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Robust Neural Network RISE Observer based Fault Diagnostics 
and Prediction 

James W. Fonda, Member, IEEE, S. Jagannathan, Senior Member, IEEE, 
and Steve E. Watkins, Senior Member, IEEE 

Abstract-A novel fault diagnostics and prediction scheme in 
continuous-time is introduced for a class of nonlinear systems. 

The proposed method uses a novel neural network (NN) based 
robust integral sign of the error (RISE) observer, or estimator, 
allowing for semi-global asymptotic stability in the presence of 
NN approximation errors, disturbances and unmodeled 

dynamics. This is in comparison to typical results presented in 
the literature that show only boundedness in the presence of 
uncertainties. The output of the observer/estimator is compared 
with that of the nonlinear system and a residual is used for 

declaring the presence of a fault when the residual exceeds a user 
defined threshold. The NN weights are tuned online with no 
offline tuning phase. The output of the RISE observer is utilized 
for diagnostics. Additionally, a method for time-to-failure (TTF) 

prediction, a first step in prognostics, is developed by projecting 
the developed parameter-update law under the assumption that 
the nonlinear system satisfies a Iinear-in-the-parameters (UP) 
assumption. The TTF method uses known critical values of a 
system to predict when an estimated parameter will reach a 
known failure threshold. The performance of the NNIRISE 
observer system is evaluated on a nonlinear system and a simply 
supported beam finite element analysis (FEA) simulation based 

on laboratory experiments. Results show that the proposed 
method provides as much as 25% increased accuracy while the 
TTF scheme renders a more accurate prediction. 

I. INTRODUCTION 

Online monitoring, fault detection and prediction are 
desirable when complex systems such as a bridges, levees, 
etc. are employed over long periods of time; however, sensor 
noise levels and system dynamics change over time and the 
accuracy of state estimation-based fault detection (FD) 
methods can suffer affecting health monitoring and fault 
detection. Therefore, robust observer or estimation methods 
that resist noise, unmodeled dynamics, and disturbances are 
desirable. Previous methods have addressed these needs 
through adaptive estimation and robust observer formulation 
[1-3]. Observers provide an estimation of the immeasurable 
states; therefore similar to controls applications, estimated 
states must be accurate to detect impending faults or failures. 

In previous works on fault detection for linear systems, the 
use of parity [4], geometric relationships [5, 6], estimation 
methods or observers [4, 7-11] have also been proposed. Also, 
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a linear stochastic method has been developed in [12]. In 
recent years several FD methods have been introduced that 
include geometric [13, 14] and adaptive estimation methods, 
[15-20] for nonlinear continuous-time systems while others 
[21-24] have used sliding mode observers and fuzzy based 
observers [25, 26]. In [27], FD schemes have been developed 
for robot manipulators. A survey of FD schemes for hydraulic 
systems, flight control etc., are given in [28]. 

Online approximation (OLA) based schemes using neural 
networks (NNs), radial basis functions, and others are 
considered as nonlinear adaptive observers [15] which are 
utilized to detect changes in nonlinear system behavior due to 
failure progression when the fault dynamics are unknown. 
The OLA"s are typically used for approximating fault 
dynamics for nonlinear systems upon detection. Work 
presented by Demetriou et. al [15], and Xian et. al [29] 
encompassed methods for fault detection and isolation using 
NN"s respectively. A recent survey [9] on model-based FD 
techniques presents an excellent overview of the state-of-the 
art developments. A common issue that has been gaining 
interest is Lyapunov stability analysis using in the design of 
FD schemes [15-18, 6, 13, 14, 19, 30, 31]. However, the FD 
schemes [15-19] render only uniform ultimate boundedness 
(UUB) stability due to system uncertainties. However, in a 
recent work [32], asymptotic convergence of the identification 
error in continuous-time is demonstrated for robot 
manipulators with actuator faults. 

In this work, a method to develop robust observers with 
respect to noise, unmodeled dynamics, unknown fault 
dynamics and disturbances, using NN based OLA with RISE 
feedback structure is proposed. The proposed method 
increases observer robustness while improving performance 
over conventional observers [15] utilized for fault detection. 
The observer outputs are utilized to perform diagnostics. 
Additionally, a parameter-based projection scheme provides 
estimation of TTF upon detecting a fault provided the 
parameters limits are provided by the system designer. The 
TTF prediction scheme also differentiates the proposed from 
other OLA and estimation techniques thus making it a more 
complete prognostics framework. Finally, the performance of 
the proposed schemes for fault detection and TTF are 
explored in simulation utilizing a nonlinear system example 
and an FEA beam that is widely used for structural health 
monitoring. 

II. OBSERVER-BASED FAULT DIAGNOSTICS 

An observer utilizing a NN for learning and 
characterization of unknown system dynamics and RISE 
feedback for robustness [29] is developed. This OLA-based 
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estimator is utilized to generate residuals that are subsequently matrix is upper-bounded by the physics of the system being 
utilized for detecting and predicting faults. In this section the observed given as the largest singular value ofQmax . class of nonlinear system and construction of the observer is 
presented. B. Nonlinear Observer with RISE Feedback Structure 

A. System Dynamics 
Consider a class of nonlinear systems described by 

X = �(x,u)+ B(t - T)f(x,u) 
(1) y=x 

i = 1,2, ... ,n (3) 

and the output, y, is a selection of measurable states. The 
system description (1) includes the system dynamics, �(x, u) 
and the unknown failure dynamics 
g(x,u)=B(t-T)f(x,u)where the nonlinear term 
f(x,u) comprises of the actual fault dynamics to be isolated 

and B(t -T) representing a smooth function providing 
continuity between nominal and faulty dynamic behavior. The 
failure term is assumed to be an unknown smooth function 
where the failure begins at a time "j . The exponential terms in 

Xi' as defined in (3), includes unknown rates of onset, Pi ' 
for the faults. Next the following assumptions are needed in 
order to proceed. 

AI) The nominal system dynamics may be expressed as a 
combination of known and unknown dynamics such that 
Xn = q(Xn (t), U(t)) == q* (Xn (t), U(t)) + � (Xn (t), U(t)) (4) 

where q* C·) represents the known nominal dynamics of the 

healthy system and � (-) represents the smooth function of 
unmodeled dynamics [15] satisfying lWOII :::;; �max' 

lit 011 � trrnx' and lit (,)11 � �max as the upper uncertainty 

bounds. 
A2) There exists compact sets X c mn ,U c mm such that 

x(t) E % andu(t) E U for all t � O. Moreover, a fault 
becomes a failure as time progresses since the states change 
significantly. 
Remark 1: As t�oothenXi �1 and Xi �O, the 
dynamics will converge to the form x = C;(x, u)+ I(x, u) in a 
finite amount of time after the onset of a failure. The 
nonaffine system (1) with fault function a general function of 
states and inputs is considered for the development of the 
observer. Also, note that the derivative of B(t -T) with 
respect to time yields B(t - T) = QB(t - T), where Q is a 
diagonal matrix consisting of the rates of failure Pi' This 

An observer for a class of systems described in (1) can be 
constructed as 
i= {(x,u)+ g(x,u)+ /-let) (5) 

where x E 9ln is the estimated state vector, g is the output of 
an OLA used to characterize the unknown fault dynamics and 
/-let) is the RISE term. Note the normal proportional term in 
(5) is missing as compared to [15], since it is included in the 
RISE feedback as 
/-let) == (ks + l)ej (t) - (ks + l)ej (0) + 
I (6) 
n(ks + l)a(r)ej (r) + (/3(r) + l)sgn(ej (r»}ir o 
where ks ,a(t),/3(t) are positive control gains, andsgn(·) is 
the standard signum function. Also, the derivative of /-let) is 
shown to be 
pet) = (ks + l)r + (p(t) + l)sgn(ej ) (7) 

where the state estimation error, or residual, is defined as 
� � ej = Y - x = x - x (8) 

and the filtered residual (FR) is defined as 
r = ej + a(t)ej � ej = r - a(t)ej (9) 

where 
aCt) = ao + aj (t) (10) 

with aCt) defined in (6). It should be noted at this time that 
aCt) consists of a constant term, ao > 1, and a time varying 
term aj (t). 

C. Stability and Performance Analysis 
In this section, Lyapunov techniques are applied to 

demonstrate semi-globally asymptotic stability (AS) of a class 
of nonlinear systems in the presence of disturbances and 
estimation errors due to the progression of faults using RISE 
feedback. 

Case I: No Fault Present: In this case the proof follows 
closely to the results shown in case two with the exception 
thatg(x,u) is zero. In this case the RISE feedback term 
provides an AS result where the bounded unmodeled 
dynamics are dominated by the RISE gains. The proof for this 
case is not shown here for brevity and can be found in [32]. 

A small threshold is used on ej such that when 

(11) 

over a sufficiently long time interval where 0max is a small 
positive constant, a fault is not declared. If the residual 
exceeds this threshold, a fault is declared and the OLA is 
initiated. The fault threshold is not dependent on system 
uncertainties and is a design term in contrast to other methods. 
In practice the term will be set based on noise sources from 
instrumentation and other effects not accounted for in the 
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unmodeled dynamics. In [15, 29], a constant threshold based 
on the bound on the system uncertainty is utilized to calculate 
the threshold. In order to show that the residual is within this 
threshold for a no fault case, the value of RISE gains have to 
be found. 

The bounds on the RISE gain pet) are given as 
{l(t) > (tmax +.J;,. Y.J;,. for the no-fault case in order to 
deliver semi global asymptotic stability. Note that the bounds 
are dependent only on the uncertainty of the system model, 
and the dimension of the system n . The full proof is shown in 
[32]. 

Case II: Fault Present: In the case, the fault is active and 
the OLA is in use. The proposed observer includes a NN, or 
any OLA, as the approximation agent. Differentiating the 
residual dynamics (8) yields 
e] = ?(x,u) - pet) + B(t - T)f(x,u) - g(x,u) = 

(12) g(x,u) - g(x,u) - pet) +? (x,u) 
To bring in the dynamics, the derivative of the FR is taken as 
r = ii] + a(t)e] + a(t)e] = ii] + N (13) 

where N is the error in the immeasurable nonlinear terms in 
reference to a desired set of dynamics given by 

(14) 

Remark 2: Since N is defined as a continuously 
differentiable function, it can be shown to be upper-bounded 
as 

(15) 

where 11011 denotes the Euclidian norm and bet) is defined as 

b = [e] T r T r for some 0 that is globally invertible and a 
nondecreasing function. 

The NN universal approximation property IS applied to 
estimate 
g(x,u) = rF (T(vT z)+s (16) 

where NN reconstruction error vector and its derivative set) 
satisfy and 11i-(t)11 � i-rrm where 

&max and i-max are known constants [29]. Additionally, the 
NN approximates 

• AT ( T ) g(x,u) =B a V z (17) 

where the z is a NN input vector defined by 
z = �T yT e] T y 

Next, the derivative of the FR is used by incorporating the 
system and fault dynamics along with fAt) rendering 

r = ii] + N = aT (a (VT z ) )+S2 - jt(t) + N (18) 

h O�T OT OAT. h . .  ·th w ere = - IS t e parameter estImatIon error WI 
the unmodeled dynamics defmed as 

(19) 

Before proceeding, Lemma 1 is required to aid the stability 
analysis. Then, the stability of the observer is shown in 
Theorem 1. 

Lemma 1: Let an auxiliary function pet) E 91 be defmed 
as 

t 

pet) = t;b - J L(t)dr (20) 

o 

where L{t) E 91 is defined as 

L{t) = r T (N] - pet) sgn( e])) - jJ(t)e{ sgn( e]) -
(21) 

e{ OT a(VT z)- e{ sgn( e] ) - aoe{ sgn( e] ) 
with N] = S2 + Or a(vT z ) , Sb a positive constant and 

Pet) = -L(t) . Note that IIBII � 0rrm' and that the bound on 
. . 

N] andN] can be shown as liN! II :5: Smax +�max +t9rmx and 

liN! II :5: 6rnax + tax + rile! II respectably. The auxiliary function 
requires that if pet) be selected such that 

8max + �max + Bmax 1 Fn + , 
P(t) � max 8max + L + Bmax + 

_
1 [6max + tax +rlle111 + Bmax +aoFn] ao 

(22) 

then the auxiliary function can be shown to be a positive 
bounded function given by 

I 

J L(t)dr � t;b (23) 

o 

where the positive constant is given by 
t;b = l ie] (0 �1[1 + {J(0)]Fn - e{ (O)N] (0) (24) 

with aCt) > 1 . The inequality in (23) ensures that pet) � o. 
Proof: For a full version of the proof please see Appendix A. 
Remark 3: To satisfy the constraints on the bounds of pet) 
for all cases one can simply select the second condition from 
(22) since this condition satisfies requirements for no fault 
and fault progression cases and will provide AS stability 
keeping the residual levels below the threshold shown in (11) 
even with faults and unmodeled dynamics present. 
Theorem 1 (NNIRISE Observer Asymptotic Performance 
Guarantee): Given the residual error dynamics (12), let the 
NN/RISE observer be applied to estimate the system states. If 
the pet) and aCt) functions are selected as in Lemma 1, with 
ks defmed as 

ks > 02 �Ibll)j 4A (25) 

and by taking the hidden-to the-output-Iayer weight update 
law as 

A (T \_T o=ra V zr] (26) 

where r is a diagonal positive matrix and (TO is the NN 
activation function then the NN/RISE observer provides semi-

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on August 11,2023 at 17:25:45 UTC from IEEE Xplore.  Restrictions apply. 



global asymptotically stable (AS) performance over a domain 
of D 
D == k E 9ln x91�o Illqll < 0-1(2�Aks)} (27) 

with the NN weights remaining bounded. Since the domain 
size (27) is dependent on a design gain it can be made large 
enough to encompass the operational ranges of the states. 

Proof: Consider a Lyapunov candidate 
v = .!..eT e + .!..rT r + P + .!..trS7lTr-1e} (28) 2 1 1 2 2 P 
Substitution ofr and el from (18) and (9) respectively and 
simplification results in . T . T . p. J�Tr-Ie":' } V = el el + r r + + tr '(! = J� } (29) 

e; r - a(t)e; el + rT r - L + tr-rTr-l(j 
Now substitution of the FR dynamics into the Lyapunov 
system to arrive at . T T T{�rf ( T )� . �) v = el r - a(t�el el + r ,8 \CJ" V z �+ &2 - !-let) + N -

(30) L+tr�Tr-Ie} 
Through substitution of L(t) and fAt) into (30), taking the 

norm and using the identities Ilsgn( X )11 = � where 

X E 9tn and Ilelll·llrll:::; O.Sllell12 + O.Sllrf, followed by 

substitution of Ilrll = Ilelll + a(t)llelll from (9) in the sixth 

term, using a(t) = ao + al (t), and applying the weight 
. . - " 

update and noting that 8 = -8 renders after simplification 
first derivative of the Lyapunov function given by 

v � (i-a(t) )eJ -( ks +i) IIrI12 +IIrIIIIRII+ p(t)llelll'['; - (31) 

II�II.[,; -al (t)lll1ll.[,; -aD 111111.[,; +II�II.[,; +ao 111111.[,; 
Through cancellation and grouping of terms we finally arrive 
at 

v � (i -aCt) )e1112 -(ks + i )r112 + Ilr1111N11 + (32) 

(p(t) -al (t) )Ielll.[,; 
From (32), one can observe that selecting aCt) > 1/2 will 

provide stability; however, knowing aCt) > 1 from Lemma 1, 

therefore selecting the condition from Lemma 1 will provide 
stability. Next, selection of al (t) ;:::: IIp(t)11 the fourth term of 
the Lyapunov becomes negative. Utilizing (32) and 
consolidating terms with b = �I T r T r a region of stability is 
found as 

v � (�- aCt) )e1112 -� 11rI12 -ks IIrl12 + Ilrlln�lbll)lbll = (33) 

-Allbl12 -ks IIrl12 + Ilrlln�lbll)lbll 

with A = min (a(t) -1/2, 1/2) = 1/2. Completing the 
squares with respect to Ilril ' yields the inequality 

v � -[2 _ 02 Qlbll))llbI12 � _c111b112 4ks 
provided 

ks > n:�IO or Ilbl l < 0-1 (2� ksA ) 

(34) 

(35) 

where cI is a small constant. Now define U(s) = cllbl12 as a 
continuous positive-semi-definite function for some real 
positive constant C defined on the domain D given by (27) 

with q == [bT JP] T • This result follows using similar 
methods shown in Theorem 1 of [29]. 

Using similar arguments as in [29] a region of attraction is 
defined, S , to be 
S == � E D Illqll < (n-I (2%,)) } (36) 

Remark 4: It should be noted that to accommodate both 
desired regions of attraction and initial conditions, the gain ks 
must be selected sufficiently large so that the region of 
attraction can be made arbitrarily large [29]. By contrast, in 
[15], boundedness of the residual is demonstrated as a 
function of a known bound on the system uncertainty. 
Additionally, in this work, despite the presence of unmodeled 
system dynamics and unknown fault dynamics, approximation 
errors and bounded disturbances, asymptotic stability is 
demonstrated. 

Remark 5: In [15], a projection scheme with a 
modification to relax the persistency of excitation (PE) 
condition is employed for the parameter update of the OLA 
scheme whereas in this work, no modification of the 
parameter or NN update law is needed due to asymptotic 
stability proof. One can simply employ any linearly 
parameterized approximator such as the ones in [2, 3] without 
the extra term referred to as CJ or [; modification. 
Fault Diagnostics: It should be noted that the use of the 
observer states provides a method for not only detection but 
isolation and root cause analysis faults. Isolation of faults is 
accomplishable through a priori knowledge of the system and 
parameter influences on states. The magnitude of the observer 
states can be used to detect which state is faulty by setting 
thresholds on the state values themselves. Additionally, the 
number of faults in a system can be detected by monitoring 
the number of observer states crossing a user defined 
threshold so as to detect not only that there is a fault, but in 
fact determine if there are multiple faults and their location in 
the system. 

III. TIME-TO-FAILURE PREDICTION 
The ability to provide robust estimates of system states in 

the presence of uncertainty has now been shown which is 
utilized for diagnostics. To provide a prognostics framework a 
novel method for TTF prediction using the standard parameter 
update law is now presented. The update law from (26) can be 
used in many adaptive observers and single layer NN"s. To 
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predict the TTF, (26) is solved for the time period it takes 0i 
� 

to reach 0i,thresh' 
� 

Remark 6: The failure threshold, 0i,lhresh' is determined by 
a system designer and is a limit beyond which the system is 
unsafe to operate. 
Theorem 2: Given the parameter update law (26) and a 

� 

known threshold value,O{, h h' then the projected TTF can 
• / res 

be obtained as 

TTF;(t) = (BCt! )i,thresh -Bi(l) )/(�ri'ia(VTz )e{ (t)) (37) 

where TTF; (I) = [I! - I] is the time to failure of the i1h 

parameter in the parameter vector at the current time ,/', tj 
represents the time when the failure occurs (or failure 
threshold), and B(t! )i,lhres is the value of the parameter at the 
time of failure threshold provided the NN activation function 
and residual are held fixed at their current value at time t. 

Proof: The solution of (26) is an ordinary differential 
equation. Integration of both sides and evaluation holding e] 
and a{VT z ) constant renders 

r �, (r)dr � (� r"o(Vr z)eI (t) ) r dr � 

{ji (tf ) - {ji (t) = (L�=l fj,ju(VT z)eI (t) )[tf - t] (38) 

Finally, solving for TTFt, and substitution of B{, h hfor ,( res 
Bi (tr) renders (37). The solution for TTF; provides failure 
prediction for the ith parameter of the system. 

Remark 7: TTF; is solved iteratively by holding the 
residual and the NN activation vector at the current time 
instant before starting the projection. If the parameter is a 
vector, each element is assigned a threshold value and the first 
parameter to attain a threshold value is used as the TTF; of 
the overall system for that failure mode. 

Remark 8: The TTF; prediction is used when the OLA is 
active, i.e. lie] II> Omax ' and the fault dynamics are progressing. 

Use of the TTF; prediction in this manner guards against the 
denominator being zero since the OLA is continually chasing 
the fault dynamics. While the RISE provides AS, the error 
does not become zero before the time that a parameter reaches 
its fault threshold. 

IV. SIMULATION EXAMPLES AND RESULTS 

The following non-linear MSD and FEA beam system 
examples highlight the utility of the proposed methods. 
Additionally, results for the TTF; method are presented for 
the examples. Results were obtained using no offline training, 

initial NN weights of zero, a two-layer NN with tuning of the 
outer weights; static random inner weights; sigmoid activation 
functions, and eleven neurons. System gains were set as 
ks = 0.9995, Omax = O.l, r = O.l, Cmax = 0.5 , . .. �max = 0.5 ,Omax = 2, a = 1.5, Bmax = 0.5 '�max = 0.1 
,and n = 2. Simulations were implemented with and without 
RISE using increased noise levels demonstrating performance 
while holding k s constant for both methods . 

A. Nonlinear Mass-Spring-Damper(MSD) System 
A nonlinear MSD system is described by 

mi+CX + kx+ kx3 (l-e -p(t-td ) ) = 1; (t) 
(39) 

where m = 1 is the mass, C = 0.25 is the damping coefficient, 
k = 0.75 is the stiffness, t; (t) = 5 sin(1l" t) is the forcing 
function, p = 0.05 is an unknown rate of failure onset, 
Bmax = 2 ,and t d = 200 seconds is the time of failure onset. 
In this example the OLA approximates the derivative of the 
fault dynamics, g(x, u) = kx3 (1- e -p(t-td ) ) , of the system 
once the failure begins. The derivative of g( x, u) yields 
g(x,u)=[k k]· l3 (1-e-p(t-td) )x2x pe-P(t-td)x3 J T=OTa(-) 

and is used to determine the OLA approximations as shown 
earlier. In this case e is an estimate of unknown stiffness, 
which is assumed to be slowly varying, parameter and a{) is 
the NN activation function. 

0.2,------,---,-------,----;======il 
I .... · NN Only 
-NN/RISE 

� 0.1 51-----+---+---+-----111-.. -.... /.-.... /7 ..... 1 

� I ••••..•.• 'i':/ ! 0.1 
..•..•.... ...J� m 005 •.... 

:;: .  
. ..... ······· LJ 

.........

...... ./ 
0'-° 2 4 6 

Noise Variance 
8 

Fig. 1 Comparison of the mean squared error 

10 

0.91--+--+--+---+---+---+------1 i .-........ . _ ....... ...... -... ........ + ... -... ��-
., 0.8 8l -i� ............................................. .. :z .• 

:g 0.7 /--+---+---+---+---+---+--1 !E iii '" 0. 6/----11---1---+---+---+---+---1 
c: ." a. 
en 0.5 Spring Stiffness Estimate 

.. .. ·Nominal Stiffness Value 

.. · . ... · · Maximum Safe Stiffness Level 0.40!:----:-1 0!::: 0--::20� 0��3�00��4�00��5�00��6�00� 
Time [sec) 

Fig. 2 Spring stiffuess estimate 
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A comparison of the NN and NN/RISE observers is shown 
in Fig. 1. The mean squared error is used for comparison as 
the noise is increased. Performance was increased up to 25%. 
In Fig. 2, the estimation of the spring-stiffness is shown along 
with the maximum safe level of 0.85. The prognostics method 
predicts the TTF before the estimation reaches the threshold 
as shown in Fig. 3. Note that the spring-stiffuess converges to 
0.75 and then begins to harden at 200 seconds. The TTF result 
not only shows that the result converges to near the failure 
point; approximately 600 seconds into the simulation, but also 
the actual TTF estimate improves as the failure progresses. 
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300 

'i250 .!!!. 
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IL ,9150 
!100 

50 
50 100 150 200 250 300 350 

Time rsecl 
Fig. 3 TTF Prediction for nonlinear spring example 

After 200 seconds the TTF estimate starts to change rapidly 
since parameter value changes more rapidly due to fault onset. 
This behavior is typical of the results obtained and is due to 
the fault progression and the growth in the residual values. 
After settling, the TTF estimate then slowly trends towards 
the correct estimate, with some variance due to the OLA 
converging simultaneously. As the TTF estimate progresses 
the estimate improves. Note, that at 400 seconds the estimate 
is approximately 200 seconds, and at 500 it is close to 100 
seconds, this correlates nicely with the actual failure time of 
approximately 600 seconds. The NN observer output indicates 
the location and type of fault for diagnostics. 
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Fig. 4 State residuals for NN and NN/RISE methods 

In Fig. 4 the residuals for both the NN and the NN/RISE 
methods are shown. A residual envelope of ±0.35 is also 
shown. It can be seen that the NN/RISE method not only 
provides more robust estimation, but in fact reduces the 
threshold requirements by reducing the overshoot during the 
transient. Additionally, the initial settling of the observer is 
within the threshold while the NN only method struggles to 

keep a small overshoot in that area as well. 

B. Cyclic Failure of a Composite Beam 
The beam example is formulated to emulate a composite 

beam from the Missouri University of Science and 
Technology Smart Composite Bridge [33] that was subjected 
to fatigue testing to discover its ultimate strength. The FEA 
simulation was performed in MATLAB® .The beam is 
simply supported and its dimensions, loading, and physical 
properties are presented in Fig. 5 and Table I. The simulated 
beam was subjected to cyclic loading with a frequency of Yz 
Hz and a peak force of 70 kN. The beam experiences failure 
due to nonlinear reduction in beam stiffuess. The measured 
state, mid-span displacement, is assumed to follow a model 
similar to the one shown in (39); however the failure 
dynamics are given as g(x, u) = Koe -p(t-td) X where Ko is the 

original beam stiffuess system element, td = 50 seconds, 

Bmax = 2000, and p = 0.005. The derivative of g(x, u) 

yieldsg(x,u)=-[Ko]{pe-P(t-td)x J. Estimation of Ko 
provides TTF estimates using thresholds on the beam 
stiffness. L 

� f�Y L � � 
Fig. 5 Composite beam schematic for FEA analysis 

TABLE I COMPOSITE BEAM DIMENSIONS AND PROPERTIES 
Description 
Length [m] 

Loading Location r m 1 
Beam Width [m] 
Beam Height rml 
Web Width [m] 
Web Height rml 

Young"s Modulus [OPal 
Moment of Inertia [m31 

600 

500 

� 400 .!!!. 
e 
.: 300 
'n; LL 
.s 200 .. 
E 
i= 100 

o 

f1 

r-rJ 
I-V """"" v 

Symbol Value 
L 8.534 
Ll 3.658 
x 0.610 
y 0.610 
a 0.305 
b 0.299 
E 34.255 
I 0.01826 

A rv\ 
L 

� t'-t \I � 
o 100 200 300 400 500 600 Time [sec] 
Fig. 6 TTF prediction for beam example 

For the MST SCB example, results in Fig. 6 show that the 
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proposed method tracks changes in the beam and is able to 
provide TTF estimates. As the failure begins there is a sudden 
change in the TTF value at 50 seconds and then a trend 
towards the failure time. The varying behavior is due to the 
changes in the estimated stiffness as the fault progresses and 
the OLA converges. This behavior was also seen in the 
previous example. 

VI. CONCLUSIONS 

The proposed NN/RISE observer provides not only robust 
estimates in the face of noise and other uncertainties but in 
fact provides an AS region of stability for state estimates. This 
coupled with a method for prediction of TTF utilizing 
physically meaningful parameters yields a suitable framework 
for prognostics methods. Additionally, the use of the state 
estimate values for root cause analysis is possible further 
extending the methods utility. Simulations show that the 
robust observer is capable of state estimates with as much as 
25% increased accuracy with increasing noise levels. Finally, 
TTF results showcase suitable predictive capabilities that 
allow for prognostics systems to be formulated using these 
methods. Future work will address the need for an analytical 
selection of the threshold values for fault detection. 
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ApPENDIX A 
Integration of both sides of (22) yields (A. 1). 

t t 

f L(fylr = f rT(N] -P(t)sgp(e])}ir-
o 

t t 

f p(t)e; sgp( e] 'ylr - f e; 1P a(vT Z �r-
o 0 
t t 

f e; sgp(e]'ylr- f aoe; sgp(e])dr 
o 0 (A.I) 

Substitution of the expanded form of the FR and expansion 
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of the equation yields 
I I I 

f L(t'xi' = fit; N\d. + f aCt) ( e; N\ -13(.) lIe\II}i. -
o 0 0 
I I f f3(t)it\T sgn( e\ 'xi. -f /3(t)e; sgn( e\ 'xi. -
o 0 
I I I 

f e; iF a(VT z}i. -fit; sgn(e\'xi' -f aoe; sgn(e\)d. 
o 0 0 

(A.2) 

Integration by parts of the first, sixth, and third terms are 
shown in A.3 through A.6. 

I I f e; N\d. = [e\N\] �+ f e; N\d. = e; (t)N\ (t)-
o 0 (A.3) 

I e; (O)N\ (0) -f e; N\d. 
o 

Case I: Trivial Case l.e. ej (t) = 0, ej (t) = 0, and 
L(t) = 0 
t f e; sgn( el )dT = 0 < V (A.4) 
o 

This case shows that the case when el (t) = o that the 
integral is zero, which is less than a positive constant V . 
Therefore, the non-trivial case is considered as shown next. 

Case II: Non Trivial Case i.e. el (t) "* 0, el (t) = 0, and L(t) "* 0 

I 

N dsgn(x)/dt = 0 � h . .  I ote: lor t e non-trIvia case. 

fit; sgn(e\'xi' = [e; sgn(e\) J� -
o 

J e; [!!...-sgn(e\)}. = e; (t)sgn(e\ (t))-
o dt 
e; (O)sgn(e\(O)) 
1 f p(t)e; sgn(el)dr = 

a 
1 1 (I } p(t)f e; sgn(el)dr -f ,B(t) f e; sgn(el)dr r = 

a a a 

P(t) [ e; (t)sgn(el (t)) -e; (O)sgn(el (0)) J-
1 f ,B(t)[ e; (t)sgn(el (t)) -e; (O)sgn(el (O))}ir 
a 

(A.5) 

(A.6) 

Substitution of the results from A.3 through A.6 terms 
into A.4 yields 

I f L(t)d. = e; (t)NI (t) -e; (O)NI (0)-
a 

P(t)[ e; (t)sgn(el (t)) -e; (O)sgn(el (0)) J-
[e; (t)sgn(el (t)) -e; (O)sgn(el (0)) ] 

I I 

-f e; Nld. + f a(t)(e; NI -p(.)llelll)d.-
o a 

I I f e; OT a(VT z)d. - f ,B(t)e; sgn(el)d'-
a a 

fl T fl. [e;(t)sgn(el(t))-} aA sgn(el)d.+ pet) • 
a a e; (O)sgn(el (0)) 

(A.7) 

Simplification, applying norms, and grouping of terms 
results in (A.8). Note, the second term is purposely left 
without a norm to preserve the sign, and is required for the 
analysis. 

1 f L(t)dr �lIel (0)11[1 + P(O)]'['; -ei (O)NI(O) + 
a 

Ilelll[IINI (t)II-.[,; (P(t) + 1) ] + 
1 [lleIIIlINIII-p(r)llelll+ } [a(t) 

a�t) (1IeJIINIIHlelll·IIOII+ao 11£111.[,;) r 

(A. 8) 

Taking the time variant terms outside the integral, factoring 
out el, simplification, and looking for bounding conditions 

provides the condition. Note that IIBII ::::;; (}max . 
IINIII-..Jn ([J(t) + 1) � 0 

pet) � IINIII + 1 = 
Cmax + �max + Bmax + 1 .rn .[,; 

(A. 9) 

(A.lO) 
Looking at terms inside the integral, factoring out el ' 

simplification, and looking for a condition on f3(t) we arrive 
at (A.I2). 
{J(t) � IINIII + _1 [IINIII + Bmax + ao.[,;] = aCt) 
Cmax + tmax + Bmax + 
_I_ [&max +�max + rllelll + Bmax +ao..Jn] aCt) 

(A.ll) 

By selecting ao > 1 and noting that 1/ ao > 1/ aCt) since 

1/ aCt) = 1/(ao + aj (t)), therefore we can use this as an 
upper bound on aCt) 

pet) � Cmax + �max + Bmax + 
�o [ Cmax + �max + r lIelll + Bmax + ao.[,; ] (A. 12) 
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