4 research outputs found

    Fault Diagnosis for Linear Discrete Systems Based on an Adaptive Observer

    Get PDF
    This paper presents a fault diagnosis algorithm to estimate the fault for a class of linear discrete systems based on an adaptive fault estimation observer. And observer gain matrix and adaptive adjusting rule of the fault estimator are designed. Furthermore, the adaptive regulating algorithm can guarantee the first-order difference of a Lyapunov discrete function to be negative, so that the observer is ensured to be stable and fault estimation errors are convergent. Finally, simulation results of an aircraft F-16 illustrate the advantages of the theoretic results that are obtained in this paper

    Robust Neural Network RISE Observer Based Fault Diagnostics And Prediction

    Get PDF
    A novel fault diagnostics and prediction scheme in continuous time is introduced for a class of nonlinear systems. The proposed method uses a novel neural network (NN) based robust integral sign of the error (RISE) observer, or estimator, allowing for semi-global asymptotic stability in the presence of NN approximation errors, disturbances and unmodeled dynamics. This is in comparison to typical results presented in the literature that show only boundedness in the presence of uncertainties. The output of the observer/estimator is compared with that of the nonlinear system and a residual is used for declaring the presence of a fault when the residual exceeds a user defined threshold. The NN weights are tuned online with no offline tuning phase. The output of the RISE observer is utilized for diagnostics. Additionally, a method for time-to-failure (TTF) prediction, a first step in prognostics, is developed by projecting the developed parameter-update law under the assumption that the nonlinear system satisfies a linear-in-the-parameters (LIP) assumption. The TTF method uses known critical values of a system to predict when an estimated parameter will reach a known failure threshold. The performance of the NN/RISE observer system is evaluated on a nonlinear system and a simply supported beam finite element analysis (FEA) simulation based on laboratory experiments. Results show that the proposed method provides as much as 25% increased accuracy while the TTF scheme renders a more accurate prediction. © 2010 IEEE

    Robust fault detection and diagnosis in a class of nonlinear systems using a neural sliding mode observer

    No full text
    This article presents a robust fault detection and diagnosis scheme for any abrupt and incipient class of faults that can affect the state of a class of nonlinear systems. A nonlinear observer which synthesizes sliding mode techniques and neural state space models is proposed for the purpose of online health monitoring. The sliding mode term is utilized to eliminate the effect of system uncertainties on the state observation. The switching gain of the sliding mode is updated via an iterative learning algorithm and an iterative fuzzy model, respectively. Moreover, a bank of neural state space models is adopted to estimate various state faults. Robustness with respect to modeling uncertainties, fault sensitivity, and stability of this neural sliding mode observer-based fault diagnosis scheme are rigorously investigated in theory. Moreover, the proposed fault detection and diagnosis scheme is applied to the model of a fourth-order satellite dynamic system, and the simulation results illustrate the effectiveness of the proposed approach

    A control-theoretical fault prognostics and accommodation framework for a class of nonlinear discrete-time systems

    Get PDF
    Fault diagnostics and prognostics schemes (FDP) are necessary for complex industrial systems to prevent unscheduled downtime resulting from component failures. Existing schemes in continuous-time are useful for diagnosing complex industrial systems and no work has been done for prognostics. Therefore, in this dissertation, a systematic design methodology for model-based fault prognostics and accommodation is undertaken for a class of nonlinear discrete-time systems. This design methodology, which does not require any failure data, is introduced in six papers. In Paper I, a fault detection and prediction (FDP) scheme is developed for a class of nonlinear system with state faults by assuming that all the states are measurable. A novel estimator is utilized for detecting a fault. Upon detection, an online approximator in discrete-time (OLAD) and a robust adaptive term are activated online in the estimator wherein the OLAD learns the unknown fault dynamics while the robust adaptive term ensures asymptotic performance guarantee. A novel update law is proposed for tuning the OLAD parameters. Additionally, by using the parameter update law, time to reach an a priori selected failure threshold is derived for prognostics. Subsequently, the FDP scheme is used to estimate the states and detect faults in nonlinear input-output systems in Paper II and to nonlinear discrete-time systems with both state and sensor faults in Paper III. Upon detection, a novel fault isolation estimator is used to identify the faults in Paper IV. It was shown that certain faults can be accommodated via controller reconfiguration in Paper V. Finally, the performance of the FDP framework is demonstrated via Lyapunov stability analysis and experimentally on the Caterpillar hydraulics test-bed in Paper VI by using an artificial immune system as an OLAD --Abstract, page iv
    corecore