164 research outputs found

    Model Predictive Contouring Control for Vehicle Obstacle Avoidance at the Limit of Handling

    Full text link
    This paper proposes a non-linear Model Predictive Contouring Control (MPCC) for obstacle avoidance in automated vehicles driven at the limit of handling. The proposed controller integrates motion planning, path tracking and vehicle stability objectives, prioritising obstacle avoidance in emergencies. The controller's prediction model is a non-linear single-track vehicle model with the Fiala tyre to capture the vehicle's non-linear behaviour. The MPCC computes the optimal steering angle and brake torques to minimise tracking error in safe situations and maximise the vehicle-to-obstacle distance in emergencies. Furthermore, the MPCC is extended with the tyre friction circle to fully exploit the vehicle's manoeuvrability and stability. The MPCC controller is tested using real-time rapid prototyping hardware to prove its real-time capability. The performance is compared with a state-of-the-art Model Predictive Control (MPC) in a high-fidelity simulation environment. The double lane change scenario results demonstrate a significant improvement in successfully avoiding obstacles and maintaining vehicle stability.Comment: Accepted to the 28th IAVSD International Symposium on Dynamics of Vehicles on Roads and Track

    Model Predictive Control as a Function for Trajectory Control during High Dynamic Vehicle Maneuvers considering Actuator Constraints

    Get PDF
    Autonomous driving is a rapidly growing field and can bring significant transition in mobility and transportation. In order to cater a safe and reliable autonomous driving operation, all the systems concerning with perception, planning and control has to be highly efficient. MPC is a control technique used to control vehicle motion by controlling actuators based on vehicle model and its constraints. The uniqueness of MPC compared to other controllers is its ability to predict future states of the vehicle using the derived vehicle model. Due to the technological development & increase in computational capacity of processors and optimization algorithms MPC is adopted for real-time application in dynamic environments. This research focuses on using Model predictive Control (MPC) to control the trajectory of an autonomous vehicle controlling the vehicle actuators for high dynamic maneuvers. Vehicle Models considering kinematics and vehicle dynamics is developed. These models are used for MPC as prediction models and the performance of MPC is evaluated. MPC trajectory control is performed with the minimization of cost function and limiting constraints. MATLAB/Simulink is used for designing trajectory control system and interfaced with CarMaker for evaluating controller performance in a realistic simulation environment. Performance of MPC with kinematic and dynamic vehicle models for high dynamic maneuvers is evaluated with different speed profiles
    • …
    corecore