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The practical stabilization problem is addressed for a class of uncertain nonholonomic mobile robots with uncalibrated visual
parameters. Based on the visual servoing kinematic model, a new switching controller is presented in the presence of parametric
uncertainties associated with the camera system. In comparison with existing methods, the new design method is directly used to
control the original system without any state or input transformation, which is effective to avoid singularity. Under the proposed
control law, it is rigorously proved that all the states of closed-loop system can be stabilized to a prescribed arbitrarily small
neighborhood of the zero equilibrium point. Furthermore, this switching control technique can be applied to solve the practical
stabilization problem of a kind of mobile robots with uncertain parameters (and angle measurement disturbance) which appeared
in some literatures such as Morin et al. (1998), Hespanha et al. (1999), Jiang (2000), and Hong et al. (2005). Finally, the simulation
results show the effectiveness of the proposed controller design approach.

1. Introduction

For the last few decades, the problem of control of nonholo-
nomic systems has been studied by many researchers and has
attracted a continuously increasing attention in the control
community. As pointed out in [1], such a class of nonlinear
systems cannot be stabilized to a point with pure smooth (or
even continuous) state-feedback control.Therefore, the stabi-
lization problem of nonholonomic systems is still extremely
challenging. Up to now, there have been a lot of control
methods to stabilize such systems: continuous time-varying
feedback control laws [2–4], hybrid feedback control laws [5–
7], and discontinuous feedback control laws [8–11].

Recently, based on the visual servoing feedback model,
a new robust control issue is considered in [12] for uncer-
tain nonholonomic mobile robots with uncalibrated camera
parameters. In [13], an adaptive sliding mode controller is
designed to stabilize a class of uncertain dynamic mobile
robots in the presence of parametric uncertainties of the
camera system. In addition, the dynamic feedback robust

regulation problem and the dynamic feedback tracking
control problem have been addressed with unknown depth
information and visual parameters of a fixed camera in
[14, 15], respectively. However, these results have a common
defect: it may be somewhat unrealistic to assume that some
parameters of the camera system are unknown while others
are known. And these above existing approaches [2–15] are
invalid when we deal with the robust stabilization problem
for such nonholonomic mobile robots with assuming that all
the camera parameters are unknown.

In addition, as shown in [16, 17], the unicycle robotmodel
has dynamic linearizable feedback, based on which some
control problems for nonholonomic system have been solved
in the recent research literatures. For example, in [18], the
unicycle model can be transformed into two double inte-
grators by using dynamic feedback linearization; then a new
class of distributed nonlinear controllers for leader-following
formation control of unicycle robots without global position
measurements has been proposed. But there exists singularity
of the transformed model caused by the nonholonomic
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constraint of the mobile robot; how to avoid appearance of
singularity is themajor difficulty of designing the control law.
And in [19], the problem of stabilization for nonholonomic
single chained systems has also been considered in the
framework of nonregular feedback linearization.

This paper considers the practical stabilization problem
for a class of nonholonomic mobile robots based on visual
servoing feedback with uncalibrated visual parameters. A
new switching controller is presented in the presence of
parametric uncertainties. Our main contributions can be
summarized in the following three respects.

(1) The new designmethod is directly based on the origi-
nal systemmodelwithout using any transformation of
coordinates or inputs; it is valid to avoid appearance of
singularity. Under the proposed switching controller,
it is rigorously proved that all the states of closed-loop
system can be stabilized to a prescribed arbitrarily
small neighborhood of the zero equilibrium point.

(2) Compared with other results on the same subject
(visual servoing feedback control of nonholonomic
mobile robots) [12–15], it is more realistic to suppose
that all the parameters of the camera system are
unknown.

(3) The switching controller design method can be easily
used to solve the practical stabilization problem of
a kind of nonholonomic mobile robots with uncer-
tain parameters and angle measurement disturbance
raised by [20–23] and references therein.

The structure of this paper is as follows: Section 2 gives
a statement of some motivating examples and the problem
considered in this paper. A proper assumption and a lemma
are also presented in this section. Section 3 gives our main
results including switching controller design, stability anal-
ysis (proof), and an application. Section 4 provides an illus-
trative numerical example and the corresponding simulation
results of the proposed methodology. Finally, a conclusion is
shown in Section 5.

2. Motivating Examples
and Problem Statement

2.1. Motivating Examples. A class of nonholonomic wheeled
mobile robots is shown in Figure 1. The two fixed rear wheels
of the robot are controlled independently by motors, and a
front castor wheel prevents the robot from tipping over as it
moves on a plane. Assume that the geometric center point and
the mass center point of the robot are the same, the radii 𝑟 are
identical for all the wheels, and the distance 2𝑅 between the
fixedwheels is a knownpositive constant. Its kinematicmodel
can be described by the following differential equations [24]:

𝑥̇ = V cos 𝜃,

̇𝑦 = V sin 𝜃,

̇
𝜃 = 𝜔,

(1)

where (𝑥, 𝑦) is the position of the mass center of the robot
moving on the plane. V is the forward velocity,𝜔 is the steering
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Figure 1: Nonholonomic wheeled mobile robot.

velocity, and 𝜃 denotes its heading angle from the horizontal
axis. V and 𝜔 are usually regarded as control inputs.

As pointed out in [22], system (1) represents themodeling
of the robot in the ideal case. A realistic description of the
robot motion in the presence of uncertainties will give rise to
far more complex equations requiring involved analysis and
synthesis tools. Some results of dealing with such model with
uncertain parameters or angle measurement disturbance
have been presented; for example, the so-called parking
problem of the following system has been addressed with a
hybrid feedback control law in [21]

𝑥̇ = 𝑝
∗

1
V cos 𝜃,

̇𝑦 = 𝑝
∗

1
V sin 𝜃,

̇
𝜃 = 𝑝
∗

2
𝜔,

(2)

where 𝑝∗
1
and 𝑝∗

2
are (unknown) positive parameters deter-

mined by the radius of the rear wheels and the distance
between them. In addition, Jiang [22] has derived a robust
state-feedback controller to drive the states of (2) to the origin
with exponential convergence, and in [23], Hong et al. have
proposed a finite-time stabilizer for such uncertain system.

As for system (3), considering the control problem of
system (1) with angle measurement disturbance (see [22] and
references therein),

𝑥̇ = V cos (𝜃 + 𝜖) ,

̇𝑦 = V sin (𝜃 + 𝜖) ,

̇
𝜃 = 𝜔,

(3)

where 𝜖 is a small bias in orientation. As indicated in [20], the
second-order approximation of system (3) near the origin is
given by

𝑥̇
𝜄
= (1 −

𝜖
2

2

) V,

̇𝑦
𝜄
= 𝜃
𝜄
V + 𝜖V,

̇
𝜃
𝜄
= 𝜔,

(4)
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where (𝑥
𝜄
, 𝑦
𝜄
, 𝜃
𝜄
) represents the state of the above locally

approximate model. It was mentioned in [20] that the
adaptive control design is applicable to (4) to solve the
adaptive regulation of (4) and thus provides a local solution
to the parking problem of the robot in the presence of angle
measurement errors. And in the literature [22], a switching
control strategy has been proposed to globally exponentially
regulate all trajectories of system (4) to the equilibrium
(0, 0, −𝜖).

But to our knowledge, the stabilization problem of system
(3) still remains open up to now. Furthermore, it is the
first time to consider the practical stabilization problem
for the system containing uncertain parameters and angle
measurement disturbance, simultaneously, that is, driving the
following system to a prescribed arbitrarily small neighbor-
hood of the equilibrium point (0, 0, 0):

𝑥̇ = 𝑝
∗

1
V cos (𝜃 + 𝜖) ,

̇𝑦 = 𝑝
∗

1
V sin (𝜃 + 𝜖) ,

̇
𝜃 = 𝑝
∗

2
𝜔.

(5)

As in [22], we can assume that

0 < 𝑝
min
𝑖

≤ 𝑝
∗

𝑖
≤ 𝑝

max
𝑖

, 𝑖 = 1, 2,

|𝜖| ≤ 𝜖
max

,

(6)

where 𝑝min
𝑖

, 𝑝max
𝑖

, and 𝜖max are all known positive constants.
In this paper, as an example of application, our switching

control method to be presented later for the visual feedback
model can be easily used to solve the practical stabilization
problem of system (5).

2.2. Problem Statement. Generally, for system (1), the state
(𝑥, 𝑦) can be got from the encoders of motors and other
sensors such as ultrasonic sensors ND infrared sensors.
However, in the objective world and engineering fields, it is
difficult to implement such schemes. Here, the camera shown
in Figure 2 is used to measure the position (𝑥, 𝑦); its image
position is noted as (𝑥

𝑚
, 𝑦
𝑚
).

As mentioned in [12–15], we also consider that the
movement of the mobile robot (1) can be measured by using
a pinhole camera fixed to the ceiling (as shown in Figure 2).
Assuming that the camera plane, the image plane, and the
robot plane are parallel. There are four coordinate frames,
namely, the inertial frame𝑋−𝑌−𝑍, the camera frame𝑥−𝑦−𝑧,
the image frame 𝑢 − 𝑜

1
− ], and the attached robot frame

𝑋
1
−𝑃−𝑋

2
. Point𝐶 is the crossing point between the optical

axis of the camera and𝑋 − 𝑌 plane. Its coordinate relative to
𝑋−𝑌 plane is (𝑐

𝑥
, 𝑐
𝑦
). The coordinate of the original point of

the camera frame with respect to the image frame is defined
by (𝑂

𝑐
1

, 𝑂
𝑐
2

). And (𝑥, 𝑦) is the coordinate of the mass center
𝑃 of the robot with respect to𝑋 − 𝑌 plane.

The pinhole camera model can be expressed as [12]

(

𝑥
𝑚

𝑦
𝑚

) = (

𝛼
1

0

0 𝛼
2

)𝑅(

𝑥 − 𝑐
𝑥

𝑦 − 𝑐
𝑦

) + (

𝑂
𝑐
1

𝑂
𝑐
2

) , (7)
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Figure 2: Nonholonomic wheeled mobile robot under a fixed
camera.

where 𝛼
1
and 𝛼

2
are positive constants, which are dependent

on the depth information, focal length, and scalar factors
along 𝑢 axis and V axis, respectively, of the camera system.
Here,

𝑅 = (

cos 𝜃
0

sin 𝜃
0

− sin 𝜃
0
cos 𝜃
0

) , (8)

where 𝜃
0
denotes the angle between x-axis and y-axis with a

positive anticlockwise orientation.
From (1), (7), and (8), by using a simple derivation,

the image-based kinematical equation of the robot can be
obtained

𝑥̇
𝑚
= 𝛼
1
V cos (𝜃 − 𝜃

0
) ,

̇𝑦
𝑚
= 𝛼
2
V sin (𝜃 − 𝜃

0
) ,

̇
𝜃 = 𝜔.

(9)

In the field of visual servoing feedback of robots, usually
the camera parameters 𝛼

1
, 𝛼
2
and the angle 𝜃

0
can be got

by calibration. But this process will take a lot of time, which
implies that it is impossible to use this method in high
requirement of real time.Therefore, it is necessary to consider
how to design a control law in the case of dealing with these
uncalibrated parameters.

In this paper, we consider the robust practical stabiliza-
tion problem of visual servoing feedback model (9) when 𝛼

1
,

𝛼
2
, and 𝜃

0
are all unknown parameters.

Assumption 1. 𝛼
1
, 𝛼
2
, and 𝜃

0
are bounded, and the bounds of

which are known positive constants

0 < 𝛼
min
𝑖

≤ 𝛼
𝑖
≤ 𝛼

max
𝑖

, 𝑖 = 1, 2,

0 < 𝜃
min
0

≤ 𝜃
0
≤ 𝜃

max
0

<

𝜋

4

.

(10)
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Remark 2. It is noted that the above assumption is not
rigorous because it is not difficult to estimate the bounds of
the depth information, focal length, and scalar factors of the
camera in advance. As for the angle 𝜃

0
, seen in Figure 2, we

can always assume that it falls within a certain range.
Next, we will introduce the following lemma that is

needed for our controller design later.

Lemma 3 (see [25]). For a first-order system

̇𝜂 = 𝑢, (11)

where 𝜂, 𝑢 ∈ 𝑅
1 are state variable and control input,

respectively. Taking a continuous, fractional control law

𝑢 = −𝑘 sgn (𝜂) 󵄨󵄨󵄨
󵄨
𝜂
󵄨
󵄨
󵄨
󵄨

𝛽

, (12)

where 𝑘 > 0, 𝛽 ∈ (0, 1) are design parameters. Then the closed-
loop system ̇𝜂 = −𝑘 sgn(𝜂)|𝜂|𝛽 is finite-time stable at the zero
equilibrium point.

Proof. See [25].

Remark 4. As illustrated by system (8) in [25], the piecewise
control law is continuous everywhere and locally Lipschitz
everywhere except for the origin. Therefore, for every initial
condition in R \ {0}, the closed-loop system has a unique
solution in forward time.

The control task is to present a switching controller for
system (9) such that (𝑥

𝑚
, 𝑦
𝑚
) converges to a prescribed

arbitrarily small neighborhood of zero, and 𝜃(𝑡) ≡ 0 after a
finite time.

3. Main Results

In this section, the main results will be presented. To better
understand the idea of design, it is useful to first give a careful
analysis. Considering system (9) when 𝜃(𝑡) ≡ 𝜋/4, it is easy
to obtain

𝑑𝑦
𝑚

𝑑𝑥
𝑚

=

𝛼
2

𝛼
1

tan(𝜋
4

− 𝜃
0
) . (13)

Solving it yields

𝑦
𝑚
(𝑡) = 𝑦

𝑚
(0) +

𝛼
2

𝛼
1

(𝑥
𝑚
(𝑡) − 𝑥

𝑚
(0)) tan(𝜋

4

− 𝜃
0
) , (14)

which implies a line on the 𝑋
𝑚
− 𝑌
𝑚
plane. Similarly, for the

case 𝜃(𝑡) ≡ −𝜋/4, we have

𝑑𝑦
𝑚

𝑑𝑥
𝑚

= −

𝛼
2

𝛼
1

tan(𝜋
4

+ 𝜃
0
) . (15)

Solving it yields

𝑦
𝑚
(𝑡) = 𝑦

𝑚
(0) −

𝛼
2

𝛼
1

(𝑥
𝑚
(𝑡) − 𝑥

𝑚
(0)) tan(𝜋

4

+ 𝜃
0
) , (16)

which also implies a line on the 𝑋
𝑚
− 𝑌
𝑚
plane. By (14) and

(16), a good switching controller is expected to drive the robot

𝑦𝑚

𝑥𝑚0

Figure 3:The trajectories (𝑥
𝑚
, 𝑦
𝑚
) of system (9) under the switching

controller.

(9) to an arbitrarily small neighborhood of (0, 0, 0) according
to Figure 3.

The main idea is introduced as follows to show how to
design a switching controller for system (9). In every step of
the switching process, we always let the angle 𝜃(𝑡) ≡ −𝜋/4

or 𝜋/4 after some finite time by designing the control input
𝜔 and simultaneously design V to drive |𝑥

𝑚
(𝑡)| (|𝑦

𝑚
(𝑡)|) to

a small positive constant while |𝑦
𝑚
(𝑡)| (|𝑥

𝑚
(𝑡)|) is bounded;

their bounds are smaller and smaller. Finally, there must exist
a finite time 0 < 𝑇 < +∞ such that |𝑥

𝑚
(𝑇)| ≤ 𝜀, |𝑦

𝑚
(𝑇)| ≤ 𝜀

for any arbitrarily small 𝜀 > 0 given in advance. Then after
that, we can let (𝑥

𝑚
(𝑡), 𝑦
𝑚
(𝑡)) remain motionless (V = 0) and

drive 𝜃(𝑡) to zero in a finite time by designing 𝜔.
The following theorem and its proof will present our

switching controller design and stability analysis.

3.1. Controller Design and Stability Analysis

Theorem 5. For any given arbitrarily small 𝜀 > 0 and positive
constants 𝛼min

𝑖
, 𝛼max
𝑖

, 𝜃min
0

, and 𝜃max
0

satisfying Assumption 1,
take the following switching controller.

Step 1 (0). For all 𝑇
0
≥ 0, if |𝑥

𝑚
(𝑇
0
)| ≤ 𝜀 and |𝑦

𝑚
(𝑇
0
)| ≤ 𝜀, let

V = 0, 𝜔 = −𝑘
0
sgn (𝜃) |𝜃|𝛽0 , (17)

where 𝑘
0
> 0, 𝛽

0
∈ (0, 1) are design parameters. If 𝜃(𝑡) ≡ 0

then let V = 𝜔 = 0 and stop. Otherwise, go to Step 2 (2𝑗 − 1),
where 𝑗 is introduced as a counter, denotes the number of
cycles of the switching algorithm beginning with 𝑗 = 1. For
example, in the first round, 𝑗 = 1; in the second round, 𝑗 = 2,
and so on.

For more clarity, it should be forewarned, in every round
of this control algorithm (𝑗 = 1, 2, 3, . . .), the switching
process consists of three steps (Step 1 (0), Step 2 (2𝑗 − 1),
Step 3 (2𝑗)).
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Step 2 (2𝑗 − 1). For all 𝑇0
2𝑗−1

≥ 0, if |𝑥
𝑚
(𝑇
0

2𝑗−1
)| > 𝜀, let

V = 0, 𝜔 = −𝑘
2𝑗−1,1

sgn(𝜃 − 𝜋

4

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜃 −

𝜋

4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝛽
2𝑗−1

, (18)

where 𝑘
2𝑗−1,1

> 0, 𝛽
2𝑗−1

∈ (0, 1) are design parameters. When
𝜃(𝑡) ≡ 𝜋/4 after some finite time, then let

V = −𝑘
2𝑗−1,2

𝑥
𝑚
, 𝜔 = 0, (19)

where 𝑘
2𝑗−1,2

> 0 is a design parameter.Then, there exists 0 ≤
𝑇
2𝑗−1

< +∞ such that |𝑥
𝑚
(𝑇
2𝑗−1

)| ≤ 𝜀, and if |𝑦
𝑚
(𝑇
2𝑗−1

)| ≤ 𝜀,
go to Step 1 (0), else if |𝑦

𝑚
(𝑇
2𝑗−1

)| > 𝜀, go to the next step.

Step 3 (2𝑗). Let

V = 0, 𝜔 = −𝑘
2𝑗,1

sgn(𝜃 + 𝜋

4

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜃 +

𝜋

4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝛽
2𝑗

, (20)

where 𝑘
2𝑗,1

> 0, 𝛽
2𝑗

∈ (0, 1) are design parameters. When
𝜃(𝑡) ≡ −𝜋/4 after some finite time, then let

V = 𝑘
2𝑗,2

𝑦
𝑚
, 𝜔 = 0, (21)

where 𝑘
2𝑗,2

> 0 is a design parameter. There exists 0 ≤ 𝑇
2𝑗
<

+∞ such that |𝑦
𝑚
(𝑇
2𝑗
)| ≤ 𝜀 as 𝑡 ≥ 𝑇

2𝑗
, and if |𝑥

𝑚
(𝑇
2𝑗
)| ≤ 𝜀,

go to Step 1 (0), else if |𝑥
𝑚
(𝑇
2𝑗
)| > 𝜀, let 𝑗 := 𝑗 + 1 and go to

Step 2 (2𝑗 − 1).
Then, for any initial value (𝑥

𝑚
(0), 𝑦
𝑚
(0), 𝜃(0)), the state

(𝑥
𝑚
(𝑡), 𝑦
𝑚
(𝑡)) of system (9) can be driven into a prescribed

arbitrarily small neighborhood of the origin𝐷
𝜀
≜ {(𝑥
𝑚
, 𝑦
𝑚
) ∈

R2 | |𝑥
𝑚
| ≤ 𝜀, |𝑦

𝑚
| ≤ 𝜀} and stay within it in a finite time;

meanwhile, 𝜃(𝑡) can be stabilized to zero.

Proof. Firstly, for convenience sake, we introduce a positive
number 𝜀

0
satisfying

𝜀
0
≤ 𝜀 ⋅min{

1 − 1/tan2 (𝜃min
0

+ (𝜋/4))

3 (1 + 𝛼
max
2

/𝛼
min
1

(tan 𝜃min
0

+ (𝜋/4)))

,

1 − 1/tan2 (𝜃min
0

+ (𝜋/4))

3 (1 + 𝛼
max
1

/𝛼
min
2

(tan 𝜃min
0

+ (𝜋/4)))

} .

(22)

Suppose (𝑥
𝑚
(0), 𝑦
𝑚
(0)) ∈ 𝐷

𝜀
; it is clear that (𝑥

𝑚
(𝑡), 𝑦
𝑚
(𝑡))

will stay within 𝐷
𝜀
since V = 0 in Step 1 (0). According to

Lemma 3, there exists a finite time 0 < 𝑇 < +∞ such that
𝜃(𝑡) ≡ 0, for all 𝑡 ≥ 𝑇. Therefore, after 𝑡 > 𝑇, the control law
V = 𝜔 = 0 ensures that

(𝑥
𝑚
(𝑡) , 𝑦
𝑚
(𝑡)) ≡ (𝑥

𝑚
(0) , 𝑦

𝑚
(0)) ∈ 𝐷

𝜀
, 𝜃 (𝑡) ≡ 0.

(23)

In the case of (𝑥
𝑚
(0), 𝑦
𝑚
(0)) ∉ 𝐷

𝜀
, we can use the

switching controller which consists of Step 2 (2𝑗 − 1)∼Step 3
(2 𝑗) again and again, and this control process can be
described as follows.

In the first round (i.e., 𝑗 = 1), if |𝑥
𝑚
(0)| > 𝜀, then in Step 2

(2𝑗 −1), from (18) and Lemma 3, there exists a finite time𝑇
1,1

such that
𝑥
𝑚
(𝑇
1,1
) = 𝑥
𝑚
(0) , 𝑦

𝑚
(𝑇
1,1
) = 𝑦
𝑚
(0) ,

𝜃 (𝑡) ≡

𝜋

4

, ∀𝑡 ≥ 𝑇
1,1
,

(24)

and for 𝑡 ≥ 𝑇
1,1
, from (19), we have

𝑥̇
𝑚
= −𝑘
1,2
𝛼
1
𝑥
𝑚
sin(𝜃

0
+

𝜋

4

) ,

̇𝑦
𝑚
= −𝑘
1,2
𝛼
2
𝑥
𝑚
cos(𝜃

0
+

𝜋

4

) .

(25)

By solving (25) directly, one has

𝑥
𝑚
(𝑡) = 𝑥

𝑚
(𝑇
1,1
) 𝑒
−𝑘
1,2
𝛼
1
(𝑡−𝑇
1,1
) sin(𝜃

0
+𝜋/4)

= 𝑥
𝑚
(0) 𝑒
−𝑘
1,2
𝛼
1
(𝑡−𝑇
1,1
) sin(𝜃

0
+𝜋/4)

,

𝑦
𝑚
(𝑡) =

𝛼
2

𝛼
1
tan (𝜃

0
+ 𝜋/4)

𝑥
𝑚
(0) 𝑒
−𝑘
1,2
𝛼
1
(𝑡−𝑇
1,1
) sin(𝜃

0
+𝜋/4)

+ 𝑦
𝑚
(0) −

𝛼
2

𝛼
1
tan (𝜃

0
+ 𝜋/4)

𝑥
𝑚
(0) .

(26)

Let

𝑝 ≜

𝛼
2

𝛼
1
tan (𝜃

0
+ 𝜋/4)

, 𝑞 ≜

𝛼
1

𝛼
2
tan (𝜃

0
+ 𝜋/4)

. (27)

Then from Assumption 1, we have

0 < 𝑝 ≤

𝛼
max
2

𝛼
min
1

(tan 𝜃min
0

+ 𝜋/4)

≜ 𝑝
max

,

0 < 𝑞 ≤

𝛼
max
1

𝛼
min
2

(tan 𝜃min
0

+ 𝜋/4)

≜ 𝑞
max

.

(28)

According to (26) and (27), there exists 𝑇
1,1
< 𝑇
1
< +∞ such

that

𝑥
𝑚
(𝑇
1
) = 𝛿
0
, 𝑦

𝑚
(𝑇
1
) = 𝑝𝛿

0
+ 𝑦
𝑚
(0) − 𝑝𝑥

𝑚
(0) , (29)

where 𝛿
0
is a given small constant satisfying that |𝛿

0
| ≤

min{𝜀
0
, 𝜀}. Suppose that |𝑦

𝑚
(𝑇
1
)| > 𝜀; then go to Step 3 (2𝑗).

Similarly, in Step 3 (2𝑗), from (21)-(22) and Lemma 3, we
have

𝑦
𝑚
(𝑡) = 𝑦

𝑚
(𝑇
2,1
) 𝑒
−𝑘
2,2
𝛼
2
(𝑡−𝑇
2,1
) sin(𝜃

0
+𝜋/4)

= 𝑦
𝑚
(𝑇
1
) 𝑒
−𝑘
2,2
𝛼
2
(𝑡−𝑇
2,1
) sin(𝜃

0
+𝜋/4)

,

𝑥
𝑚
(𝑡) = −

𝛼
1

𝛼
2
tan (𝜃

0
+ 𝜋/4)

× 𝑦
𝑚
(𝑇
1
) 𝑒
−𝑘
2,2
𝛼
2
(𝑡−𝑇
2,1
) sin(𝜃

0
+𝜋/4)

+ 𝑥
𝑚
(𝑇
2,1
) +

𝛼
1

𝛼
2
tan (𝜃

0
+ 𝜋/4)

𝑦
𝑚
(𝑇
1
)

= − 𝑞𝑦
𝑚
(𝑇
1
) 𝑒
−𝑘
2,2
𝛼
2
(𝑡−𝑇
2,1
) sin(𝜃

0
+𝜋/4)

+ 𝑥
𝑚
(𝑇
1
) + 𝑞𝑦

𝑚
(𝑇
1
) .

(30)
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According to the above equations, there exists𝑇
2,1
< 𝑇
2
<

+∞ such that

𝑦
𝑚
(𝑇
2
) = 𝛿
1
,

𝑥
𝑚
(𝑇
2
) = −𝑞𝛿

1
+ 𝑥
𝑚
(𝑇
1
) + 𝑞𝑦

𝑚
(𝑇
1
) ,

(31)

where 𝛿
1
is a given small constant satisfying that |𝛿

1
| ≤ |𝛿

0
|.

Substituting (29) into the above formula, one has

𝑦
𝑚
(𝑇
2
) = 𝛿
1
,

𝑥
𝑚
(𝑇
2
) = −𝑞𝛿

1
+ (1 + 𝑝𝑞) 𝛿

0
+ 𝑞 (𝑦

𝑚
(0) − 𝑝𝑥

𝑚
(0)) .

(32)

If |𝑥
𝑚
(𝑇
2
)| > 𝜀, let 𝑗 = 2, then the closed-loop system

continues to go to Step 2 (2𝑗 − 1).
From here, we obtained the general conclusion for 𝑗 =

2, 3, 4, . . ., there always exist corresponding 0 < 𝑇
2𝑗−1

< +∞

and 0 < 𝑇
2𝑗
< +∞ such that

𝑥
𝑚
(𝑇
2𝑗−1

) = 𝛿
2𝑗−2

,

𝑦
𝑚
(𝑇
2𝑗
) = 𝛿
2𝑗−1

,

(33)

𝑦
𝑚
(𝑇
2𝑗−1

)

= 𝑝𝛿
2𝑗−2

+ (1 + 𝑝𝑞)

×

𝑗−1

∑

𝑘=1

(−1)
𝑗−1−𝑘

(𝑝𝑞)
𝑗−1−𝑘

(𝛿
2𝑘−1

− 𝑝𝛿
2𝑘−2

)

+ (−1)
𝑗−1

(𝑝𝑞)
𝑗−1

(𝑦
𝑚
(0) − 𝑝𝑥

𝑚
(0)) ,

(34)

𝑥
𝑚
(𝑇
2𝑗
)

= −𝑞𝛿
2𝑗−1

+ (1 + 𝑝𝑞)

× (𝛿
2𝑗−2

+

𝑗−1

∑

𝑘=1

(−1)
𝑗+𝑘

𝑝
𝑗−1−𝑘

𝑞
𝑗−𝑘

(𝛿
2𝑘−1

− 𝑝𝛿
2𝑘−2

))

+ (−1)
𝑗−1

𝑝
𝑗−1

𝑞
𝑗

(𝑦
𝑚
(0) − 𝑝𝑥

𝑚
(0)) ,

(35)

where 𝛿
𝑗
is a given small constant and satisfies that |𝛿

𝑗
| ≤

|𝛿
𝑗−1
|, for all 𝑗. By using (33), we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑚
(𝑇
2𝑗−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑚
(𝑇
2𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀, ∀𝑗. (36)

On the other hand, from Assumption 1, (27), and (28),
one has

0 <

1

tan2 (𝜃max
0

+ 𝜋/4)

≤ 𝑝𝑞 =

1

tan2 (𝜃
0
+ 𝜋/4)

≤

1

tan2 (𝜃min
0

+ 𝜋/4)

< 1.

(37)

Then from (34), one can obtain
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑚
(𝑇
2𝑗−1

)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑝𝜀
0
+ (1 + 𝑝𝑞) (1 + 𝑝) 𝜀

0

×

𝑗−1

∑

𝑘=1

(𝑝𝑞)
𝑗−1−𝑘

+ (𝑝𝑞)
𝑗−1 󵄨

󵄨
󵄨
󵄨
𝑦
𝑚
(0) − 𝑝𝑥

𝑚
(0)
󵄨
󵄨
󵄨
󵄨

≤ 𝑝𝜀
0
+

(1 + 𝑝𝑞) (1 + 𝑝) 𝜀
0

1 − 𝑝𝑞

+ (𝑝𝑞)
𝑗−1 󵄨

󵄨
󵄨
󵄨
𝑦
𝑚
(0) − 𝑝𝑥

𝑚
(0)
󵄨
󵄨
󵄨
󵄨
.

(38)

Because |𝑦
𝑚
(0) − 𝑝𝑥

𝑚
(0)| is bounded and 0 < 𝑝𝑞 < 1,

there must exist 𝐽
1
< +∞ such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑚
(𝑇
2𝑗−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑝𝜀
0
+

2 (1 + 𝑝) 𝜀
0

1 − 𝑝𝑞

+ 𝜀
0

=

(1 + 𝑝) (1 − 𝑝𝑞 + 2) 𝜀
0

1 − 𝑝𝑞

≤

3 (1 + 𝑝) 𝜀
0

1 − 𝑝𝑞

, 𝑗 ≥ 𝐽
1
.

(39)

By using (22), (27), (28), and (37), one has

𝜀
0
≤ 𝜀 ⋅min{

1 − 𝑝𝑞

3 (1 + 𝑝)

,

1 − 𝑝𝑞

3 (1 + 𝑞)

} . (40)

Hence,
󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑚
(𝑇
2𝑗−1

)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑗 ≥ 𝐽

1
. (41)

Similarly, from (35), we have
󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑚
(𝑇
2𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑞𝜀
0
+ (1 + 𝑝𝑞)

× (𝜀
0
+ (1 + 𝑝) 𝜀

0

𝑗−1

∑

𝑘=1

𝑝
𝑗−1−𝑘

𝑞
𝑗−𝑘

)

+ 𝑝
𝑗−1

𝑞
𝑗 󵄨
󵄨
󵄨
󵄨
𝑦
𝑚
(0) − 𝑝𝑥

𝑚
(0)
󵄨
󵄨
󵄨
󵄨

≤ 𝑞𝜀
0
+ (1 + 𝑝𝑞)(1 +

(1 + 𝑝) 𝑞

1 − 𝑝𝑞

) 𝜀
0

+ 𝑞(𝑝𝑞)
𝑗−1 󵄨

󵄨
󵄨
󵄨
𝑦
𝑚
(0) − 𝑝𝑥

𝑚
(0)
󵄨
󵄨
󵄨
󵄨
.

(42)

As the same with (41), there must exist 𝐽
2
< +∞ such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑚
(𝑇
2𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑞𝜀
0
+ 2(1 +

(1 + 𝑝) 𝑞

1 − 𝑝𝑞

) 𝜀
0
+ 𝜀
0

≤

(1 + 𝑞) (1 − 𝑝𝑞 + 2) 𝜀
0

1 − 𝑝𝑞

≤

3 (1 + 𝑞) 𝜀
0

1 − 𝑝𝑞

, 𝑗 ≥ 𝐽
2
.

(43)
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Applying (40) again, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑚
(𝑇
2𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑗 ≥ 𝐽

2
. (44)

Therefore, combining (36), (41), and (44), it is obvious
that there must exist 𝐽 = max{𝐽

1
, 𝐽
2
} < +∞ and a finite time

𝑇
𝐽
such that

󵄨
󵄨
󵄨
󵄨
𝑥
𝑚
(𝑇
𝐽
)
󵄨
󵄨
󵄨
󵄨
≤ 𝜀,

󵄨
󵄨
󵄨
󵄨
𝑦
𝑚
(𝑇
𝐽
)
󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑗 ≥ 𝐽, (45)

whichmeans that (𝑥
𝑚
(𝑡), 𝑦
𝑚
(𝑡)) can be driven into the region

𝐷
𝜀
sooner or later; then go to Step 1 (0). And this completes

the proof of Theorem 5.

3.2. An Example of Application. In this subsection, we will
design a controller for system (5) by applying the switching
control method proposed inTheorem 5.

Theorem 6. For any given arbitrarily small 𝜀
00

> 0 and
positive constants 𝑝min

𝑖
, 𝑝max
𝑖

, and 𝜖max satisfying (6), suppose

𝜖
max

< 𝜑 <

𝜋

4

− 𝜖
max (46)

takes the following switching controller.

Step 1 (00). For all𝑇
00
≥ 0, if |𝑥(𝑇

00
)| ≤ 𝜀
00
and |𝑦(𝑇

00
)| ≤ 𝜀
00
,

let

V = 0, 𝜔 = −𝑙
0
sgn (𝜃) |𝜃|𝛾0 , (47)

where 𝑙
0
> 0, 𝛾

0
∈ (0, 1) are design parameters. If 𝜃(𝑡) ≡ 0,

then let V = 𝜔 = 0 and stop. Otherwise, go to Step 2 (2𝑛 − 1).

Step 2 (2𝑛 − 1). If |𝑥(𝑇0
2𝑛−1

)| > 𝜀
00
, for all 𝑇0

2𝑛−1
≥ 0, let

V = 0,

𝜔 = −𝑙
2𝑛−1,1

sgn(𝜃 + 𝜑 − 𝜋

4

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜃 + 𝜑 −

𝜋

4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝛾
2𝑛−1

,

(48)

where 𝑙
2𝑛−1,1

> 0, 𝛾
2𝑛−1

∈ (0, 1) are design parameters. When
𝜃(𝑡) + 𝜑 ≡ 𝜋/4 after some finite time, then let

V = −𝑙
2𝑛−1,2

𝑥, 𝜔 = 0, (49)

where 𝑙
2𝑛−1,2

> 0 is a design parameter. Then, there exists 0 ≤
𝑇
2𝑛−1

< +∞ such that |𝑥(𝑇
2𝑛−1

)| ≤ 𝜀
00
, and if |𝑦(𝑇

2𝑛−1
)| ≤ 𝜀
00
,

go to Step 1 (00), else if |𝑦(𝑇
2𝑛−1

)| > 𝜀
00
, go to Step 3 (2𝑛).

Step 3 (2𝑛). Let

V = 0,

𝜔 = −𝑙
2𝑛,1

sgn(𝜃 + 𝜑 + 𝜋

4

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜃 + 𝜑 +

𝜋

4

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝛾
2𝑛

,

(50)

where 𝑙
2𝑛,1

> 0, 𝛾
2𝑛

∈ (0, 1) are design parameters. When
𝜃(𝑡) + 𝜑 ≡ −𝜋/4 after some finite time, then let

V = 𝑙
2𝑛,2

𝑦, 𝜔 = 0, (51)
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Figure 4: State variables.

where 𝑙
2𝑛,2

> 0 is a design parameter. There exists 0 ≤ 𝑇
2𝑛
<

+∞ such that |𝑦(𝑇
2𝑛
)| ≤ 𝜀
00
, and if |𝑥(𝑇

2𝑛
)| ≤ 𝜀
00
, go to Step 1

(00), else if |𝑥(𝑇
2𝑛
)| > 𝜀

00
, let 𝑛 := 𝑛 + 1 and go to Step 2

(2𝑛 − 1).
Then, for any initial value (𝑥(0), 𝑦(0), 𝜃(0)), the state

(𝑥(𝑡), 𝑦(𝑡)) of system (5) can be driven into a prescribed arbi-
trarily small neighborhood of the origin𝐷

𝜀
00

≜ {(𝑥(𝑡), 𝑦(𝑡)) ∈

R2 | |𝑥(𝑡)| ≤ 𝜀
00
, |𝑦(𝑡)| ≤ 𝜀

00
} and stay within it; meanwhile,

𝜃(𝑡) can be stabilized to zero in a finite time.

Remark 7. The proof of Theorem 6 is similar to that of
Theorem 5 and thus is omitted. In fact, system (5) can be
rewritten as

𝑥̇ = 𝑝
∗

1
V cos (𝜃 + 𝜑 − (𝜑 − 𝜖)) ,

̇𝑦 = 𝑝
∗

1
V sin (𝜃 + 𝜑 − (𝜑 − 𝜖)) ,

̇
𝜃 = 𝑝
∗

2
𝜔.

(52)

Since 𝜖 denotes a small bias in orientation, it is not rigorous
to assume that |𝜖| has a small upper bound less than 𝜋/8, that
is, 𝜖max

≤ 𝜋/8. Then from (6) and (46), one has

0 < 𝜑 − 𝜖
max

≤ 𝜑 − 𝜖 ≤ 𝜑 + 𝜖
max

<

𝜋

4

. (53)

Let

𝛼
1
= 𝛼
2
= 𝑝
∗

1
, 𝜃

0
= 𝜑 − 𝜖, (54)

and note that it is also valid to use finite-time control tech-
nique (Lemma 3) for 𝜃-subsystem in spite of the uncertain
parameter𝑝∗

2
. Hence, system (52) can be seen as a special case

of our visual servoing model (9).

4. Simulations

In this section, the switching controller proposed in
Theorem 5 is used to show how to stabilize the state
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Figure 5: Control input V.

(𝑥
𝑚
(𝑡), 𝑦
𝑚
(𝑡), 𝜃(𝑡)) of the uncertain visual feedback system

(9) into a prescribed arbitrarily small neighborhood of the
zero equilibrium point.We will demonstrate the effectiveness
of our methods by a numerical example.

In the following simulation, we assume that 𝜀 = 0.05,
𝜀
0
= 0.04, 𝛿

𝑗
= 0.02, (for all 𝑗 ∈ {1, 2, 3, . . .}), 𝛼min

𝑖
= 1,

𝛼
max
𝑖

= 2, (𝑖 = 1, 2), 𝜃min
0

= 0.2, 𝜃max
0

= 0.6, 𝛼
1
= 𝛼
2
= 1.5,

and 𝜃
0
= 0.5. According toTheorem 5, we can choose design

parameters 𝑘
0
= 𝑘
2𝑗−1,1

= 𝑘
2𝑗−1,2

= 𝑘
2𝑗,1

= 𝑘
2𝑗,2

= 1, 𝛽
0
=

𝛽
2𝑗−1

= 𝛽
2𝑗
= 0.5, for all 𝑗. The initial condition of system (9)

is (𝑥
𝑚
(0), 𝑦
𝑚
(0), 𝜃(0)) = (−0.8, 1.2, 0.5).

Figures 4–7 show some simulation results withMATLAB.
Figure 4 shows that the state variable (𝑥

𝑚
, 𝑦
𝑚
) can be driven

into the region 𝐷
𝜀
step by step by using the switching

controller Step 1 (0)∼Step 3 (2𝑗) inTheorem 5.When 𝑡 ≥ 33 s,
one has |𝑥

𝑚
(𝑡)| ≤ 𝜀 and |𝑦

𝑚
(𝑡)| ≤ 𝜀. While 𝜃(𝑡) is always

switched between 𝜋/4 and −𝜋/4, and finally, 𝜃(𝑡) ≡ 0 as
𝑡 ≥ 40 s.

Figures 5−6 show the responses of the switching control
inputs V and 𝜔 as time passes. And as shown in Figure 7, by
a three-dimensional simulation image, we can more clearly
see how the position state (𝑥

𝑚
(𝑡), 𝑦
𝑚
(𝑡)) enters into the

prescribed arbitrarily small neighborhood of the zero𝐷
𝜀
step

by step.

5. Conclusion

In this paper, a switching controller is presented for the prac-
tical stabilization problem of a class of nonholonomic mobile
robots based on visual servoing model with uncalibrated
camera parameters. The best innovation of this paper is that
the controller design is based on the less strict hypothesis
(assuming that all the camera parameters are unknown)
compared with the previous results [12–15], which is more
practical in real world implementations. In addition, the new
designmethod is directly based on the original systemmodel
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without any local change of coordinates or feedback; it is valid
to avoid appearance of singularity.
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