16,118 research outputs found

    An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics

    Stochastic dynamic modeling of short gene expression time-series data

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the expectation maximization (EM) algorithm is applied for modeling the gene regulatory network from gene time-series data. The gene regulatory network is viewed as a stochastic dynamic model, which consists of the noisy gene measurement from microarray and the gene regulation first-order autoregressive (AR) stochastic dynamic process. By using the EM algorithm, both the model parameters and the actual values of the gene expression levels can be identified simultaneously. Moreover, the algorithm can deal with the sparse parameter identification and the noisy data in an efficient way. It is also shown that the EM algorithm can handle the microarray gene expression data with large number of variables but a small number of observations. The gene expression stochastic dynamic models for four real-world gene expression data sets are constructed to demonstrate the advantages of the introduced algorithm. Several indices are proposed to evaluate the models of inferred gene regulatory networks, and the relevant biological properties are discussed

    Parameter estimation for Boolean models of biological networks

    Get PDF
    Boolean networks have long been used as models of molecular networks and play an increasingly important role in systems biology. This paper describes a software package, Polynome, offered as a web service, that helps users construct Boolean network models based on experimental data and biological input. The key feature is a discrete analog of parameter estimation for continuous models. With only experimental data as input, the software can be used as a tool for reverse-engineering of Boolean network models from experimental time course data.Comment: Web interface of the software is available at http://polymath.vbi.vt.edu/polynome

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Estimation of kinetic rates of MAP kinase activation from experimental data

    Get PDF
    Mathematical model is an important tool in systems biology to study the dynamics of biological systems inside the cell. One of the significant challenges in systems biology is the lack of kinetic rates that should be measured in experiments or estimated from experimental data. This work addresses this issue by using a genetic algorithm to estimate reaction rates related to the phosphorylation and dephosphorylation of MAP kinase (ERK) in the mitogen-activated protein (MAP) kinase pathway from biological measurements. In addition, we discuss the robustness of the mathematical model with regards to the variation of kinetic rates together with external noise due to environmental fluctuations. This has been proposed as an additional criterion to choose the estimate from the candidate parameter sets that are obtained from different implementations of the genetic algorithm
    corecore