44,331 research outputs found

    Perception of global facial geometry is modulated through experience

    Get PDF
    Identification of personally familiar faces is highly efficient across various viewing conditions. While the presence of robust facial representations stored in memory is considered to aid this process, the mechanisms underlying invariant identification remain unclear. Two experiments tested the hypothesis that facial representations stored in memory are associated with differential perceptual processing of the overall facial geometry. Subjects who were personally familiar or unfamiliar with the identities presented discriminated between stimuli whose overall facial geometry had been manipulated to maintain or alter the original facial configuration (see Barton, Zhao & Keenan, 2003). The results demonstrate that familiarity gives rise to more efficient processing of global facial geometry, and are interpreted in terms of increased holistic processing of facial information that is maintained across viewing distances

    On the Equivalence of f-Divergence Balls and Density Bands in Robust Detection

    Full text link
    The paper deals with minimax optimal statistical tests for two composite hypotheses, where each hypothesis is defined by a non-parametric uncertainty set of feasible distributions. It is shown that for every pair of uncertainty sets of the f-divergence ball type, a pair of uncertainty sets of the density band type can be constructed, which is equivalent in the sense that it admits the same pair of least favorable distributions. This result implies that robust tests under ff-divergence ball uncertainty, which are typically only minimax optimal for the single sample case, are also fixed sample size minimax optimal with respect to the equivalent density band uncertainty sets.Comment: 5 pages, 1 figure, accepted for publication in the Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 201

    Detecting Baryon Acoustic Oscillations

    Full text link
    Baryon Acoustic Oscillations are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift approximately 1000, and the existence of dark energy. Besides, BAOs provide a standard ruler for studying cosmic expansion. In this paper we focus on methods for BAO detection using the correlation function measurement. For each method, we want to understand the tested hypothesis (the hypothesis H0 to be rejected) and the underlying assumptions. We first present wavelet methods which are mildly model-dependent and mostly sensitive to the BAO feature. Then we turn to fully model-dependent methods. We present the most often used method based on the chi^2 statistic, but we find it has limitations. In general the assumptions of the chi^2 method are not verified, and it only gives a rough estimate of the significance. The estimate can become very wrong when considering more realistic hypotheses, where the covariance matrix of the measurement depends on cosmological parameters. Instead we propose to use a new method based on two modifications: we modify the procedure for computing the significance and make it rigorous, and we modify the statistic to obtain better results in the case of varying covariance matrix. We verify with simulations that correct significances are different from the ones obtained using the classical chi^2 procedure. We also test a simple example of varying covariance matrix. In this case we find that our modified statistic outperforms the classical chi^2 statistic when both significances are correctly computed. Finally we find that taking into account variations of the covariance matrix can change both BAO detection levels and cosmological parameter constraints
    corecore