1,535 research outputs found

    A Modality-Adaptive Method for Segmenting Brain Tumors and Organs-at-Risk in Radiation Therapy Planning

    Get PDF
    In this paper we present a method for simultaneously segmenting brain tumors and an extensive set of organs-at-risk for radiation therapy planning of glioblastomas. The method combines a contrast-adaptive generative model for whole-brain segmentation with a new spatial regularization model of tumor shape using convolutional restricted Boltzmann machines. We demonstrate experimentally that the method is able to adapt to image acquisitions that differ substantially from any available training data, ensuring its applicability across treatment sites; that its tumor segmentation accuracy is comparable to that of the current state of the art; and that it captures most organs-at-risk sufficiently well for radiation therapy planning purposes. The proposed method may be a valuable step towards automating the delineation of brain tumors and organs-at-risk in glioblastoma patients undergoing radiation therapy.Comment: corrected one referenc

    OCT Signal Enhancement with Deep Learning

    Get PDF
    PURPOSE: To establish whether deep learning methods are able to improve the signal-to-noise ratio of time-domain (TD) optical coherence tomography (OCT) images to approach that of spectral-domain (SD) OCT. DESIGN: Method agreement study and progression-detection in a randomized, double-masked, placebo-controlled, multi-centre trial for open-angle glaucoma (OAG) [UK Glaucoma Treatment Study (UKGTS)]. PARTICIPANTS: Cohort for training and validation: 77 stable OAG participants with TDOCT and SDOCT imaging at up to 11 visits within 3 months. Cohort for testing: 284 newly-diagnosed OAG patients with TDOCT from a cohort of 516 recruited at 10 UK centres between 2007 and 2010. METHODS: An ensemble of generative adversarial networks (GANs) was trained on TDOCT and SDOCT image pairs from the training dataset and applied to TDOCT images from the testing dataset. TDOCT were converted to synthesized SDOCT images and segmented via Bayesian fusion on the output of the GANs. MAIN OUTCOME MEASURES: 1) Bland-Altman analysis to assess agreement between TDOCT and synthesized SDOCT average retinal nerve fibre layer thickness (RNFLT) measurements and the SDOCT RNFLT. 2) Analysis of the distribution of the rates of RNFLT change in TDOCT and synthesized SDOCT in the two treatments arms of the UKGTS was compared. A Cox model for predictors of time-to-incident VF progression was computed with the TDOCT and the synthesized SDOCT. RESULTS: The 95% limits of agreement between TDOCT and SDOCT were [26.64, -22.95], between synthesized SDOCT and SDOCT were [8.11, -6.73], and between SDOCT and SDOCT were [4.16, -4.04]. The mean difference in the rate of RNFL change between UKGTS treatment and placebo arms with TDOCT was 0.24 (p=0.11) and with synthesized SDOCT was 0.43 (p=0.0017). The hazard ratio for RNFLT slope in Cox regression modeling for time to incident VF progression was 1.09 (95% CI 1.02 to 1.21) (p=0.035) for TDOCT and 1.24 (95% CI 1.08 to 1.39) (p=0.011) for synthesized SDOCT. CONCLUSIONS: Image enhancement significantly improved the agreement of TDOCT RNFLT measurements with SDOCT RNFLT measurements. The difference, and its significance, in rates of RNFLT change in the UKGTS treatment arms was enhanced and RNFLT change became a stronger predictor of VF progression

    Intensity modulated radiation therapy and arc therapy: validation and evolution as applied to tumours of the head and neck, abdominal and pelvic regions

    Get PDF
    Intensiteitsgemoduleerde radiotherapie (IMRT) laat een betere controle over de dosisdistributie (DD) toe dan meer conventionele bestralingstechnieken. Zo is het met IMRT mogelijk om concave DDs te bereiken en om de risico-organen conformeel uit te sparen. IMRT werd in het UZG klinisch toegepast voor een hele waaier van tumorlocalisaties. De toepassing van IMRT voor de bestraling van hoofd- en halstumoren (HHT) vormt het onderwerp van het eerste deel van deze thesis. De planningsstrategie voor herbestralingen en bestraling van HHT, uitgaande van de keel en de mondholte wordt beschreven, evenals de eerste klinische resultaten hiervan. IMRT voor tumoren van de neus(bij)holten leidt tot minstens even goede lokale controle (LC) en overleving als conventionele bestralingstechnieken, en dit zonder stralingsgeïnduceerde blindheid. IMRT leidt dus tot een gunstiger toxiciteitprofiel maar heeft nog geen bewijs kunnen leveren van een gunstig effect op LC of overleving. De meeste hervallen van HHT worden gezien in het gebied dat tot een hoge dosis bestraald werd, wat erop wijst dat deze “hoge dosis” niet volstaat om alle clonogene tumorcellen uit te schakelen. We startten een studie op, om de mogelijkheid van dosisescalatie op geleide van biologische beeldvorming uit te testen. Naast de toepassing en klinische validatie van IMRT bestond het werk in het kader van deze thesis ook uit de ontwikkeling en het klinisch opstarten van intensiteitgemoduleerde arc therapie (IMAT). IMAT is een rotationele vorm van IMRT (d.w.z. de gantry draait rond tijdens de bestraling), waarbij de modulatie van de intensiteit bereikt wordt door overlappende arcs. IMAT heeft enkele duidelijke voordelen ten opzichte van IMRT in bepaalde situaties. Als het doelvolume concaaf rond een risico-orgaan ligt met een grote diameter, biedt IMAT eigenlijk een oneindig aantal bundelrichtingen aan. Een planningsstrategie voor IMAT werd ontwikkeld, en type-oplossingen voor totaal abdominale bestraling en rectumbestraling werden onderzocht en klinisch toegepast

    Deep learning-based improvement for the outcomes of glaucoma clinical trials

    Get PDF
    Glaucoma is the leading cause of irreversible blindness worldwide. It is a progressive optic neuropathy in which retinal ganglion cell (RGC) axon loss, probably as a consequence of damage at the optic disc, causes a loss of vision, predominantly affecting the mid-peripheral visual field (VF). Glaucoma results in a decrease in vision-related quality of life and, therefore, early detection and evaluation of disease progression rates is crucial in order to assess the risk of functional impairment and to establish sound treatment strategies. The aim of my research is to improve glaucoma diagnosis by enhancing state of the art analyses of glaucoma clinical trial outcomes using advanced analytical methods. This knowledge would also help better design and analyse clinical trials, providing evidence for re-evaluating existing medications, facilitating diagnosis and suggesting novel disease management. To facilitate my objective methodology, this thesis provides the following contributions: (i) I developed deep learning-based super-resolution (SR) techniques for optical coherence tomography (OCT) image enhancement and demonstrated that using super-resolved images improves the statistical power of clinical trials, (ii) I developed a deep learning algorithm for segmentation of retinal OCT images, showing that the methodology consistently produces more accurate segmentations than state-of-the-art networks, (iii) I developed a deep learning framework for refining the relationship between structural and functional measurements and demonstrated that the mapping is significantly improved over previous techniques, iv) I developed a probabilistic method and demonstrated that glaucomatous disc haemorrhages are influenced by a possible systemic factor that makes both eyes bleed simultaneously. v) I recalculated VF slopes, using the retinal never fiber layer thickness (RNFLT) from the super-resolved OCT as a Bayesian prior and demonstrated that use of VF rates with the Bayesian prior as the outcome measure leads to a reduction in the sample size required to distinguish treatment arms in a clinical trial

    Optic nerve head three-dimensional shape analysis

    Get PDF
    We present a method for optic nerve head (ONH) 3-D shape analysis from retinal optical coherence tomography (OCT). The possibility to noninvasively acquire in vivo high-resolution 3-D volumes of the ONH using spectral domain OCT drives the need to develop tools that quantify the shape of this structure and extract information for clinical applications. The presented method automatically generates a 3-D ONH model and then allows the computation of several 3-D parameters describing the ONH. The method starts with a high-resolution OCT volume scan as input. From this scan, the model-defining inner limiting membrane (ILM) as inner surface and the retinal pigment epithelium as outer surface are segmented, and the Bruch's membrane opening (BMO) as the model origin is detected. Based on the generated ONH model by triangulated 3-D surface reconstruction, different parameters (areas, volumes, annular surface ring, minimum distances) of different ONH regions can then be computed. Additionally, the bending energy (roughness) in the BMO region on the ILM surface and 3-D BMO-MRW surface area are computed. We show that our method is reliable and robust across a large variety of ONH topologies (specific to this structure) and present a first clinical application

    Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study

    Get PDF
    BACKGROUND: Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. OBJECTIVE: Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. METHODS: The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. RESULTS: We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. CONCLUSIONS: Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways
    corecore