617 research outputs found

    Non-negative mixtures

    Get PDF
    This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2

    Tripartite Graph Clustering for Dynamic Sentiment Analysis on Social Media

    Full text link
    The growing popularity of social media (e.g, Twitter) allows users to easily share information with each other and influence others by expressing their own sentiments on various subjects. In this work, we propose an unsupervised \emph{tri-clustering} framework, which analyzes both user-level and tweet-level sentiments through co-clustering of a tripartite graph. A compelling feature of the proposed framework is that the quality of sentiment clustering of tweets, users, and features can be mutually improved by joint clustering. We further investigate the evolution of user-level sentiments and latent feature vectors in an online framework and devise an efficient online algorithm to sequentially update the clustering of tweets, users and features with newly arrived data. The online framework not only provides better quality of both dynamic user-level and tweet-level sentiment analysis, but also improves the computational and storage efficiency. We verified the effectiveness and efficiency of the proposed approaches on the November 2012 California ballot Twitter data.Comment: A short version is in Proceeding of the 2014 ACM SIGMOD International Conference on Management of dat

    Non-negative Matrix Factorization: A Survey

    Get PDF
    CAUL read and publish agreement 2022Publishe

    Space-by-time non-negative matrix factorization for single-trial decoding of M/EEG activity

    Get PDF
    We develop a novel methodology for the single-trial analysis of multichannel time-varying neuroimaging signals. We introduce the space-by-time M/EEG decomposition, based on Non-negative Matrix Factorization (NMF), which describes single-trial M/EEG signals using a set of non-negative spatial and temporal components that are linearly combined with signed scalar activation coefficients. We illustrate the effectiveness of the proposed approach on an EEG dataset recorded during the performance of a visual categorization task. Our method extracts three temporal and two spatial functional components achieving a compact yet full representation of the underlying structure, which validates and summarizes succinctly results from previous studies. Furthermore, we introduce a decoding analysis that allows determining the distinct functional role of each component and relating them to experimental conditions and task parameters. In particular, we demonstrate that the presented stimulus and the task difficulty of each trial can be reliably decoded using specific combinations of components from the identified space-by-time representation. When comparing with a sliding-window linear discriminant algorithm, we show that our approach yields more robust decoding performance across participants. Overall, our findings suggest that the proposed space-by-time decomposition is a meaningful low-dimensional representation that carries the relevant information of single-trial M/EEG signals
    corecore