16 research outputs found

    Semistochastic Quadratic Bound Methods

    Full text link
    Partition functions arise in a variety of settings, including conditional random fields, logistic regression, and latent gaussian models. In this paper, we consider semistochastic quadratic bound (SQB) methods for maximum likelihood inference based on partition function optimization. Batch methods based on the quadratic bound were recently proposed for this class of problems, and performed favorably in comparison to state-of-the-art techniques. Semistochastic methods fall in between batch algorithms, which use all the data, and stochastic gradient type methods, which use small random selections at each iteration. We build semistochastic quadratic bound-based methods, and prove both global convergence (to a stationary point) under very weak assumptions, and linear convergence rate under stronger assumptions on the objective. To make the proposed methods faster and more stable, we consider inexact subproblem minimization and batch-size selection schemes. The efficacy of SQB methods is demonstrated via comparison with several state-of-the-art techniques on commonly used datasets.Comment: 11 pages, 1 figur

    Convergence Rates for Inverse Problems with Impulsive Noise

    Full text link
    We study inverse problems F(f) = g with perturbed right hand side g^{obs} corrupted by so-called impulsive noise, i.e. noise which is concentrated on a small subset of the domain of definition of g. It is well known that Tikhonov-type regularization with an L^1 data fidelity term yields significantly more accurate results than Tikhonov regularization with classical L^2 data fidelity terms for this type of noise. The purpose of this paper is to provide a convergence analysis explaining this remarkable difference in accuracy. Our error estimates significantly improve previous error estimates for Tikhonov regularization with L^1-fidelity term in the case of impulsive noise. We present numerical results which are in good agreement with the predictions of our analysis

    Robust model training and generalisation with Studentising flows

    Full text link
    Normalising flows are tractable probabilistic models that leverage the power of deep learning to describe a wide parametric family of distributions, all while remaining trainable using maximum likelihood. We discuss how these methods can be further improved based on insights from robust (in particular, resistant) statistics. Specifically, we propose to endow flow-based models with fat-tailed latent distributions such as multivariate Student's tt, as a simple drop-in replacement for the Gaussian distribution used by conventional normalising flows. While robustness brings many advantages, this paper explores two of them: 1) We describe how using fatter-tailed base distributions can give benefits similar to gradient clipping, but without compromising the asymptotic consistency of the method. 2) We also discuss how robust ideas lead to models with reduced generalisation gap and improved held-out data likelihood. Experiments on several different datasets confirm the efficacy of the proposed approach in both regards.Comment: 9 pages, 8 figures, accepted for publication at INNF+ 2020 (Second ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models
    corecore