1,048 research outputs found

    Image Segmentation Techniques: A Survey

    Get PDF
    Segmenting an image utilizing diverse strategies is the primary technique of Image Processing. The technique is broadly utilized in clinical image handling, face acknowledgment, walker location, and so on. Various objects in an image can be recognized using image segmentation methods. Researchers have come up with various image segmentation methods for effective analysis. This paper presents a survey and sums up the designs process of essential image segmentation methods broadly utilized with their advantages and weaknesses

    Image Segmentation Techniques: A Survey

    Get PDF
    Segmenting an image utilizing diverse strategies is the primary technique of Image Processing. The technique is broadly utilized in clinical image handling, face acknowledgment, walker location, and so on. Various objects in an image can be recognized using image segmentation methods. Researchers have come up with various image segmentation methods for effective analysis. This paper presents a survey and sums up the designs process of essential image segmentation methods broadly utilized with their advantages and weaknesses

    Fuzzy-based Propagation of Prior Knowledge to Improve Large-Scale Image Analysis Pipelines

    Get PDF
    Many automatically analyzable scientific questions are well-posed and offer a variety of information about the expected outcome a priori. Although often being neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and the direct information about the ambiguity inherent in the extracted data. We present a new concept for the estimation and propagation of uncertainty involved in image analysis operators. This allows using simple processing operators that are suitable for analyzing large-scale 3D+t microscopy images without compromising the result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it enhance the result quality of various processing operators. All presented concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. Furthermore, the functionality of the proposed approach is validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. Especially, the automated analysis of terabyte-scale microscopy data will benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout. The generality of the concept, however, makes it also applicable to practically any other field with processing strategies that are arranged as linear pipelines.Comment: 39 pages, 12 figure

    Image segmentation, evaluation, and applications

    Get PDF
    This thesis aims to advance research in image segmentation by developing robust techniques for evaluating image segmentation algorithms. The key contributions of this work are as follows. First, we investigate the characteristics of existing measures for supervised evaluation of automatic image segmentation algorithms. We show which of these measures is most effective at distinguishing perceptually accurate image segmentation from inaccurate segmentation. We then apply these measures to evaluating four state-of-the-art automatic image segmentation algorithms, and establish which best emulates human perceptual grouping. Second, we develop a complete framework for evaluating interactive segmentation algorithms by means of user experiments. Our system comprises evaluation measures, ground truth data, and implementation software. We validate our proposed measures by showing their correlation with perceived accuracy. We then use our framework to evaluate four popular interactive segmentation algorithms, and demonstrate their performance. Finally, acknowledging that user experiments are sometimes prohibitive in practice, we propose a method of evaluating interactive segmentation by algorithmically simulating the user interactions. We explore four strategies for this simulation, and demonstrate that the best of these produces results very similar to those from the user experiments

    Image Information Mining Systems

    Get PDF
    corecore