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The ill-posed problem of object reconstruction (or band-limited extra- 
polation) is reformulated in the fl~amework of the general linear model in new 
recursive parametric forms. The resultant algorithms are shown to be natural 
stabilizers of the inherent instabilities of both the iterative and noniterative 
reconstruction/band-limited extrapolation methods. Both robustized and 
unrobustized versions of the algorithms are given. The recursive algorithms 
provide immunity to measurement noise outliers in burst noise of high variance. 
Unlike procedures suggested previously, these methods eliminate the need 
for stopping rule constraints and ensure convergence of the algorithms. The 
recursive formulation of the noniterative method of band-limited extrapolation 
is also found to be adaptable to multidimensional image restoration. Com- 
puter simulations verify the theory and demonstrate the computational efficiency 
of the method. 

INTRODUCTION 

Cons ider  the  we l l -known p rob l em of  band l imi t ed  ex t rapola t ion  or spectral  

es t imat ion .  Given a finite s egmen t  g(t) of a b a n d - l i m i t e d  signal f ( t ) ,  

II, t l < T ,  
g(t) - f ( t ) p r ( t ) ,  p r ( t ) -  0, i t [  > T, (1) 
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with f ( t ) ~ , F ( o a ) -  0, co > e, it is required to extrapolate the unknown 
portion of f ( t )  in terms ofg(t). By generalizing the time and frequency variables 
to other spaces (e.g., spatial extent and spatial frequency) and extcnding the 
method to two o," higher dimensions, the above problem can be restated in 
terms of object reconstruction or image resto,'ation. 

The importance of this problem in signal processing is evident by the renewed 
interest in extrapolating bandlimited signals and computing their Fourier 
transform from noisy measurements which can only be taken over a finite 
segment of the signal (Viano, 1976; Gerchberg, 1974). This problem is of great 
importance in spectral analysis (Papoulis, 1975; Youla, 1977; Gerchberg, 1974) 
in optical or antenna systems where one desires to extend the resolution of the 
instrument beyond the diffraction limit by superrcsolution (Andrex~s, 1970; 
Papoulis, 1968), or in picture processing, where the object (or the entire image) 
is reconstructed by extrapolating a truncated observed portion ((}erchberg, 
1974). 

In this paper the iterative and noniterative problems of band-limited extra- 
polation (or object reconstruction or image restoration) (Gerchberg, 1974; 
Papoulis, 1975; Viano, 1976; Youla, 1976) are posed in a new recu,'sive frame- 
work. The new methods are based upon the adaptation and extensions of the 
generaI linear statistical model representation. The compensation of the rapid 
divergence in the presence of noise of the ill-posed reconstruction methods by 
robust iterative stabilizing algorithms is the main thrust of this paper. 

The first part of the paper is used to set up the framework for both the 
nonrecursive prolate spheroidal expansion method (Slepian et al., 1961; \.'iano, 
1976) and the iterative methods of Gerchberg (1974), Papoulis (1975), and 
Youla (1976) to introduce the instabilities associated with the improperly posed 
problems. Subsequently, two new recursive stabilizing algorithms are intro- 
duced providing alternative formulations and computational flexibilities. 

In the first algorithm, the iterative method of object reconstruction (o, image 
restoration) (Papou]is, 1975; Youla, 1977) is reformulated in a new way to find 
parameters rather than functions. With a block of samples taken from an 
iterative measurement equation of a time-varying signal in additive noise, the 
block sample amplitudes become a vector of parameters to be estimated in the 
presence of noise at each iteration step. This leads di,ectly to the use of the 
multidimensional extension of Gladyshev's Mini,hum Variance Least-Squares 
Stochastic Approximation method (SAMVLS) (Kadar and Kurz, 1980a), and 
subsequently, to the batch preprocessed Mann-\~,rbitneV.--Wilcoxon Non- 
parametric Statistic (MWWNS) (Mann and \¥hitney, 1946) ,obuslized vector 
SAMVLS (Kadar and Kurz, 1980b). 

The robustized SAMVI.S algorithm provides inmmnity to measurement 
noise outliers in unspecified contaminated noise environments. The method is 
~,lso both computationally efficient and requires storing of only the last block 
of hatched preprocessed data samples. This represents substantial savings in 
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storage requirements over the direct application of the noniterative prolate 
spheroidal expansion method (Viano, 1976). The resultant new robust algorithm 
is equivalent to a natural stabilizer of the measurement-noise-caused instabilities 
of the iterative method without the need for stopping rule constraints on the 
recursion. Computer simulation comparison of the iterative algorithm of 
Papoulis (1975) with the new SAMVLS stabilizer algorithm in mixture noise 
demonstrate the advantages of stable reconstruction via SAMVI,S. 

In the last part of this paper, an alternative reeursive stabilizing algorithm is 
introduced using the Robbins-Monro Stochastic Approximation (RMSA) 
(Kersten and Kurz, 1976) in the spirit of Kashyap and Blaydon (1968) to 
estimate the coefficients of general orthogonal expansion methods, e.g., the 
prolate spheroidal expansion method, or expansions using other complete set 
of basis functions, such as Walsh functions (Young and Calvert, 1974). 

Although not explicitly explored in this paper, the application of Walsh basis 
functions promises to be a particularly attractive alternative to prolate spheroidal 
wavefunctions. Walsh basis functions facilitate both recursive generation of 
eigenfunctions at each iteration step of the recursion and eliminate the storage 
requirements associated with prolate spheroidal wavefunctions. Furthermore, 
the extension of the procedure to two- or-higher dimensions via the Walsh-- 
Hadamard relationship (Young and Calvert, 1975) is straightforward. 

THE PROLATE SPHEROIDAL WAVEFUNCTION EXPANSION ~[ETHOD 

One possible approach to the theoretical solution of the extrapolation problem 
has been well known, in the absence of measurement noise, by the use of prolate 
spheroidal wavefunctions (Viano, 1976; Papoulis, 1975; Slepian et al., 1961). 

Given a finite segment of a signal, f ( t ) ,  

II, i t  < T, 
g(t) - - f ( t ) p r ( t ) ,  pr(t) = ,0, i t !  > T, (1) 

with f ( t )<-,F(~o) = 0, 'co ] > ~r, and it is further assumed that g(t) -~ 0, 
I t ~. > T. The resultant extrapolated signal is then obtained in the form of an 
expansion (Viano, 1976; Papoulis, 1975) as 

and 

co 

f ( t )  =: ~ gg(Ae)t/2~k(t) (2) 
1:=1 

f_ ; [g  ~" t -~ • - ) I  in, ( 0  - o,  (3) 
N ~ c  
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where 

~,~ = (I,A~) ~,(t)4~(t) dr. 
* - - o c  

The  6/: arc the cigenfunctions and the ,~k are the cigenvalues of the associated 
integral equation (Slepian et al., 1961). Thc  eigenvalues AI~ are such that (Slepian 
et al., 1961) 1 > Ao > "'" A~ > ' "  > 0 and A k ~ 0 as k - ~  or. Hence, if g(t)  
is corrupted by noise, i.e., 

y(t) ~ g(t) q- v(t) (4) 

for k large A k is small and an arbitrary small noise on the measurements can 
create large errors in the extrapolated signal due to the smoothing action of the 
kernel of the associated integral equation (Viano, 1976). As a matter of fact, as 
k -~ or, Al: --* 0 and the problem is improperly posed (Viano, 1976 and Youla, 
1976), (and becomes unstable as a limit point) even in the absence of noise 
since the solution depends uniquely, but not continuously, on the data. This 
condition in the presence of noise requires stabilizing constraints in the fi)rm 
of stopping rules on the number  of coefficients used in the expansions, some of 
which are given by Viano (1976). 

The  instabilities associated with the noniterative procedure also occur in the 
iterative algorithms. This is further amplified in the next section. 

THE ITERATIVE ALC, ORITIIM 

Papoulis (1975) has recently developed an iterative method for computing the 
Fourier transform of a bandlimited function f ( t )  +-~ F(w)  = 0, I oJ 'i > cr from 
a given time-limited segment g(t)  ==- f ( t )  pr(t),  and for extrapolating the band- 
limited function (object reconstruction). An algorithm similar to the one proposed 
by Papoulis (1975) has been applied by Gerchberg (1974) in picture processing 
with real data corrupted by uniform (white) Gaussian noise. 

Starting with G(w): : -  Go(oJ ) ~ g ( t ) =  go(t) at the nth iteration step, one 
forms 

II,  co  < cr 
t;n(w ) = Gn_l(co )p,,(oJ), P~('~) = O, i e o: 2> cr 

by truncating G,, a(oJ) within ( - -a ,  or). Then,  compute the inverse transform 

f . ( t )  ~ F.(o~). 

Next form the function 

g,(t)  = f , ( t )  + [ f ( t )  - - f , , ( t )]pr( t )  = ~g(t), ' t  < T 
t f , , ( t) ,  t > T 
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by replacing the segment off , ( t )  in the interval ( - .  7, T) by the known segment 
g(t) off(t). The nth step ends bv computing G,,(eo)~ g,,(t) and the function 
g,(t) so formed. 

The proof of tile convergence is based upon the properties of prolate spheroidal 
functions, and it can be shown (Papoulis, 1975) that the iterative method 
converges in the mean-square sense. Therefore, as one would expect, the effects 
of measurement noise, roundoff error, and aliasing due to the finite sample 
representation can cause instabilities in the method, which is handled bv 
methods equivalent to stopping rule constraints (Viano, 1976) and the limit 
point is never reached. However, the important point is that the problem 
becomes unstable only as a limit point in the absence of noise. The presence of 
noise, however, introduces instabilities due to the monotonically decreasing 
eigenvalues in the expansion methods or equivalently due to the smoothing 
effect of the convolution term in the recursive method. This gives rise to large 
errors due to the noise perturbations. 

In the presence of burst noise of large variance, the recursion might com- 
pletely diverge. This method has no immunity to outliers. The procedure, bv 
itself, cannot be robustized (i.e., made insensitive to the effects of changes of the 
noise distributions); and even in the absence of outliers, the instability becomes 
more pronounced as the recursion progresses bv having its own instability 
problems. 

The instability becomes more pronounced as the recursion progresses. 
Ilowever, by combining the recursive procedure with a form of stochastic ap- 
proximation (SA) in a regression framework, i.e., SAMVLS (Kadar and Kurz, 
1980a), one rccursively estimates parameters (i.e., the amplitude of a time- 
varying signal) and the noisiness of the parameter estimates reduce with each 
step. In the limit the recursive parameter estimator becomes asymptotically 
Gaussian with variance approaching zero. Therefore, the SA procedure ideally 
compensates for the instability problem since the parameter estimates improve 
as the recursion progresses, which adaptively corrects for the actual instabilities 
caused bv noise which would otherwise become more pronounced as the 
recursion progresses. Itence, SA in this case provides a continuous compensation 
for instabilities and the stopping rules need only be imposed from practical 
considerations on the dimensionality of the block sample representation of the 
restored image. As a matter of fact, in practical problems using the SA method, 
the limit point is never reached because the recursion is stopped long before. An 
additional advantage of the SA method is that no assumptions need to be made 
about the underlying noise distributions other than the samples i.i.d, at each 
iteration step. Furthermore, one can robustize the procedure which guarantees 
near optimum convergence rate and insensitivity to changes in the noise 
distribution. 
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f n , L { t  ) ( f n ( t )  , t ~ { t ) + f  : ~- ,~, t , ;  Po ( t )Pr ( t '~  

g(t): f',t)PT(:): fl (t) 
l g(t} I P°{;}=I'PT(t) 

| 

-T 0 Y -T 0 T 

sin ~" I 
I k ' t ) :  r r t  

( g ( ; ) *  k{i"l) 0o(t)  ~" ~ ~t) = f2 

~ I /-(g(l'*'k{'~')P'{t) 
: ,  I ?X/" 

Flo. 1. Sig,aals at first iteration. 

'I'IIE PARAMETRIZFD ITERATIVE OBJECT RECONSTRUCTION ALGORITHM 

Consider tile object reconstruction problem from a truncated measured 
(known) portion, g ( t )  = f ( t )  Pr(/) for which the iterative algorithm described in 
(Papoulis, 1975) expressed in a convolution form becomes (refer to Fig. 1): 

where 

and 

]t is clear that 

g,,=l(t) == [gn(t)  × k(t)] p,,(t)  -. f ( t )  p r ( t ) ,  n : 1, 2 . . . . .  (5) 

v,(O = f (O P,(O; p,,(t) 74 I - I ' W )  

k(t) = (sin , , t ) ,~: .  

,, ,(t)~ g(O, t < T, 

f~,_..,(t), t '  ~.::. T. 
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In this case the kernel k(t) represents the band-limitedness of f ( t ) ,  i.e., fn(t) = 
g . - l ( 0  * k(t). 

If  g(t) is corrupted bv noise, then the known signal portion g(t) = f ( t )pr( t )  
in (5) is replaced with 

y,~(t) ~_ g(t) + V,(t), (6) 

where V,(t) is an additive noise term, i.i.d, for every step n of the iteration. At 
this point no further assumptions need to he made about the statistics of the 
noise. At each step of the iteration starting with n = 1, a block of samples is 
taken of all terms in (5). I f  the functions under consideration are band limited, 
then the number of samples needed to represent the functions is fixed. Otherwise, 
one has to assess the significant frequencies of interest and select the sample 
size to make the aliasing error vanishingly small. Some of these considerations 
are mentioned in (Papoulis, 1975; Slepian et al., 1961). It will be assumed that 
even if the sampling rate is greater than the Nyquist rate, the cross-correlation 
between the block of signal and noise samples is small enough to be negligible 
and the samples are i.i.d. 

Now let n :-= 1,2, 3 .... and by taking block samples of each time function, 
one can represent (1) in terms of "signal," S ,  and "noise" W ,  terms as a 
measurement equation in a general linear model framework 

gn-1 = She + Wn,  (7) 

where, say, at some step n -= k >/ 1, g, e, and W are m-vectors corresponding 
to m samples per block where e is a vector of parameters representing the 
amplitude of the time-varying signal S .  which is represented by a diagonal 
(m x m) matrix whose m diagonal elements are the block samples of S . ,  

S .  = diag(Sll , $22 .... , S,.,.), 

where the diagonal entries of S .  are obtained from the block samples of 

I Xn = ![I]q,,×,,O Z g,~(J)K(i - j )  Po -- g (8) 
. / 0  . 

with 

X1. = S~1, X~., =, $22 ..... X.,r, : S , . . . .  

The sum within the brackets is the discrete convolution of, say, ro samples of 
gn(t) with r k samples of the kernel K.(t)  such that the total number of samples 
m =-. r o --' r~ --  1;po and g are m-dimensional vectors. 

The noise term W~ is given bv 

W. : ~  [l](,.×m) ~ V.(j) K(i- j) P0 + V. (9) 
• . / , - 0  , 
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and it is clear from (5) and (9) be the discrete convolution operation that any 
noise perturbation is spread into the reconstructed initially unknown signal 
portion. It is important to note that the dimension, m, grows with each iteration 
step n due to the convolution operation which is performed before the recursion 
for g, ,~  is iterated. This is not unexpected since the algorithm is extrapolating 
the known signal segmentL 

It should be noted at this point that the convolution form of the iterative 
(restoration or extrapolation) algorithm (5) is used rather than the F F T  
implementation suggested by Papoulis (1975) and Youla (1976). The con- 
volution form can be adapted directly to the stochastic approximation framework 
with its similarity to batch preprocessing (Kersten and Kurz, 1976) used in 
SAMVLS (Kadar and Kurz, 1980a), albeit in this case the convolution is 
among the block (vector) samples and does not require an initial delay. Further- 
more, from a practical point of view, charge coupled devices (CCDs) used as 
analog shift registers are being developed in the 1977-1978 time frame for real- 
time high speed convolution applications for imaging sensor spaceborne signal 
processing (ttowle, 1977). The convolution operation is performed with CCDs, 
either by direct storage of the samples and shifting operations, or by using CCDs 
to implement the FF'F algorithm and form the convolution in a two-step 
operation. There is no published information available at this time on the 
relative performance and complexity of the two methods. Both theoretical and 
experimental work is in progress (Howle, 1977). 

T H F  S A M V L S  S'rABILIZI.;II AI.GORI'rlhM 

The parametric form of the iterativc restoration or extrapolation algorithm 
g,,,=a -- S,,~--i- W, (7) is of the form which can be viewed as a measurement 
equation, where the noise term, Wr,, can be contaminated by outliers (Kadar 
and Kurz, 1980b), directly suggests the application of the vector extension of 
Gladyshev's theorem to Minimum Variance Least-Squares (SAMVI.S) (Kadar 
and Kurz, 1980a) to estimate the time-varying signal parameter, ~ at each step, n. 

tlowever, before we apply the vector SAMVI.S algorithm to the iterative 
reconstruction algorithm we review some important properties needed in the 
sequel! 

In essence, the vector SAMVI.S algorithm is a reeursive procedure for 
estimating a multiplicative parameter vector in a linear regression model (Kadar 
and Kurz, 1980a). The SAMVLS procedure is defined by the recursion equation 

I 
a~+, - a . . . k  .4~(al ,..., ak)V(a, ,  ~), (lo) 

i If  the significant  signal port ion to be reconst ruc ted  is a s sumed  to be of finite suppor t ,  
then,  in practical applications,  the  d imension ,  m, can be held constant .  
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where &k (the current estimate of ~x), Y(&k, =), and ~ are all m-dimensional 
vectors, Ak(') is a diagonal (m × m) adaptive gain matrix, and EY(&k, =) = 
M(&I~, =) is linear and has a unique root 0 at ~ = =. The adaptive gain matrices 
are assumed to be positive definite with eigenvalues a]k)(.) > --. > a ~ ( . )  > 0, 

a~{)(')/k--= co wpl. These assumptions are the multidimensional extension 
of the scalar SA case of (Robbins and Monro, 1951), generalized and extended 
by (Kersten and Kurz, 1976). 

The  following conditions establish the relationship of the i.i.d, random noise 
vectors Zk(& ) to the linear regression function, namely, the noise in the measure- 
ment equation describing the parametrized linear model is additive and zero 
mean. 

(i) E['Y(fi~:, =)/&,, ..... 8,1 =: E[Y(Ra:, e)/ak] = M(&k, ~) zG ~lz:, 

(ii) Y(~k, ~) --  M(a~, ~) -: Z(a~) = M(a~) -'- Z(aa:) & M,: + & ,  where 
I'2Z,: = EZk(g,k) - -  E[Zk/a~.] --: E[Zk/a k ..... al] := 0 wpl, 

(iii) M(a~,  ~) = Bk(a~ - ~,) has a unique root 0 at & = e. 

Y(&k, e) is obtained directly from the measurement equation describing the 
parametrized model bv cross-correlating the measurements g~ =: Hz~ea. -'-- Ze 
with the known signal or measurement matrix H~:, i.e., 

Y(&k, =) =--: HJ[II~(&k - ~) + Z~] -= Mk + Z~. =-. Bk(&k - -  ~) ~- Z2  , (11) 

from which (iii) follows directly. 

To  show convergence, the class of regression functions is usually restricted 
(conditions (iv-vi) of (Kersten and Kurz, 1976)), to be linear in the neighborhood 
of the root (i.e., at fi = ~). These conditions are obviously satisfied by the 
assumption of a linear regression function and arc not stated here. ttowever, to 
decouple the estimates and to diagonalize the covariance matrix of the estimate 
an orthogonal transformation P is assumed s.t. p p r  = I,  pTB1~P =: diagonal, 
and p T A k p  =---- diagonal matrix for each k. 

The additive noise vector Z(~) should have a uniformly bounded variance 
and have a well-defined covariance matrix as & ~ c~ a.s. 

In addition E i] s ¢ !!~ < oo and E J B k !!4 < oo are needed to guarantee minimum 
mean-square error estimates. Furthermore, the adaptive gain matrix needs to 
be well behaved and a consistent "mean-square" estimator of a constant matrix. 
These requirements (vii-ix) are stated in (Kersten and Kurz, 1976) and are sum- 
marized here for convenience: 

(viii) (a) Supa E!,Z(fi)~( 2-:~ < .oc for some ~ > O. 

(b) lima." E[Z(8)z(&)] = rr where ,'r is a nonnegative definite matrix 
and where the limit is in the sense of the norm. 
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(viii) a~ ~:' ;~: a!}"' ': . . . .  ~ a~ ~ ;=. 0 be the eigenvalues of : I  k and b] ~'' '"  

b(./'~ i~: "'" ~) bl~ :~ > 0 be the e igenvalues  of B~ and a I ~ ao ~ ' "  2-~ a,,, > 0 be 

the e igenvalues  nf A.  

(a) 0 < a t ~ infg~ ' A1; , ~.~ sup,~ : Az: i :~ a" < c,.: wpl for k large. 

(b) lim~a(k)( '~ - ' > _ _  ._,,, ~ ,  ~: a 1 0 wpl  where .d is a constant  mat r ix  s.t. a '  :\~ 

ii .4 ,! ~ a". 

(ix) "t,(k> "~ ~ and a h ¢') ;--- ' 
~ " l " m  - -  { - ~  "2 - - i , ~ ' - O l  - -  { 2 " 

U n d e r  the above set of a ssumpt ions  the sequence a,j: converges wpl to ~ which 
min imizes  E ~1 H e  - -  g .-'. The  associated theorem establ ishing convergence in 
d i s t r ibu t ion  is s ta ted in the appl ica t ion  of vector  S A M V L S  to the pa ramet r ized  

recons t ruc t ion  a lgo r i thm. .  
T o  app ly  S A M V I , S  to the vector pa ramete r  es t imat ion problem,  one considers  

each componen t  of the measurement  separa te ly  and forms, init ially,  an m- 
d imens iona l  S A M V L S  (since the d imension,  m, grows with each i terat ion step) 
which can be cons idered  as m scalar S A M V I . S  a lgor i thms opera t ing  in parallel .  
Specifically,  with &1: the current  es t imate of ~, the vector S A M V L S  for (5) 

becomes  

A::(a~ a~)[v(a;,:, ~)1, 0 2 )  a~-,.1 - a~, - -  h .... , 

where,  init ial ly,  &l: is an m-vector,  Ae( ' )  is a diagonal  (m × m) adapt ive  gain 
mat r ix .  Since fix is a rb i t ra ry  in S A M V L S ,  the o p t i m u m  choice in this case is 
to let it equal  the ampl i tude  samples  of the known signal  g(t)  for . t i < T and 
zero for sample  values i t  > T, making  up an (m × l)  block sample  vector. 
Actua l ly ,  the i terat ive measurement  equat ion (a lgor i thm within the S A M V L S  
a lgor i thm)  is always one step behind  as the paramete r  vector is es t imated at 
step k and the inner  a lgor i thm updated .  Y ( a k ,  et), (m × 1), is ob ta ined  by 
cor re la t ing  the known signal  at step h == n with g~ ~t, 

Skrg,.:+~ --- S J ( S ~ =  -i- W~) and Y(&k., a) "A M(&~:, ¢¢) + Z(5,:), 

which becomes  Y(&k, ~x) .... S~ r gk !.1 -" S i f S k & k ,  where &a. denotes  the current  
es t imate  of et. Subs t i tu t ing  in (10) the express ion for Y(&k, e~), 

v(a ,~ ,  ~,) = & T [ ( ~  _ a,3s,= ,- w k ]  

and the regression function is given by 

" T "  J,:v(a,~, ~) . -  M(a ,~ ,  ~) = s~ ~k(-  - a,:), 

which is l inear and has a unique  root 0 at ~ =- &. 
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PAF " G- 
FK,,I - 5 '" QAPBFK 

_LO ~A/  K " 1,2 . . . .  ; G ~ f / /  %G F1" 

a ol"~.../c / a / a  /I/C~ 7a 

QAP~:I QAPB G -' - K~, A ' ~ ,  

Fw,. 2. Geometry of reconstruction in Hilbert space• 

It  should be noted that the regression function M(&k, at) ~-E{Skr[gk+l -- 
Sk&k]} is actually a statement of the multidimensional orthogonality principle, 
with [g~-i - -  Sk&k] the "crror term" and Sk r the data. It is well known that 
the error is orthogonal to the data (Papoulis, 1965) and E{Sr[g - -  S,,]} = 0 and 

minimizes the mean-square error E I~ g -  Sail  2. This can be interpreted 
geometrically in terms of orthogonal projections, very much alike to thc method 
of Youla (1976). In reference to Fig. 2, considcr the Hilbert space setting of 
Youla (1976) (refer to Appendix A) and the orthogonality principle is represented 
by (DE) ± (OE) since (OD) is equivalent to g~+l • 

Reflecting at this point to the conditions required by Theorem 1 of (Kersten 
and Kurz, 1976), the linear regression function satisfies conditions (iv-vi) with 
M(&, ct) =: Bk(& --  ¢t), where B~: :-- SkrS~ is a positive definite diagonal m × m 
matrix for each k, s.t. " Bk i'~ < ~ ,  since one can reasonably assume that the 
recursion is terminated after a finite number of steps (with both Bk and Ae 
diagonal for each k, P =.-I). The  additive noise term Z(&)=: S J W k  with 
EZk(&) = 0, must have a uniformly bounded variance and have a well-defined 
covariance matrix as g,~--~ et a.s. This is reflected in condition (vii, a), 
Sups, E' i  Z(&)I! 2+~ < ~ for some e > 0 which is satisfied with the Euclidean 
norm, Supg~{tr[SkrE(WWr)Sk] rt~ < c~ for each k, with E ( W W  r) nonnegative 
definite. Condition (vii, b) lima,~E[Z(&)ZT(&)] = % where 7r is a nonnegative 
definite matrix and where the limit is in the sense of the norm, is satisfied 
with Iim?~_,Q[SkrE(WW'r)sz:] =: ~v. Sk is diagonal for each k and E(WW "r) 
is nonnegative definite and diagonal by the i.i.d, assumption of the 
problem. 

The  adaptive gain matrix Ak(~ 1 .... , &k) needs to be well behaved and a con- 
sistent "mean-square" estimator of a constant matrix. With Ak(') diagonal by 
the assumption of the problem, the eigenvalues of A~ are a~ k) >~ a~ ~) ~ "" >~ 
a.~ ~) > 0 and the eigenvalues of B~ = SkrSk, B~: = diag(Slx . . . . . .  ,,,,~/, a 
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diagonal matrix, are b[ k) .~ b2 (k) ~ ' "  ) --m/'(k) _~ 0. With a 1 5~ a.,. ) "" ) a,, > 0 
the eigenvalues of A, condition (viii, a) is satisfied 

i ~  r~(/c)12il. 2 ( m '1") 
0 < al L =~.~ infa i.:lt"i I t ~supa ii /ui I I, ~< < ~ 

wpl for k large; and lirn:: a(.~)(') ) ax ~ > 0 wpl where ,4 is a constant matrix 
m ~ 1.'2 a" Condition (ix) alab~ ~ 1 /2anda  ~(k~ 1/2 s. t .a  t%5-'~= 1 j a i l ,  ~ • , - - • >  -,,,...,, - - • >  

for each k, which is required for convergcnce within the proof. 

THEOREM 1. Under assumptions (i-ix) which were shown to be satisfied above, 
let r l  k) > r~ ~, > ' "  > r~ '  > 0 be eigenvalues of  A B , B  k = S f l S k .  Then kt/'2(&~ --  ~) 
is asymptotically normal with mean zero and covariance matrix Q, where Q is a 
diagonal matrix whose elements are a~,rr~ " [2a,S~z - -  1] -~, where 7r,:~ are the elements 
of ~r --  S r E ( W W T ) S ,  a diagonal matrix, i = 1, 2,..., re(k). For proof  see (Kersten 
and Kurz ,  1976). 

Comment. It  is clear from the above theorem and from the form of Q, that 
the asymptotic variance is a function of the power in the signal samples (which 
are the eigenvalues of B) and the covariance of i.i.d, noise vector samples, with 
the dimensionality m = re(k) of Q increasing with each iteration step. The  
optinmm gain coefficient is given by a!~ ~ ~ 1/(S~)k which minimizes the 
components of the variance and assures the rate of convergence to be optimal. 
One has to be careful, however, that a~  ~ .9~ 1/2(S~)k since the variance becomes 
infinite and the recursion diverges. To avoid the instability with a!~ ~ 1/2(Sii)~.., 
one could use the average power in the block signal samples which would 
rapidly become independent of k and would still guarantee near optimum 
convergence. 

However, even if one could find an estimator for a i i =  I/S2i at every step by 
somehow measuring the energy in the signal samples in the absence of noise, 
the variance is a function of the covariance of the noise E(W~Wfl'), and the 
variance of the recursion, both asymptotically and in the small sample case, is 
influenced by the variations in E(W~Wkr). One should recall at this point that 
the elements of Sk are X~ = {[I](~,x,~,)Z~,._ogk(j)K(i--j)}p o + g  and the 
additive noise term is given by 

W~= I[I](,~×,.) ~ Vk(j)K(i--J)f Po -- Vk. 
j 0 

'Fo alleviate this dependence, one needs to robustize the SAM\;LS algorithm. 
However, it should be noted that even in the above unrobustized case, the 
SAMVLS algorithm reduces tile mean-squared error E [! ~ [i '> --  O(1/k) due 
to the noise in the data, while the iterative measurement equation (algorithm 
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within the SAMVI,S algorithm) converges in mean-square as shown by Papoulis 
(1975). Thus,  the reduction of the noise contribution at each iteration step 
eliminates the instability associated with the iterativc measurement algorithm, 
as long as the rate of convergence of the SAMVLS compensates for the reduction 
of eigenvalues of the prolate spheroidal functions which reduce at a rate depending 
on the t ime-bandwidth product, T(r, with each iteration step. 

BATCII-NONLINEAR-INTEGER RANK TRANSFORMATION 

ROBOSTIZED SAIVIVLS IMAGE RESTORATION ALGORITHM 

To robustize (I0) one introduces batch preprocessing and a nonparametric 
rank statistic of the form (Kadar and Kurz, 1980b) 

1 
q q 

E - (13) 
, /  

i.=I J=l 

where Wkq(') is an (m(k) × l) vector operator applied component  by component.  
Wkq(') is a symmetric version of the Mann-Whitney-Wilcoxon Nonparametric 
Statistics (MWWNS)  with properties summarized here for convenience 

EWq == 0, 

Var W~(.) := (2q + 1)/3q ~, 

Sup W~ = - - in f  Wq = I, 
F,G F,G 

and under the hypothesis, H, and alternative, K, 

limP[ Wq-EW'~ ] N .~ ( V a r  Wq) 112 ~ t = qS(t) (unit normal CDF), 

with asymptotic normality reached with as few as q - 8 samples. Furthermore,  
the above properties do not require symmetry of the CDF,  either under H or K. 

The  robust vector SAMVLS in this case is of the form 

&k+l == ~tk - -  (1/k)Ak(&~ ,..., ae) WoY(&k, a), (14) 

which has to satisfy the conditions of Theorem 1. I t  should be noted here that  
the batch preprocessing requires an initial delay of q samples during which the 
algorithm is iterated and the samples are stored. This  means that during this 
period the SAMVLS operates essentially as an unrobustized algorithm and no 
protection is provided against measurement noise outliers, causing possible 
instabilities in the " inner"  measurement algorithm. Proceeding in a manner 
similar the scalar case (Evans, Kersten, and Kurz, 1976), it can be shown that 
for each m(k) component, say, l : -  1, 2,..., m(k) with M(~t, ~t) = EW"[Y(&, ,Y)] = 
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B(& .-- et) the diagonal elements of the B-matrix (the slope of the regression 
function) B--- diag(bja .... , bk,,d~)) in this case arc b~ = 2f~.z_~k,(0), l = 1, 
2 , . . ,  re(k), where uk and v~. arc the batched components of the first and second 
terms in Y(~, ct), (13), respectively, and f~.r ,,~(0) is a one-dimensional density 
corresponding to the /th component of Y(&, ~). h is clear from the previous 
definition of the terms above t h a t f ,  ,(0) is a function of the block signal samples 
which are time-varying from block to block. This means that the optimum gain 
coefficient, A~. = diag(a~k,a2~ ..... am{~:),s~) with aq. .... l/4[f~,_,k,(0)] is also 
time varying. By assuming that the block signal sample amplitudes can be 
approximated by an averaged signal level between adjacent blocks, &: .... S -- 
diag(avg I $1 ! ..... avg] S,,(z0 :),fu._~(O) becomes a constant for each k. Now a 
simple approximation can be derived by representing f,, .d0), i = 1, 2,..., re(k), 
as a generalized Gaussian noise pdf (Kendall and Stuart, 1963) for a wide class 
of both thin and heavy tailed pdf 's  f,._~,(0), only varies in the range of 2 to I. 
This means that one does not need a very precise estimator of aq. at each step, k, 
since the efficiency of the SAMVLS is not sensitive to changes in a;~ (Evans et al., 
]976). However, the estimator of aq. should be robust if one desires high efficiency 
independent of the CDF of the measurement noise• Such an estimator is given in 
(Kersten and Kurz, 1976), which for each component of / lk( ' )  

q 1 
~Y~ [Z,,f(0--) ,I - Z~.r~..~l], a,.. 4i)e -2- -1) ;..~ 

where Zj.lq., ,q ] = q/2 [- l th-order statistic from the hatched component us:, of 
Y(&, ~) and Z~.rq .-1 = q /2 th-order  statistic from the batehed component ukz, 
1 -- 1, 2 ..... re(k), and [el defined to be the greatest integer less than or equal 

to e. It has been shown in (Kersten and Kurz, 1977) that the above robust 
adaptive estimator of the optimum gain coefficient satisfies the conditions of 
Theorem I. 

The  covariance matrix of the asymptotically normal robustized estimator 
• 9 2 ~ T  ~ k~.e(& _ a) with mean zero is g~ven by aTdr,v[2a~b~ --  I]-~, where ,-r,v = a,r . [ l ]S  S,  

i 1, 2 ..... m ( k ) , a n d  2 " %'i, := (2q -r- 1)/3q z which is independent of the measure- 
rnent noise statistics (compare this result with the covariance of the unrobustized 
SAMVI.S)  and the a~i are given by the batched orde, statistic estimator, defined 
previously. In this case, the robustness is reached after a small number of 
iterations and the instability of the recursion is only reached as a limit point 
a s  k * o0. 

SIMULATION RI'SULTS 

The SAMVI.S method was applied to a signalf(t)  sin at/rrt choosing for 7" 
the value rr, .'5(r in the presence of noise contamination described by the mixture 
distribution rnodelf(v) -= 0.9n(0, l) + 0.1n(0, 8). The above signal is the same 

643/44',3-8 
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FW,. 3. Computer simulation comparison of reconstruction algorithms. 

as the one used in (Papoulis, 1975) which is used to illustrate the performance of 
the "inner" algorithm (5), in the absence of noise. This allowed comparing 
and checking the results with the one in (Papoulis, 1975) for the noise-free case 
using the convolution approach. The result of the simulation of the noise-free 
"inner" algorithm by the convolution approach is shown in Fig. 3. The effect 
of noise contamination un the convolution implementation of the "inner" 
algorithm is shown in the same figure indicating divergence. The stable per- 
formance of a SAMVI,S algorithm in the presence of noise contamination is 
also shown in Fig. 3. 

A.~ AI,TERNATIVE 3,'IETHOD--THE ROBBINS-~t[ONRO APPROACII 

The foregoing recursive regression framework representation is not limited 
to the iterative algorithm of bandlimited extrapolation. It is also possible to 
apply the regression framework to the noniterative approach using prolate 
spheroidal wave functions (Viano, 1976) or, in general, to methods using anv 
other complete set of basis functions. 
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More specifically, one can apply a vector Robbins-Monro Stochastic Approxi- 
mation (RMSA) (Robbins and Monro, 1951; Kersten and Kurz, 1976) algorithm 
directly to estimate the coefficients of the orthogonal expansion methods (e.g., 
the prolatc spheroidal expansion method introduced earlier) in a manner 
similar to the one used for estimation of density functions in (Kashyap and 
Blaydon, 1968). The  method involves expanding the given function in a finite 

• N 

linear combination of orthogonal functions, x.e., k (x)  Y'i-~ aidi(x)  and 
jq -- , ) 

minimizes the integral-square error (ISE). ISE = ,f [k(x) - Y~i=~ a~4)~(x)]" dx  with 
respect to a i , i = 1, 2,... ,  e\:. 

One can consider the problem as if g(t )  is unknown (or cannot be directly 
observed) and we estimate an approximation to y(t) (4) using a sequence of 
independent samples ta., k : 1,2,... A block sample o fy( t )  is approximated as 

y(t) ,: ~ ai~J~l~(t ) - a*rqa(t), 
/~:=1 

where ~bk(t ) ~ 9fl~(t)/(ak) 1:'2, a ~ is an ,,-vector of unknown coet:ficients, {t,/Jl~(t), 
k .... 1,..., n} is a set defined by the eigenfunctions of the integral equation 
(Slepian et al., 1961). ] 'he  problem is to find a* which minimizes the ISE. The  
integral-square-error criterion is given bv 

where 

I (a)  = f0 (y(t) - a r~( t ) )  " dt, 

m 

dt -= ~ dt k , 
/ , '= l  

0 :: - T ,  r) .  

The value of a • a ~ which minimizes this criterion is (Kashyap and Blaydon, 
1968) 

To  evaluate a* numerically, using the RMSA, one forms 

ak- i  = aa: - -  ( A / k )  Y(a~. , tk), 

where A is a diagonal gain matrix, the fimction Y(a, t) is chosen so that 

E[Y(a, t).aJ =, oa?:l'= -= _.,o(~b(v/) g(v~)d~ 7 - i  tao[~ q~(~)~br( , , )d~7]. ,  

,? -: col(~, ..... ~,~), ,l~ : f i  d~,:. 
i ~ l  
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The function Y(a, t) satis~dng the above condition is given below 

Y ( a ,  t) = --13(t) ~- K a ,  

where 

and 

[3(t) = q~(t) if t ~ 0  

- 0  if t ¢ O  

K fo ~ ( t )  t~r(t) dt,  

which can be evaluated directly from knowledge of the eigenfunctions. The 
vector RMSA algorithm can be written as 

a~,_,~ =- a~: - -  (A/k)([~(tz:) - -  Kaz~). 

The above algorithm has been shown to converge in the mean-square sense and 
wpl (Kashyap and Blaydon, 1968). The conditions for convergence are given in 
Theorem 1 and in (Kersten and Kurz, 1976). 

The above theory of recursive estimation of the coefficients of orthogonal 
expansion methods via RMSA is completely general, and is not dependent 
on the choice of the basis functions. Hence, the method is applicable to prolate 
spheroidal wave functions or to any other convenient orthogonal set. But in 
the case of prolate spheroidal wave functions, unless one can describe q~(t) in 
functional form, the method would require storage or generation of eigen- 
functions and would not possess the economy of robustized SAMVLS. 

However, using Walsh basis functions (Young and Calvert, 1974) the eigen- 
fimctions of the resultant expansions can be recursively generated at each 
iteration step of RMSA. Hence the procedure becomes completely recursive and 
can be robustized in a manner similar to the methods used in SAMVLS. 
Furthermore, the extension of this procedure to two or multidimensional signals 
via the Walsh -Hadamard relationship (Young and Calvert, 1974) promises to 
generate an interesting and straightforward approach to image reconstruction. 

CONCLUSIONS 

A new application of the vector extension of Gladyshev's theorem to Minimum 
Variance l,east Squares (SAMVLS) was introduced to the image extrapolation 
or the object reconstruction problem. The new algorithm which uses the 
iterative vector measurement equation in parametric form, depicting a band- 
limited extrapolation process, which possesses inherent stabilizing properties 
which eliminate the instabilities associated with the improperly posed problem. 
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The  new algorithm is robustized via the Batch-Nonlinear-Linear (B-N-L)  
approach (Kadar and Kurz, 1980b), a procedure which cnsures "small sample" 
asymptotic robustness by a "prewhitening-like" operation using the Mann-- 
Whitncy-Wilcoxon Nonparametric Statistics (MWWNS)  and adaptive gain 
coefficients. The  resultant diagonal covariance matrix of the asymptotically 
normal robustized estimator of the parameters thus becomes independent of 
the measurement noise process and completely insensitive to noise outliers after 
a small number  of iteration steps. The  use of the adaptive gain coefficients 
guarantees near opt imum convergence rates. Computer  simulation verified the 
stable performance of the method in Gaussian mixture noise. 

The  direct application of the RMSA method to estimating the coefficients 
of orthogonal expansion methods was also considered. The  resultant rccursive 
rncthod was shown to be applicable to any convenient orthogonal set of basis 
functions (e.g., Walsh functions) and promises to generate an interesting 
approach to multidimensional image reconstruction. 

APPENDIX A 

In a Hilbert  space setting (Youla, 1977) the complete image, f ,  is represented 
as a vector known a priori to belong to a linear subspace 0~, but all that is available 
is its projection Pof  onto a known linear subspacc 0,,. By defining P~, Q , ,  
Pb,  and Qb as projection operators projecting onto 0, ,  ±0~,, 0~, and I 0 ~ ,  
respectively, ( e .g . , f~  0~ - -+f  = Pbf )  a recursive method is evolved to determine 
f uniquely from P,ff  (and with stability in the face of noise) given by 

f,:~-~ = g -~ Q~P,,L,  k ----- 1 .... or;f ,  g ,  (A1) 

and it is shown to converge to f in norm, lim~._,~ :.f  l: - - f l i  -- 0 (Youla, 1977). 
The  geometric representation of the steps involved is illustrated in Fig. 2. The  
above algorithm becomes improperly posed and can become unstable in the 
presence of noise, if the angle ~b(0v, ±0,,) = 0, which is clear from Fig. 2, where 
¢(0 b , _~. 0,) is the angle at 0 of the OA'/~ triangle. The  instability, due to aliasing, 
truncation error and measuremcnt noise, is handled as before by terminating the 
recursion after certain "opt imal"  number  of steps, albeit the theory for the 
optimality is not established. Papoulis'  (1975) algorithm is a special case of (AI). 
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