11 research outputs found

    Robust Integrals

    Get PDF
    In decision analysis and especially in multiple criteria decision analysis, several non additive integrals have been introduced in the last years. Among them, we remember the Choquet integral, the Shilkret integral and the Sugeno integral. In the context of multiple criteria decision analysis, these integrals are used to aggregate the evaluations of possible choice alternatives, with respect to several criteria, into a single overall evaluation. These integrals request the starting evaluations to be expressed in terms of exact-evaluations. In this paper we present the robust Choquet, Shilkret and Sugeno integrals, computed with respect to an interval capacity. These are quite natural generalizations of the Choquet, Shilkret and Sugeno integrals, useful to aggregate interval-evaluations of choice alternatives into a single overall evaluation. We show that, when the interval-evaluations collapse into exact-evaluations, our definitions of robust integrals collapse into the previous definitions. We also provide an axiomatic characterization of the robust Choquet integral.Comment: 24 page

    Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot

    Full text link
    We introduce a new set of generalized Fokker-Planck equations that conserve energy and mass and increase a generalized entropy until a maximum entropy state is reached. The concept of generalized entropies is rigorously justified for continuous Hamiltonian systems undergoing violent relaxation. Tsallis entropies are just a special case of this generalized thermodynamics. Application of these results to stellar dynamics, vortex dynamics and Jupiter's great red spot are proposed. Our prime result is a novel relaxation equation that should offer an easily implementable parametrization of geophysical turbulence. This relaxation equation depends on a single key parameter related to the skewness of the fine-grained vorticity distribution. Usual parametrizations (including a single turbulent viscosity) correspond to the infinite temperature limit of our model. They forget a fundamental systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations may have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea of a classification of generalized entropies in classes of equivalence and provide an aesthetic connexion between topics (vortices, stars, bacteries,...) which were previously disconnected.Comment: Submitted to Phys. Rev.

    Bayesian Updating, Model Class Selection and Robust Stochastic Predictions of Structural Response

    Get PDF
    A fundamental issue when predicting structural response by using mathematical models is how to treat both modeling and excitation uncertainty. A general framework for this is presented which uses probability as a multi-valued conditional logic for quantitative plausible reasoning in the presence of uncertainty due to incomplete information. The fundamental probability models that represent the structure’s uncertain behavior are specified by the choice of a stochastic system model class: a set of input-output probability models for the structure and a prior probability distribution over this set that quantifies the relative plausibility of each model. A model class can be constructed from a parameterized deterministic structural model by stochastic embedding utilizing Jaynes’ Principle of Maximum Information Entropy. Robust predictive analyses use the entire model class with the probabilistic predictions of each model being weighted by its prior probability, or if structural response data is available, by its posterior probability from Bayes’ Theorem for the model class. Additional robustness to modeling uncertainty comes from combining the robust predictions of each model class in a set of competing candidates weighted by the prior or posterior probability of the model class, the latter being computed from Bayes’ Theorem. This higherlevel application of Bayes’ Theorem automatically applies a quantitative Ockham razor that penalizes the data-fit of more complex model classes that extract more information from the data. Robust predictive analyses involve integrals over highdimensional spaces that usually must be evaluated numerically. Published applications have used Laplace's method of asymptotic approximation or Markov Chain Monte Carlo algorithms

    Coarse-grained distributions and superstatistics

    Full text link
    We show an interesting connexion between the coarse-grained distribution function arising in the theory of violent relaxation for collisionless stellar systems (Lynden-Bell 1967) and the notion of superstatistics introduced recently by Beck & Cohen (2003). We also discuss the analogies and differences between the statistical equilibrium state of a multi-components self-gravitating system and the metaequilibrium state of a collisionless stellar system. Finally, we stress the important distinction between mixing entropies, generalized entropies, H-functions, generalized mixing entropies and relative entropies

    Brownian theory of 2D turbulence and generalized thermodynamics

    Full text link
    We propose a new parametrization of 2D turbulence based on generalized thermodynamics and Brownian theory. Explicit relaxation equations are obtained that should be easily implementable in numerical simulations for three typical types of turbulent flows. Our parametrization is related to previous ones but it removes their defects and offers attractive new perspectives.Comment: Submitted to Phys. Rev. Let

    Statistical mechanics of Fofonoff flows in an oceanic basin

    Get PDF
    We study the minimization of potential enstrophy at fixed circulation and energy in an oceanic basin with arbitrary topography. For illustration, we consider a rectangular basin and a linear topography h=by which represents either a real bottom topography or the beta-effect appropriate to oceanic situations. Our minimum enstrophy principle is motivated by different arguments of statistical mechanics reviewed in the article. It leads to steady states of the quasigeostrophic (QG) equations characterized by a linear relationship between potential vorticity q and stream function psi. For low values of the energy, we recover Fofonoff flows [J. Mar. Res. 13, 254 (1954)] that display a strong westward jet. For large values of the energy, we obtain geometry induced phase transitions between monopoles and dipoles similar to those found by Chavanis and Sommeria [J. Fluid Mech. 314, 267 (1996)] in the absence of topography. In the presence of topography, we recover and confirm the results obtained by Venaille and Bouchet [Phys. Rev. Lett. 102, 104501 (2009)] using a different formalism. In addition, we introduce relaxation equations towards minimum potential enstrophy states and perform numerical simulations to illustrate the phase transitions in a rectangular oceanic basin with linear topography (or beta-effect).Comment: 26 pages, 28 figure

    Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states

    Full text link
    A simplified thermodynamic approach of the incompressible 2D Euler equation is considered based on the conservation of energy, circulation and microscopic enstrophy. Statistical equilibrium states are obtained by maximizing the Miller-Robert-Sommeria (MRS) entropy under these sole constraints. The vorticity fluctuations are Gaussian while the mean flow is characterized by a linear ωˉ−ψ\bar{\omega}-\psi relationship. Furthermore, the maximization of entropy at fixed energy, circulation and microscopic enstrophy is equivalent to the minimization of macroscopic enstrophy at fixed energy and circulation. This provides a justification of the minimum enstrophy principle from statistical mechanics when only the microscopic enstrophy is conserved among the infinite class of Casimir constraints. A new class of relaxation equations towards the statistical equilibrium state is derived. These equations can provide an effective description of the dynamics towards equilibrium or serve as numerical algorithms to determine maximum entropy or minimum enstrophy states. We use these relaxation equations to study geometry induced phase transitions in rectangular domains. In particular, we illustrate with the relaxation equations the transition between monopoles and dipoles predicted by Chavanis and Sommeria [J. Fluid. Mech. 314, 267 (1996)]. We take into account stable as well as metastable states and show that metastable states are robust and have negative specific heats. This is the first evidence of negative specific heats in that context. We also argue that saddle points of entropy can be long-lived and play a role in the dynamics because the system may not spontaneously generate the perturbations that destabilize them.Comment: 26 pages, 10 figure
    corecore