53 research outputs found

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Current commutation and control of brushless direct current drives using back electromotive force samples

    Get PDF
    Brushless DC machines (BLDC) are widely used in home, automotive, aerospace and military applications. The reason of this interest in different industries in this type of machine is due to their significant advantages. Brushless DC machines have a high power density, simple construction and higher efficiency compared to conventional AC and DC machines and lower cost comparing to permanent magnet AC synchronous machines. The phase currents of a BLDC machine have to commutate properly which is realised by using power semiconductors. For a proper commutation the rotor position is often obtained by an auxiliary instrument, mostly an arrangement of three Hall-effect sensors with 120 spatial displacement. In modern and cost-effective BLDC drives the focus is on replacing the noise sensitive and less reliable mechanical sensors by numerical algorithms, often referred to as sensorless or self-sensing methods. The advantage of these methods is the use of current or voltage measurements which are usually available as these are required for the control of the drive or the protection of the semiconductor switches. Avoiding the mechanical position sensor yields remarkable savings in production, installation and maintenance costs. It also implies a higher power to volume ratio and improves the reliability of the drive system. Different self-sensing techniques have been developed for BLDC machines. Two algorithms are proposed in this thesis for self-sensing commutation of BLDC machines using the back-EMF samples of the BLDC machine. Simulations and experimental tests as well as mathematical analysis verify the improved performance of the proposed techniques compared to the conventional back-EMF based self-sensing commutation techniques. For a robust BLDC drive control algorithm with a wide variety of applications, load torque is as a disturbance within the control-loop. Coupling the load to the motor shaft may cause variations of the inertia and viscous friction coefficient besides the load variation. Even for a drive with known load torque characteristics there are always some unmodelled components that can affect the performance of the drive system. In self-sensing controlled drives, these disturbances are more critical due to the limitations of the self-sensing algorithms compared to drives equipped with position sensors. To compensate or reject torque disturbances, control algorithms need the information of those disturbances. Direct measurement of the load torque on the machine shaft would require another expensive and sensitive mechanical sensor to the drive system as well as introducing all of the sensor related problems to the drive. An estimation algorithm can be a good alternative. The estimated load torque information is introduced to the self-sensing BLDC drive control loop to increase the disturbance rejection properties of the speed controller. This technique is verified by running different experimental tests within different operation conditions. The electromagnetic torque in an electrical machine is determined by the stator current. When considering the dynamical behaviour, the response time of this torque on a stator voltage variation depends on the electric time constant, while the time response of the mechanical system depends on the mechanical time constant. In most cases, the time delays in the electric subsystem are negligible compared to the response time of the mechanical subsystem. For such a system a cascaded PI speed and current control loop is sufficient to have a high performance control. However, for a low inertia machine when the electrical and mechanical time constants are close to each other the cascaded control strategies fail to provide a high performance in the dynamic behavior. When two cascade controllers are used changes in the speed set-point should be applied slowly in order to avoid stability problems. To solve this, a model based predictive control algorithm is proposed in this thesis which is able to control the speed of a low inertia brushless DC machine with a high bandwidth and good disturbance rejection properties. The performance of the proposed algorithm is evaluated by simulation and verified by experimental results as well. Additionally, the improvement on the disturbance rejection properties of the proposed algorithm during the load torque variations is studied. In chapters 1 and 2 the basic operation principles of the BLDC machine drives will be introduced. A short introduction is also given about the state of the art in control of BLDC drives and self-sensing control techniques. In chapter 3, a model for BLDC machines is derived, which allows to test control algorithms and estimators using simulations. A further use of the model is in Model Based Predictive Control (MBPC) of BLDC machines where a discretised model of the BLDC machine is implemented on a computation platform such as Field Programmable Gate Arrays (FPGA) in order to predict the future states of the machine. Chapter 4 covers the theory behind the proposed self-sensing commutation methods where new methodologies to estimate the rotor speed and position from back-EMF measurements are explained. The results of the simulation and experimental tests verifies the performance of the proposed position and speed estimators. It will also be proved that using the proposed techniques improve the detection accuracy of the commutation instants. In chapter 5, the focus is on the estimation of load torque, in order to use it to improve the dynamic performance of the self-sensing BLDC machine drives. The load torque information is used within the control loop to improve the disturbance rejection properties of the speed control for the disturbances resulting from the applied load torque of the machine. Some of the machine parameters are used within speed and load torque estimators such as back-EMF constant Ke and rotor inertia J. The accuracy with which machine parameters are known is limited. Some of the machine parameters can change during operation. Therefore, the influence of parameter errors on the position, speed and load torque is examined in chapter 5. In Chapter 6 the fundamentals of Model based Predictive Control for a BLDC drive is explained, which are then applied to a BLDC drive to control the rotor speed. As the MPC algorithm is computationally demanding, some enhancements on the FPGA program is also introduced in order to reduce the required resources within the FPGA implementation. To keep the current bounded and a high speed response a specific cost function is designed to meet the requirements. later on, the proposed MPC method is combined with the proposed self-sensing algorithm and the advantages of the combined algorithms is also investigated. The effects of the MPC parameters on the speed and current control performance is also examined by simulations and experiments. Finally, in chapter 7 the main results of the research is summarized . In addition, the original contributions that is give by this work in the area of self-sensing control is highlighted. It is also shown how the presented work could be continued and expanded

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Control of a brushless permanent magnet machine using an integrated torque sensor in place of a rotor position sensor

    Get PDF
    The work presented in this thesis proposes the use of measured torque feedback from an integrated, low cost surface acoustic wave (SAW) torque transducer in place of a position sensor to control brushless permanent magnet (BLPM) machines. The BLPM machine closed loop control requires knowledge of the rotor position to control stator current and maximum torque per ampere. The electrical position feedback to control the phase current requires a position sensor or position sensorless technique. Position sensors such as absolute encoder or resolver are needed for position information, in the absolute encoder, an accurately patterned disk rotates between a light source and a detector giving a unique digital output signal for every shaft position. However, each bit in the digital world represents an independent track on the encoder disk, resulting in a complex and costly sensors. Brushless resolvers operation is based on inductive coupling between stator and rotor winding. The resolver with its resolver to digital converter also gives precise absolute position information, but again the cost is often prohibitive. So the disadvantages of the position sensors are the added cost and size to the machine. The position sensorless techniques for the BLPM machine are based on obtaining position from the terminal voltages and currents based on estimating the back electro-magnetic force (EMF), flux-linkage or inductance which from position can be estimated. The disadvantages of the back-EMF and flux-linkage techniques are (1) that they behave poorly at zero and low speed (2) behave poorly for load disturbances since load torque is estimated from machine parameters which can change. The inductance techniques work at zero and low speed, however the disadvantages are (1) in a surface mounted machine there is no saliency so any variation of winding inductances with rotor position arises from magnetic saturation; (2) the back-EMF dominates the rate-of-change in the current; (3) the variation of incremental inductances with rotor position undergoes two cycles per single electrical cycle of the brushless pm machine causing an ambiguity in sensed position; (4) the distortion due to the nonlinearities in the inverter; (5) the load offsets and the noise caused by signal injection. This thesis develops a start-up routine and operation algorithms that enhance the performance of position sensorless control of brushless permanent magnet machines at all speeds, including zero speed, and loads by using a machine integrated, low-cost, SAW torque transducer in place of the rotor position sensor.EThOS - Electronic Theses Online ServicePublic Authority of Applied Education in KuwaitGBUnited Kingdo

    Parameter Identification And Fault Detection For Reliable Control Of Permanent Magnet Motors

    Get PDF
    The objective of this dissertation is to develop new fault detection, identification, estimation and control algorithms that will be used to detect winding stator fault, identify the motor parameters and optimally control machine during faulty condition. Quality or proposed algorithms for Fault detection, parameter identification and control under faulty condition will validated through analytical study (Cramer-Rao bound) and simulation. Simulation will be performed for three most applied control schemes: Proportional-Integral-Derivative (PID), Direct Torque Control (DTC) and Field Oriented Control (FOC) for Permanent Magnet Machines. New detection schemes forfault detection, isolation and machine parameter identification are presented and analyzed. Different control schemes as PID, DTC, FOC for Control of PM machines have different control loops and therefore it is probable that fault detection and isolation will have different sensitivity. It is very probable that one of these control schemes (PID, DTC or FOC) are more convenient for fault detection and isolation which this dissertation will analyze through computer simulation and, if laboratory condition exist, also running a physical models

    Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    Full text link

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers

    Embedded Sensors and Controls to Improve Component Performance and Reliability: Conceptual Design Report

    Full text link

    Embedded Sensors and Controls to Improve Component Performance and Reliability: Conceptual Design Report

    Full text link
    corecore