43 research outputs found

    Practical Stabilization of Uncertain Nonholonomic Mobile Robots Based on Visual Servoing Model with Uncalibrated Camera Parameters

    Get PDF
    The practical stabilization problem is addressed for a class of uncertain nonholonomic mobile robots with uncalibrated visual parameters. Based on the visual servoing kinematic model, a new switching controller is presented in the presence of parametric uncertainties associated with the camera system. In comparison with existing methods, the new design method is directly used to control the original system without any state or input transformation, which is effective to avoid singularity. Under the proposed control law, it is rigorously proved that all the states of closed-loop system can be stabilized to a prescribed arbitrarily small neighborhood of the zero equilibrium point. Furthermore, this switching control technique can be applied to solve the practical stabilization problem of a kind of mobile robots with uncertain parameters (and angle measurement disturbance) which appeared in some literatures such as Morin et al. (1998), Hespanha et al. (1999), Jiang (2000), and Hong et al. (2005). Finally, the simulation results show the effectiveness of the proposed controller design approach

    Image-Based Visual Servoing for Nonholonomic Mobile Robots Using Epipolar Geometry

    Full text link

    Sliding-Mode Formation Control for Cooperative Autonomous Mobile Robots

    Full text link

    Control de robots m贸viles mediante visi贸n omnidireccional utilizando la geometr铆a de tres vistas

    Get PDF
    Este trabajo trata acerca del control visual de robot m贸viles. Dentro de este campo tan amplio de investigaci贸n existen dos elementos a los que prestaremos especial atenci贸n: la visi贸n omnidireccional y los modelos geom茅tricos multi-vista. Las c谩maras omnidireccionales proporcionan informaci贸n angular muy precisa, aunque presentan un grado de distorsi贸n significativo en direcci贸n radial. Su cualidad de poseer un amplio campo de visi贸n hace que dichas c谩maras sean apropiadas para tareas de navegaci贸n rob贸tica. Por otro lado, el uso de los modelos geom茅tricos que relacionan distintas vistas de una escena permite rechazar emparejamientos err贸neos de caracter铆sticas visuales entre im谩genes, y de este modo robustecer el proceso de control mediante visi贸n. Nuestro trabajo presenta dos t茅cnicas de control visual para ser usadas por un robot movi茅ndose en el plano del suelo. En primer lugar, proponemos un nuevo m茅todo para homing visual, que emplea la informaci贸n dada por un conjunto de im谩genes de referencia adquiridas previamente en el entorno, y las im谩genes que toma el robot a lo largo de su movimiento. Con el objeto de sacar partido de las cualidades de la visi贸n omnidireccional, nuestro m茅todo de homing es puramente angular, y no emplea informaci贸n alguna sobre distancia. Esta caracter铆stica, unida al hecho de que el movimiento se realiza en un plano, motiva el empleo del modelo geom茅trico dado por el tensor trifocal 1D. En particular, las restricciones geom茅tricas impuestas por dicho tensor, que puede ser calculado a partir de correspondencias de puntos entre tres im谩genes, mejoran la robustez del control en presencia de errores de emparejamiento. El inter茅s de nuestra propuesta reside en que el m茅todo de control empleado calcula las velocidades del robot a partir de informaci贸n 煤nicamente angular, siendo 茅sta muy precisa en las c谩maras omnidireccionales. Adem谩s, presentamos un procedimiento que calcula las relaciones angulares entre las vistas disponibles de manera indirecta, sin necesidad de que haya informaci贸n visual compartida entre todas ellas. La t茅cnica descrita se puede clasificar como basada en imagen (image-based), dado que no precisa estimar la localizaci贸n ni utiliza informaci贸n 3D. El robot converge a la posici贸n objetivo sin conocer la informaci贸n m茅trica sobre la trayectoria seguida. Para algunas aplicaciones, como la evitaci贸n de obst谩culos, puede ser necesario disponer de mayor informaci贸n sobre el movimiento 3D realizado. Con esta idea en mente, presentamos un nuevo m茅todo de control visual basado en entradas sinusoidales. Las sinusoides son funciones con propiedades matem谩ticas bien conocidas y de variaci贸n suave, lo cual las hace adecuadas para su empleo en maniobras de aparcamiento de veh铆culos. A partir de las velocidades de variaci贸n sinusoidal que definimos en nuestro dise帽o, obtenemos las expresiones anal铆ticas de la evoluci贸n de las variables de estado del robot. Adem谩s, bas谩ndonos en dichas expresiones, proponemos un m茅todo de control mediante realimentaci贸n del estado. La estimaci贸n del estado del robot se obtiene a partir del tensor trifocal 1D calculado entre la vista objetivo, la vista inicial y la vista actual del robot. Mediante este control sinusoidal, el robot queda alineado con la posici贸n objetivo. En un segundo paso, efectuamos la correcci贸n de la profundidad mediante una ley de control definida directamente en t茅rminos del tensor trifocal 1D. El funcionamiento de los dos controladores propuestos en el trabajo se ilustra mediante simulaciones, y con el objeto de respaldar su viabilidad se presentan an谩lisis de estabilidad y resultados de simulaciones y de experimentos con im谩genes reales

    Finite-Time Stabilization of Dynamic Nonholonomic Wheeled Mobile Robots with Parameter Uncertainties

    Get PDF

    Design of Visual Feedback Tracking Algorithm for Nonholonomic Mobile Robots Based on Neural Network

    Get PDF
    With the rapid development of the computer and the electronic technique, the application of robots has been widen. The robot visual serving control system may mimic the human eyes. Then the vision information is used as a feedback to improve the ability of the robot adaption to the environment. However, traditional algorithms which need the calibration of visual parameters spend much time and become technical bottlenecks. This paper presents the development background of the robot and the concept of nonholonomic mobile robots with visual servoing feedback. Second, the deficiency exists in traditional algorithms and fuzzy controller. Third, BP neural network PID is proposed to design controller. Combining BP neutral network with PID controller is used to manipulate mobile robots firstly. The complex deduces of common tracking controllers is simplified and tracking control problem with non calibrated virtual parameters is solved. Finally, we program the simulation code. The simulation results show that the method is effective

    Visual servoing on wheels: robust robot orientation estimation in remote viewpoint control

    Get PDF
    This work proposes a fast deployment pipeline for visually-servoed robots which does not assume anything about either the robot - e.g. sizes, colour or the presence of markers - or the deployment environment. Specifically, we apply a learning based approach to reliably estimate the pose of a robot in the image frame of a 2D camera upon which a visual servoing control system can be deployed. To alleviate the time-consuming process of labelling image data, we propose a weakly supervised pipeline that can produce a vast amount of data in a small amount of time. We evaluate our approach on a dataset of remote camera images captured in various indoor environments demonstrating high tracking performances when integrated into a fully-autonomous pipeline with a simple controller. With this, we then analyse the data requirement of our approach, showing how it is possible to deploy a new robot in a new environment in fewer than 30.00 min

    Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system

    Full text link

    Adaptive control of autonomous helicopters.

    Get PDF
    Chen, Yipin.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (leaves 81-83).Abstracts in English and Chinese.Abstract --- p.1鎽樿 --- p.2Table of Contents --- p.3Acknowledgements --- p.4Nomenclature --- p.5List of Figures --- p.9Chapter 1 --- IntroductionChapter 1.1 --- Motivation and Literature Review --- p.11Chapter 1.2 --- Background --- p.13Chapter 1.3 --- Research Overview --- p.14Chapter 1.4 --- Thesis Outline --- p.15Chapter 2 --- Kinematic and Dynamic ModelingChapter 2.1 --- Helicopter Dynamics --- p.16Chapter 2.2 --- Kinematics of Point Feature Projection --- p.19Chapter 2.3 --- Kinematics of Line Feature Projection --- p.22Chapter 3 --- Adaptive Visual Servoing with Uncalibrated CameraChapter 3.1 --- On-line Parameter Estimation --- p.25Chapter 3.2 --- Controller Design --- p.28Chapter 3.3 --- Stability Analysis --- p.30Chapter 3.4 --- Simulation --- p.33Chapter 4 --- Adaptive Control with Unknown IMU PositionChapter 4.1 --- Control Strategies --- p.47Chapter 4.1.1 --- Dynamic Model with Rotor Dynamics --- p.47Chapter 4.1.2 --- p.50Chapter 4.2 --- Stability Analysis --- p.55Chapter 4.3 --- Simulation --- p.57Chapter 5 --- ConclusionsChapter 5.1 --- Summary --- p.64Chapter 5.2 --- Contributions --- p.65Chapter 5.3 --- Future Research --- p.65Chapter A --- Inertial Matrix of the Helicopter --- p.66Chapter B --- Induced Torque --- p.69Chapter C --- Unknown Parameter Vectors and Initial Estimation Values --- p.72Chapter D --- Cauchy Inequality --- p.74Chapter E --- Rotor Dynamics --- p.77Bibliography --- p.8
    corecore