45,935 research outputs found

    Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.In this paper, a delay-dependent approach is developed to deal with the robust stabilization problem for a class of stochastic time-delay interval systems with nonlinear disturbances. The system matrices are assumed to be uncertain within given intervals, the time delays appear in both the system states and the nonlinear disturbances, and the stochastic perturbation is in the form of a Brownian motion. The purpose of the addressed stochastic stabilization problem is to design a memoryless state feedback controller such that, for all admissible interval uncertainties and nonlinear disturbances, the closed-loop system is asymptotically stable in the mean square, where the stability criteria are dependent on the length of the time delay and therefore less conservative. By using Itô's differential formula and the Lyapunov stability theory, sufficient conditions are first derived for ensuring the stability of the stochastic interval delay systems. Then, the controller gain is characterized in terms of the solution to a delay-dependent linear matrix inequality (LMI), which can be easily solved by using available software packages. A numerical example is exploited to demonstrate the effectiveness of the proposed design procedure.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, and the Alexander von Humboldt Foundation of Germany

    New Delay-Range-Dependent Robust Exponential Stability Criteria of Uncertain Impulsive Switched Linear Systems with Mixed Interval Nondifferentiable Time-Varying Delays and Nonlinear Perturbations

    Get PDF
    We investigate the problem of robust exponential stability analysis for uncertain impulsive switched linear systems with time-varying delays and nonlinear perturbations. The time delays are continuous functions belonging to the given interval delays, which mean that the lower and upper bounds for the time-varying delays are available, but the delay functions are not necessary to be differentiable. The uncertainties under consideration are nonlinear time-varying parameter uncertainties and norm-bounded uncertainties, respectively. Based on the combination of mixed model transformation, Halanay inequality, utilization of zero equations, decomposition technique of coefficient matrices, and a common Lyapunov functional, new delay-range-dependent robust exponential stability criteria are established for the systems in terms of linear matrix inequalities (LMIs). A numerical example is presented to illustrate the effectiveness of the proposed method

    Robust stability and stabilization of nonlinear uncertain stochastic switched discrete-time systems with interval time-varying delays,

    Get PDF
    Abstract: This paper is concerned with robust stability and stabilization of nonlinear uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust stability and stabilization for the nonlinear uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Numerical examples are included to illustrate the effectiveness of the results

    Delay-Dependent Robust Exponential Stability for Uncertain Neutral Stochastic Systems with Interval Time-Varying Delay

    Get PDF
    This paper discusses the mean-square exponential stability of uncertain neutral linear stochastic systems with interval time-varying delays. A new augmented Lyapunov-Krasovskii functional (LKF) has been constructed to derive improved delay-dependent robust mean-square exponential stability criteria, which are forms of linear matrix inequalities (LMIs). By free-weight matrices method, the usual restriction that the stability conditions only bear slow-varying derivative of the delay is removed. Finally, numerical examples are provided to illustrate the effectiveness of the proposed method

    Time-delay systems : stability, sliding mode control and state estimation

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Time delays and external disturbances are unavoidable in many practical control systems such as robotic manipulators, aircraft, manufacturing and process control systems and it is often a source of instability or oscillation. This thesis is concerned with the stability, sliding mode control and state estimation problems of time-delay systems. Throughout the thesis, the Lyapunov-Krasovskii (L-K) method, in conjunction with the Linear Matrix Inequality (LMI) techniques is mainly used for analysis and design. Firstly, a brief survey on recent developments of the L-K method for stability analysis, discrete-time sliding mode control design and linear functional observer design of time-delay systems, is presented. Then, the problem of exponential stability is addressed for a class of linear discrete-time systems with interval time-varying delay. Some improved delay-dependent stability conditions of linear discrete-time systems with interval time-varying delay are derived in terms of linear matrix inequalities. Secondly, the problem of reachable set bounding, essential information for the control design, is tackled for linear systems with time-varying delay and bounded disturbances. Indeed, minimisation of the reachable set bound can generally result in a controller with a larger gain to achieve better performance for the uncertain dynamical system under control. Based on the L-K method, combined with the delay decomposition approach, sufficient conditions for the existence of ellipsoid-based bounds of reachable sets of a class of linear systems with interval time-varying delay and bounded disturbances, are derived in terms of matrix inequalities. To obtain a smaller bound, a new idea is proposed to minimise the projection distances of the ellipsoids on axes, with respect to various convergence rates, instead of minimising its radius with a single exponential rate. Therefore, the smallest possible bound can be obtained from the intersection of these ellipsoids. This study also addresses the problem of robust sliding mode control for a class of linear discrete-time systems with time-varying delay and unmatched external disturbances. By using the L-K method, in combination with the delay decomposition technique and the reciprocally convex approach, new LMI-based conditions for the existence of a stable sliding surface are derived. These conditions can deal with the effects of time-varying delay and unmatched external disturbances while guaranteeing that all the state trajectories of the reduced-order system are exponentially convergent to a ball with a minimised radius. Robust discrete-time quasi-sliding mode control scheme is then proposed to drive the state trajectories of the closed-loop system towards the prescribed sliding surface in a finite time and maintain it there after subsequent time. Finally, the state estimation problem is studied for the challenging case when both the system’s output and input are subject to time delays. By using the information of the multiple delayed output and delayed input, a new minimal order observer is first proposed to estimate a linear state functional of the system. The existence conditions for such an observer are given to guarantee that the estimated state converges exponentially within an Є-bound of the original state. Based on the L-K method, sufficient conditions for Є-convergence of the observer error, are derived in terms of matrix inequalities. Design algorithms are introduced to illustrate the merit of the proposed approach. From theoretical as well as practical perspectives, the obtained results in this thesis are beneficial to a broad range of applications in robotic manipulators, airport navigation, manufacturing, process control and in networked systems

    Robustness analysis of discrete predictor-based controllers for input-delay systems

    Full text link
    In this article, robustness to model uncertainties are analysed in the context of discrete predictor-based state-feedback controllers for discrete-time input-delay systems with time-varying delay, in an LMI framework. The goal is comparing robustness of predictor-based strategies with respect to other (sub)optimal state feedback ones. A numerical example illustrates that improvements in tolerance to modelling errors can be achieved by using the predictor framework.The authors are grateful for grant nos. DPI2008-06737-C02-01, DPI2008-06731-C02-01, DPI2011-27845-C02-01 and PROMETEO/2008/088 from the Spanish and Valencian governments.González Sorribes, A.; Sala, A.; García Gil, PJ.; Albertos Pérez, P. (2013). Robustness analysis of discrete predictor-based controllers for input-delay systems. International Journal of Systems Science. 44(2):232-239. https://doi.org/10.1080/00207721.2011.600469S232239442Boukas, E.-K. (2006). Discrete-time systems with time-varying time delay: Stability and stabilizability. Mathematical Problems in Engineering, 2006, 1-10. doi:10.1155/mpe/2006/42489Du, D., Jiang, B., & Zhou, S. (2008). Delay-dependent robust stabilisation of uncertain discrete-time switched systems with time-varying state delay. International Journal of Systems Science, 39(3), 305-313. doi:10.1080/00207720701805982El Ghaoui, L., Oustry, F., & AitRami, M. (1997). A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 42(8), 1171-1176. doi:10.1109/9.618250Gao, H., & Chen, T. (2007). New Results on Stability of Discrete-Time Systems With Time-Varying State Delay. IEEE Transactions on Automatic Control, 52(2), 328-334. doi:10.1109/tac.2006.890320Gao, H., Wang, C., Lam, J., & Wang, Y. (2004). Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay. IEE Proceedings - Control Theory and Applications, 151(6), 691-698. doi:10.1049/ip-cta:20040822Gao, H., Chen, T., & Lam, J. (2008). A new delay system approach to network-based control. Automatica, 44(1), 39-52. doi:10.1016/j.automatica.2007.04.020Garcia , P , Castillo , P , Lozano , R and Albertos , P . 2006 . Robustness with Respect to Delay Uncertainties of a Predictor Observer Based Discrete-time Controller . Proceeding of the 45th IEEE Conference on Decision and Control . 2006 . pp. 199 – 204 .Guo , Y and Li , S . 2009 . New Stability Criterion for Discrete-time Systems with Interval Time-varying State Delay . Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference . 2009 . pp. 1342 – 1347 .Hägglund, T. (1996). An industrial dead-time compensating PI controller. Control Engineering Practice, 4(6), 749-756. doi:10.1016/0967-0661(96)00065-2V.J.S. Leite, and Miranda, M.F. (2008), ‘Robust Stabilization of Discrete-time Systems with Time-varying Delay: An LMI Approach’,Mathematical Problems in Engineering, 2008, 15 pages (doi:10.1155/2008/875609)Liu, X. G., Tang, M. L., Martin, R. R., & Wu, M. (2006). Delay-dependent robust stabilisation of discrete-time systems with time-varying delay. IEE Proceedings - Control Theory and Applications, 153(6), 689-702. doi:10.1049/ip-cta:20050223Lozano, R., Castillo, P., Garcia, P., & Dzul, A. (2004). Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter. Automatica, 40(4), 603-612. doi:10.1016/j.automatica.2003.10.007Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124Michiels, W., & Niculescu, S.-I. (2003). On the delay sensitivity of Smith Predictors. International Journal of Systems Science, 34(8-9), 543-551. doi:10.1080/00207720310001609057Palmor, Z.J. (1996), ‘Time-delay Compensation – Smith Predictor and Its Modifications’, inThe Control Handbook, ed. W.S. Levine, Boca Raton: CRC Press, pp. 224–237Pan, Y.-J., Marquez, H. J., & Chen, T. (2006). Stabilization of remote control systems with unknown time varying delays by LMI techniques. International Journal of Control, 79(7), 752-763. doi:10.1080/00207170600654554Richard, J.-P. (2003). Time-delay systems: an overview of some recent advances and open problems. Automatica, 39(10), 1667-1694. doi:10.1016/s0005-1098(03)00167-5Wang, Q.-G., Lee, T. H., & Tan, K. K. (1999). Finite-Spectrum Assignment for Time-Delay Systems. Lecture Notes in Control and Information Sciences. doi:10.1007/978-1-84628-531-8He, Y., Wu, M., Han, Q.-L., & She, J.-H. (2008). Delay-dependentH∞control of linear discrete-time systems with an interval-like time-varying delay. International Journal of Systems Science, 39(4), 427-436. doi:10.1080/00207720701832531Yue, D., & Han, Q.-L. (2005). Delayed feedback control of uncertain systems with time-varying input delay. Automatica, 41(2), 233-240. doi:10.1016/j.automatica.2004.09.006Zhang, B., Xu, S., & Zou, Y. (2008). Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica, 44(11), 2963-2967. doi:10.1016/j.automatica.2008.04.01

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore