2,285 research outputs found

    Context-Dependent Acoustic Modeling without Explicit Phone Clustering

    Full text link
    Phoneme-based acoustic modeling of large vocabulary automatic speech recognition takes advantage of phoneme context. The large number of context-dependent (CD) phonemes and their highly varying statistics require tying or smoothing to enable robust training. Usually, Classification and Regression Trees are used for phonetic clustering, which is standard in Hidden Markov Model (HMM)-based systems. However, this solution introduces a secondary training objective and does not allow for end-to-end training. In this work, we address a direct phonetic context modeling for the hybrid Deep Neural Network (DNN)/HMM, that does not build on any phone clustering algorithm for the determination of the HMM state inventory. By performing different decompositions of the joint probability of the center phoneme state and its left and right contexts, we obtain a factorized network consisting of different components, trained jointly. Moreover, the representation of the phonetic context for the network relies on phoneme embeddings. The recognition accuracy of our proposed models on the Switchboard task is comparable and outperforms slightly the hybrid model using the standard state-tying decision trees.Comment: Submitted to Interspeech 202

    Croatian Speech Recognition

    Get PDF

    HMM-based synthesis of child speech

    Get PDF
    The synthesis of child speech presents challenges both in the collection of data and in the building of a synthesiser from that data. Because only limited data can be collected, and the domain of that data is constrained, it is difficult to obtain the type of phonetically-balanced corpus usually used in speech synthesis. As a consequence, building a synthesiser from this data is difficult. Concatenative synthesisers are not robust to corpora with many missing units (as is likely when the corpus content is not carefully designed), so we chose to build a statistical parametric synthesiser using the HMM-based system HTS. This technique has previously been shown to perform well for limited amounts of data, and for data collected under imperfect conditions. We compared 6 different configurations of the synthesiser, using both speaker-dependent and speaker-adaptive modelling techniques, and using varying amounts of data. The output from these systems was evaluated alongside natural and vocoded speech, in a Blizzard-style listening test

    Towards Personalized Synthesized Voices for Individuals with Vocal Disabilities: Voice Banking and Reconstruction

    Get PDF
    When individuals lose the ability to produce their own speech, due to degenerative diseases such as motor neurone disease (MND) or Parkinson’s, they lose not only a functional means of communication but also a display of their individual and group identity. In order to build personalized synthetic voices, attempts have been made to capture the voice before it is lost, using a process known as voice banking. But, for some patients, the speech deterioration frequently coincides or quickly follows diagnosis. Using HMM-based speech synthesis, it is now possible to build personalized synthetic voices with minimal data recordings and even disordered speech. The power of this approach is that it is possible to use the patient’s recordings to adapt existing voice models pre-trained on many speakers. When the speech has begun to deteriorate, the adapted voice model can be further modified in order to compensate for the disordered characteristics found in the patient’s speech. The University of Edinburgh has initiated a project for voice banking and reconstruction based on this speech synthesis technology. At the current stage of the project, more than fifteen patients with MND have already been recorded and five of them have been delivered a reconstructed voice. In this paper, we present an overview of the project as well as subjective assessments of the reconstructed voices and feedback from patients and their families
    corecore