mean estimator are sought, since such estimators are
known to achieve minimum error variance at each point in time. In Sections 4
and 5, the "contaminating" noise distribution H is treated as known. In other
words, the results of Sections 4 and 5 are better characterized as non-Gaussian
(or more generally, Bayesian) filters than as robust ones. To achieve minimax
robustness iin this case as well, it is necessary to choose a least favorable distribu-
tion H, and show that the solution satisfies a saddle-point property. [Of related
interest is Berger and Berliner (1983, 1986), who investigate Bayes robustness
in the presence of e-contamninated noise, though not in a minimax framework.]

It is clear from equations (5.13)-(5.15) that the estimation error variance
E, depends crucially on the distributions of the innovation and residual terms.
The relationship between these distributions and E,n is complicated, as is fairly
evident from these equations, but there is an additional factor that makes this
problem especially difficult: the innovation and residual terms are clearly sums
of normally distributed random variables and random variables distributed ac-
cording to a member of the E-contaminated normal neighborhood of distribu-
tions. The main difference between [luber's formulation and this one is thus that
the former involves the neighborhood P,,R defined in equation (2.10), whereas
the corresponding neighborhood in the latter case is

pe,R,R 2 = ((1 - E)(0, R) + e( A(2, R 2) X H ): H E S}, (6.1)

where R 1 and R2 are given positive-definite matrices, and 0 denotes the con-
volution operator. To appreciate the distinction, note that when R1 = R2 = R,
Huber's case involves replacing outliers, and (6.1) additive ones.

The problem of minimizing the Fisher Information for the location parameter
of neighborhoods of the form (6.1) was first posed by Mallows (1978), who pos-
tulated that the minimizing H concentrates its mass on a set of isolated points,
and that it has a geometric form; Donoho (1978) proposes a slight variant, also
of a basically geometric form, and offers some numerical results supporting his
choice. Marazzi (1985) also presents numerical results, and proposes some ap-
proximations to the form of the least favorable distribution. This issue has been
widely discussed in the literature, particularly in a Bayesian setting where either
the prior or the noise distribution is normal and the other distribution is sought
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to maximize the expected risk. Since it has been shown [see Brown (1971)]
that the minimum Bayes risk is a linear function of the Fisher Information, the
problems are equivalent. This connection was used in the present context by
Bickel (1981, 1983), Levit (1979, 1980), and Marazzi (1980, 1985, 1990).

Mallows (1980) states without reference that B.F. Logan demonstrated that
the least favorable H cannot have a continuous density, but that "after much
effort I have been unable to determine" the distribution in question. Casella
and Strawderman (1981) show that if the least favorable distribution is con-
strained to place all its mass within some interval [-m, m], then, for small m,
it concentrates on the end points. Bickel (1981) investigates this case for large
m, and derives a cosine-shaped density that is a second-order approximation
of the least favorable one. Bickel and Collins (1983) prove under certain reg-
ularity conditions that the least favorable density concentrates its mass on a
countable subset of isolated points, possibly including {:±oo}. Marazzi (1980)
also provides a proof that the least favorable distribution is discrete. None of
these authors, however, are able to derive exactly the distribution minimizing
the Fisher Information in this case.

Another difficulty in deriving a least favorable distribution for the present
problem is due to its multivariate nature. The usual ordering of matrices (given
X, Y C Rdxd, Y > X if and only if Y - X > 0, i.e. their difference is
positive definite) is not a lattice ordering. Thus, finding the member of a class
of distributions that maximizes the error covariance is not generally possible in
the multivariate case. In the special case of spherically symmetric distributions,
the multivariate extension is of course trivial: if the least favorable distributions
and influence-bounding functions can be found coordinatewise, everything else
follows immediately.

Huber touches on the multivariate case only very briefly (1972, 1977: 35,
1981: 211, 222-223). Ile proposes to consider spherically symmetric distribu-
tions, and to apply non-degenerate affine transformations to obtain parametric
families of "elliptic" distributions. This, however, brings forth the problem of
determining the scaling parameter when, as is usually the case, it is not known
a priori. Huber addresses the issue of simultaneous location and scale estima-
tion in the scalar case, and also offers some methods for estimating the scaling
parameter [see Huber (1981: 215-223)]. In the present case, the scaling matrix
is simply the covariance of the innovation and residual terms, and can be found
analytically. Thus, if the observation noise distribution 5F is spherically sym-
metric, the multivariate extension is straight-forward. However, the difficulty
with finding the least favorable distribution compnnentwise remains.

It is clear from the literature discussed above that the least favorable distri-
bution in the neighborhood 'Pe,R,,R. is of a highly complex shape and extremely
difficult to derive. Moreover, even if such a least favorable distribution were
found, it is not clear a priori that the resulting estimator could be shown to
satisfy a saddle-point condition. Since the very choice of neighborhood is to a
large extent arbitrary, all this effort is perhaps unwarranted in the present case.
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An approximation [see also Marazzi (1990)] consists of the following: since

'P,R1,R2 C Pc,R,, the least favorable distribution in Pc,R. clearly has Fisher
Information no greater than that in PCR,,,R,. Indeed, the least favorable dis-
tribution in Pe,R, (derived by Huber) can easily be shown not to be a member
of Pe,R,,R 2, by noting that the support of the minimizing H distribution is not
R, so that it cannot be the result of a convolution with a normal distribution
A'(Q_, R2). Thus, since it was shown to be unique, its Fisher Information is in
fact strictly less than that of the least favorable distribution in PC,R,,R2 . Conse-
quently, a conservative approach to approximating a minimax solution is simply
to use the least favorable distribution in P,,R for given E and R; this has also
the additional advantage of simplicity.

The well-known least favorable distribution of Huber [see for example Huber
(1969: 87-89, 1981: 84-85)] is given by

(1 - e).f(k; 0, l)ekz+k2 < -k

f (x) (1 - e)A(zx; 0, 1) -k < z < k (6.2)

1 (1 - e)A/(k; 0, l)e-z+k2 k < 2

where k is related to the fraction of "contamination" c by

2 /( (z;, 0,1)d) (6.3)

For this distribution, it follows from (5.3) that the score (influence-bounding)
function is

-k x < -k
'C(z) j z -k < 2 < k (6.4)

k k<x

Thus, the transformation 0,(xz) leaves its argument unaffected if it is within
some predefined range, and truncates it if it goes beyond that range. This
function illustrates well the concept of bounded-influence estimation. Since wild
observations are truncated, no single data point can totally dominate the others;
this contrasts with the Kalman Filter, for instance, where any data point may
have arbitrarily large influence on the estimate of the parameter. There is,
nevertheless, a problem with this choice of observation noise distribution in the
present problem: iZ is unbounded at -k. Although a simple step-function
approximation of this function has perfnrmed well in simulations, there is, at
this writing, no firm justification for such a substitution.

Deriving a least favorable distribution for the neighborhood PE,R,,R2 seems
to be destined to remain an open problem for a while longer. However, the
estimator derived in this paper may be used when there is sufficient prior infor-
mation to support the choice of a particular "contaminating" distribution H,
or with a suitable approximation to the score functions.
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7 Numerical Examples

This section presents the results of some Monte Carlo simulation experiments,
comparing the performance of several published robust recursive estimators for a
number of different observation noise distributions. Since individual estimators
could be "tuned" to function better in particular situations, these results are
only intended to enable a rough and primarily qualitative comparison. The
following recursive estimators were tested: the Kalman Filter, the Guttman-
Pefia estimator, the Ershov-Lipster estimator, the Masreliez-Martin estimator,
and the first-order approximation of the conditional mean estimator derived in
this paper (with the approximation discussed earlier). For further details on
these estimators or the numerical experiments, see Schick (1989: Chapter 5).

At a minimum, a good robust estimator should be resistant to outliers but
loose minimal efficiency at the nominal model. To verify these properties, the
noise distributions used in the simulations range from the very light- to the
very heavy-tailed, following the well-known Princeton robustness study [see An-
drews et al. (1972: 67-68)]. They include the normal distribution, the scale-
contaminated normal (or Gaussian mixture) distribution, the Laplace (double
exponential) distribution, Tukey's "Slash" distribution (the ratio of a normally
distributed random variable to a [0, 1] uniformly distributed random variable),
and the Cauchy distribution.

Each simulation experiment described here consists of 200 runs of 50 time
steps each. For simplicity, only the scalar time-invariant case is considered.
Model parameters are Fn = 0.1 or 0.5 and H, = D, Q_, = R = 1 for all n,
with initial conditions 0O = 0 and M0o = 1. Assumed outlier variances Rout = 4,
6.25, and 9 and assumed fractions of "contamination" E = 0.01, 0.05, and 0.10
are used in constructing the recursive estimators. The contaminating normal
distribution (in the scale-contaminated normal case), as well as the Laplace
distribution, both have variances Ro,t = 9.

Table 7.1 illustrates the performance of various estimators when no outliers
are present, by showing the percentage by which their respective Mean-Squared
Errors (MSE) exceed the optimal value given by the Kalman Filter. As ex-
pected, the Guttman-Pefia estimator is very close to the Kalman Filter for
small Ro,t and E; however, its MSE increases markedly with both parameters.
The Masreliez-Martin estimator has a slightly higher MSE than the first-order
approximation, and the difference between the two increases with E.

Table 7.2 also illustrates the performance of the estimators under nominal
conditions. by showing the degree io which the residuals deviate from white-
ness. Although the Kalman Filter theoretically results in white residuals, that
was not exactly true here due to the finite number of experiments and possi-
bly shortcomings of the pseudo-random number generator. Thus, the fractions
by which the lag-one serial correlations for robust estimators exceed that of
the Kalman Filter are shown in the table. Here again the performance of the
Guttman-Peiia estimator degrades with increasing Rout and E. The difference
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F = 0.1 F = 0.5
0.01 0.05 = 0.10 = 0.01 E = 0.05 = = 0.10

Guttman-Peiia

Rout = 4 0.34 2.02 4.49 0.32 2.02 4.55

Rot = 6.25 0.94 4.97 9.83 0.98 5.19 10.43

Rout = 9 1.78 8.29 15.30 1.90 8.90 16.81
Ershov-Lipster

Rout = 4 9.79 10.88
Rout = 6.25 14.32 16.67

Rout = 9 17.51 20.78
Masreliez-Martin

1.48 6.11 11.20 i 1.66 6.94 12.88
First-order Approximation

1.46 5.67 9.97 l [ 1.49 5.60 9.96

Table 7.1: Percentage by which the MSEs of robust estimators exceed that of
the Kalman Filter, for the nominal (no contamination) case.

F =0.1 F =0.5
e = 0.01 E = 0.05 E = 0.10 E = 0.01 g = 0.05 E = 0.10

Guttman-Pefia

Rout = 4 0.26 0.96 1.60 0.88 3.41 5.68
Rout = 6.25 0.47 1.54 2.39 1.65 5.56 8.69

Rout = 9 0.67 2.04 3.02 2.42 7.46 11.18
Ershov-Lipster

Rout = 4 1.35 5.42
Rout = 6.25 1.63 6.71
Rout = 9 1.81 7.49

Masreliez-Martin
0.44 1.35 2.14 IT 1.59 5.00 8.03

First-order A pprxrnciation
0.42 1.28 1.96 1.55 4.41 6.85

Table 7.2: Fraction by which the lag-one serial correlations of robust estimators
exceed that of the Kalman Filter, for the nominal (no contamination) case.
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Mixture Laplace
E = 0.01 E = 0.05 e = 0.10 E = 0.01 E = 0.05 E = 0.10

Guttman-Pefia
53.91 45.98 43.65 81.50 77.97 78.58

Ershov-Lipster
76.40 84.10

Masreliez-Martin
56.93 48.58 45.61 f[ 81.50 77.26 76.67

First-order Approximation
57.28 49.09 46.13 81.33 76.46 76.44

Slash Cauchy
E = 0.01 E= 0.05 E = 0.10 E = 0.01 E = 0.05 E = 0.10

G uttman-Pefia
8.52 8.04 7.91 11 40.16 40.14 40.17

Ershov-Lipster
8.05 40.11

Masreliez-Martin
5.67 4.72 4.41 |- 1.12 0.94 0.90

First-order Approximation
5.69 4.76 4.47 1.12 0.95 0.90

Table 7.3: MSEs of robust estimators as percentages of that of the Kalman
Filter, at the time an "outlier" occurs.

between the Masreliez-Martin estimator, which always truncates observations,
and the first-order approximation, which does so selectively, is clear, particularly
for higher assumed values of E (i.e. lower truncation levels).

Table 7.3 illustrates the respective performances of the four robust recursive
estimators in the presence of an outlier. For ease of comparison, all MSEs
are presented as percentages of that of the Kalman Filter. Also, for economy
of space, only the F,t = 0.1, R,,t = 9 case is shown. Since the Guttman-
Pefia estimator models exactly the scale-contaminated (mixture) distribution,
its performance is particularly good in that case. However, it degrades severely
as the outlier diqlrilltion becomes more heavv-tailed. The performance of lhe

AMlasreliez-Martin and first-order alproximation estimators are very similar in
most cases, and the two diverge most from the others when the outliers obey
the "Slash" and Cauchy distributions.

Given its relatively modest loss of efficiency under nominal conditions, and
its good performance when the observation noise is very heavy-tailed, the first-
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order approximation of the conditional mean estimator derived here compares
favorably with other robust recursive estimators. However, the choice of esti-
mator must depend upon the particular problem at hand.

8 Conclusion

This paper follows and extends the work of Martin and Masreliez in combining
the robust location estimation ideas of Huber with the stochastic approximation
method of Robbins and Monro to develop a robust recursive estimator of the
state of a linear dynamic system. Both point estimation and filtering seek to
obtain estimates of parameters based on observations contaminated by noise,
but while the parameters to be estimated are fixed in the former case, they vary
according to some (possibly stochastic) model in the latter. When the "location
parameter" varies randomly, i.e. when process noise is present, the stochastic
approximation technique cannot be used to obtain a consistent recursive esti-
mator. Moreover, asymptotic performance measures make little sense in this
case, and a conditional mean estimator is sought instead.

Using an asymptotic expansion around a small parameter involving the frac-
tion of "contamination" e, a first-order approximation is obtained for the con-
ditional prior distribution of the state (given all past observations) for the case
where the observation noise belongs to the e-contaminated Gaussian neighbor-
hood. This approximation makes use of the exponential stability of the Kalman
Filter, which ensures that the effects of past outliers attenuate fast enough. The
first-order approximation to the conditional prior distribution is then used in a
theorem that generalizes a result due to Masreliez, to derive a first-order ap-
proximation to the conditional mean of the state (given all past observations
and the current one). This non-Gaussian estimator has the form of banks of
Kalman Filters and optimal smoothers weighted by the posterior probabilities
that each observation was an outlier. It performs well in the presence of heavy-
tailed observation noise, but whether or not its added complexity (relative to
the estimator of MIasreliez and Martin) is warranted depends on the particular
application for which it is to be used.

The principal limitations of the robust recursive estimator derived here are
the following:

(i) Theorem 5.1 describes an approximate estimator that is not robust when
two or more outliers occur within less than w time intervals of each other.
This is a limiitati, n due to the fact fliat the apprcxittmaions are of first
order. Using a second-order approximation would eliminate the non-
robustness of the estimator against pairs of outliers, but not against three
or more outliers. Higher-order approximations to the conditional prior
and conditional mean are thus one potential direction for future research.
How much they would complicate the estimator, and whether or not the
result will be of any practical value, remains to be seen.
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(ii) The estimator and approximate estimation error covariance matrix of The-
orem 5.1 are defined to within Op(w2e2 ). Such probabilistic bounds are
not of much practical use in determining the performance of the estima-
tor, and better measures of the estimation error constitute an important
direction for future research.

(iii) Because the derivation of a least favorable distribution in this case remains
an open problem, the estimator derived here is not minimax. Indeed, even
if the least favorable distribution could be found, there is no guarantee that
it and the corresponding estimator would be a saddle point, and thus a
solution to the minimax problem.

Other topics for future research include patchy outliers, process noise outliers,
the continuous-time case, simultaneous estimation of model parameters, failure
(jump) detection, and non-linear models.

A Proof of Theorem 4.2

This is a much abridged outline of the proof of Theorem 4.2. Details may be
found in Schick (1989: 130-144). For simplicity, the case where the "contam-
inating" distribution H admits the Radon-Nikodym derivative h, and where
Hn = D, =: I for all n, is treated below. The extension to the general case is
immediate.

The proof proceeds by induction. Note first that

P(O-n+l I Zn)P 1) = p(On,,+ I _,)p(z. I _n)p(_.n I Zn- 1) dn,, (A.1)

from the definition of the conditional and marginal probabilities, as well as
the independence of {wn} and {Vn}. Moreover, some tedious manipulation,
repeated completions of the square, and the Sherman-Morrison-Woodbury the-
orem yield that

~(_n + ; Fnn Qn)2(zn-fn; , R)A, (0Mf;< 0 ,N°) dfn
(A.2)

=(0n+l; -n+l XA+1)A(; -o )

andl cimTi!airlv. it ran be shown that

/(0_,+1; Fn, Qn)h(zn - e8, )(0n; ?n, MAI°) dOn

(A.3)
- -n+t ann+l 1 (n+l ., Zn+l

A/(-0n+; 0-n+, -"n+l J- n+l-n+; .7,+l , n+l)
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Finally, it is easy to show by integration (including an order change) that

p(zo) = (1 - e)A(-O; O, ro) + cE(r; O, W1 ) (A.4)

= -O1 (A.5)

For the case n = 0, therefore, combining (A.1) with (A.2)-(A.3) yields

p(01 I zo)P(Wo)

= A/(01; Foo, Qo)

((1- c)Al(_o - o; 0, R) + sh(zo - 60)) ;(20o;_ o, lo) do0 (A.6)

= (1 - E)n/(e; , lo)A;(o; o, rO)

+ E(O1; 1,, ) )-(v1 01, C', zt), (A.7)

which, together with (A.5), establishes (4.16) for the case n = 0. Next, assuming
by the induction argument that (4.16) holds for some n (with m = n and e = 1,
i.e. assuming for now that n < w), and once again using (A.1) yields

P(On+1 [ Zn)p(zn I Zn- 1 )

= fJ(On+l; Fnn, Qn)

((1 - e).A(z - n,; 0, R) + ch(zn - n))

n(1 - V )(on; r(0_n In° Alno )

(A.8)

n

+ e(1- )n-~, -n( n)

i=l

+ Op(n262)) dO.

Considerable algebraic manipulation establishes in the same fashion the validity
of (4.16) (with m = n and f = 1) for all n.
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There remains to show that the error term remains bounded as n - oo.
This proof exploits the exponential asymptotic stability of the Kalman Filter,
established by Theorem 4.1. Using Corollary 4.1, it can be shown that

Af (an; _n, 1: Af(_;O, ~ °n ) + o(-) (A.9)

and that
_( Oin; (n , Z) (- ; 0, II ,t) + p( 6 n -i) (A.10)

Moreover, it can be shown that

K, = A(T r,~; , 0,V + R), (A.11)

so that each term in the summation in (A.8) may be rewritten as

6:(1 6) K'·,~~n i;n1(0n; qn, fn )-("e ; -n nt)
(A.12)

E(1 -E)"-n (2 &(_n; , a1n °) + o (6 " -i) ,

where

Pnt = (;_ , W ± R) (A.13)

is the likelihood ratio for the dual alternatives of whether or not zi-_ was an
outlier. Once again using Corollary 4.1, it can be shown that

E[p = 1 + Op(5T - i+ l) (A.14)

w.p.l., and the Chernoff bound implies that deviations from the mean vanish
geometrically in probability. Thus, terms corresponding to past outliers are
"absorbed" by the "no outlier." term.

To derive the coefficients and error term, suppose first that a finite number
k of outliers occurred during the first n time steps. The prior probability of
such an event is Ek(l - e)n.- All the outliers may have occurred during the
most recent w time steps, resulting in

(k) k'!~ (w Ra k ((A.15)

terms in the corresponrling sum. Alternativelvy, k.- 1 nutliers mav have occurred
during the most recent w time steps, and one during the earlier n- w time
steps. In this case, the effects of that early outlier will have attentuated to
0(e), by (4.14), and the corresponding term will therefore be indistinguishable,
to O(e 2 ), from the case where only k - 1 outliers occurred. Clearly, there are

( n ) n-W (A.16)
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such terms. Analogous arguments can be made for k-2, ... , 0 outliers occurring
during the last w time steps. Now, if no outliers at all occurred during the most
recent w steps, then this case is indistinguishable, to O(e 2 ), from the case where
no outliers ever occurred. The same would be true if k - 1 outliers occurred,
neither of which during the most recent w time steps, and so on. In general,
therefore, the "no outlier" term has the coefficient

(l -e)n ±e(1 I c)'- ( n W )n -2 (1 - e)n- 2 (- 'n + 
(A.17)

= (1 - W

Similarly, the "one outlier" term corresponds to the coefficient

6(1 _)n- +62 _ n1 2 ( ) 3 ( -w )
2 2

= ,(1 - e)w-l1

(A. 18)
Similar arguments may be made for higher numbers of outliers, and the order
of each term is

k(_ E), w( - )... (w - k + 1) O(ekk) (A.19)

From (4.15), the most significant term is for the smallest possible k, i.e. for
k = 2, concluding the proof.

B Proof of Theorem 5.1

This is a much abridged outline of the proof of Theorem 5.1, which is an ex-
tension of a theorem due to Masreliez. Details may be found in Schick (1989:
147-157). For simplicity, the case H, = D, = I for all n is treated below. The
extension to the general case is trivial.

Note first that

P(0_. I Zn) = p ( z- I -~)P(-0 I Z8-1) (B.1)
p (z_, I Z,-O) I

from the definition of the conditional probability and the indepenldence of {vj,}.

Let f denote the Radon-Nikodym derivative of F (which exists by hypothesis).
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From (5.1) and (4.16) (with m = n and e = 1), it therefore follows that

T p(Zn I Zn-l) -

((1 - e) °K(9 n A(n; Io, n 1 1,¶)

n . (B.2)
+E(1 - e)n-lCKn K /A(0n; n_ , MA'n)

i=l

+ Op(n 2)2) de,.

Consider the first term on the right-hand side of (B.2), i.e. the "no outlier
among the first n observations" term: this is basically the expression considered
by Masreliez. Rewriting it as

p(1 - 6)n On n Of(zn - _n)V(9n; -n, Afn°) d
I n 

Kn, 
°)

dKn o

P(Zn Zn-1)(1 - )n

(In 0 Afn (on - n)f(znO-n)V(6n; 8n, 1n1°) dO,
-1n -n

+ Afz. 2 - On)W(en;_On, An°) dJn) ,

(B.3)
and noting that

an '(n -(n)Kf(9; MOn 0 °) -_Vog(; AI#) , (B.4)

it can be shown, integrating by parts, that

-A"- -'(On 4 _0)J(on; e,,n 1 -n°)f(zn -n) don

- f(0rn; n' 5I n) V7f(zn-9)0 d9n (B.5)

= o- _ J((On; -n Afn) !V°f(z-,)- do( (B.6)
_=Z

.zP(Z In-1, Hn-1) l (B.7)
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-p(ZnI Z 1,7n-l)b°(7y 0), (B.8)

from (5.3). It follows, after some manipulation, that

(nI zr_ )
P(Zn I Zn - ) (B.9)

(1- e)n"
-n,+l~nTn.

Consider now each term in the summation in (B.2), i.e. the "exactly one
outlier among the first n observations, at time i- 1" terms. Since these are
O(e), the following approximation is used in the sequel:

f(zn - en) = (1 - )K(zn; _On, R) + O(E) (B.10)

This permits manipulations similar to those used for the "no outlier" term. Note
next that by (4.9),

n(-.~; ' ,z-) = z(Z) (B.11)

Then,

_(1 C( n- -1 - f -onf(z, - )(o; ; _, zI) Z onP(Zn _ 1) f 

¢(i -e)nnnin f
p(=iZ . ~-'['(z-n;-On' A(ki _ Z' ;O-) j° Zn ) dn (B.12)

+O(E2 ),

and noting that

_(,n; On, R)M}(:n; A(ni) ; _ -0(o, ri )A(0n; _i, Pi) (B.13)

and

-~e~(-- - 0=: I. T/ V (z- V29-;OZ~) (B.14)0 -_n 0in Zn n n; ° Zn)

(recall from (4.28)-(4.29) that _t is linear in zil), it can be shown in the same
manner as before that

p(Z,1 ) n1K, f 0_f( z -o)n;( Z) don
(B.15)

= e(1 - E)n-llnlT t
T, + 0(, 2

).
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This proves the assertion for m = n. and E = 1. Equation (5.6) is obtained as in
the proof of Theorem 4.2.

The covariance in (5.13) is obtained in much the same manner, starting
with (5.2), rewriting the quadratic product as

-__ -- n 1~n. -T T --C _o -O
(±n -~-Tn n- ) T _ (f + _- + f-T.) T (B.16)

and expanding.
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