48 research outputs found

    Robust Extreme Learning Machine for Modeling with Unknown Noise

    Get PDF
    Extreme learning machine (ELM) is an emerging machine learning technique for training single hidden layer feedforward networks (SLFNs). During the training phase, ELM model can be created by simultaneously minimizing the modeling errors and norm of the output weights. Usually, squared loss is widely utilized in the objective function of ELMs, which is theoretically optimal for the Gaussian error distribution. However, in practice, data collected from uncertain and heterogeneous environments trivially result in unknown noise, which may be very complex and cannot be described well using any single distribution. In order to tackle this issue, in this paper, a robust ELM (R-ELM) is proposed for improving the modeling capability and robustness with Gaussian and non-Gaussian noise. In R-ELM, a modified objective function is constructed to fit the noise using mixture of Gaussian (MoG) to approximate any continuous distribution. In addition, the corresponding solution for the new objective function is developed based on expectation maximization (EM) algorithm. Comprehensive experiments, both on selected benchmark datasets and real world applications, demonstrate that the proposed R-ELM has better robustness and generalization performance than state-of-the-art machine learning approaches

    Recurrent Neural Networks For Accurate RSSI Indoor Localization

    Full text link
    This paper proposes recurrent neuron networks (RNNs) for a fingerprinting indoor localization using WiFi. Instead of locating user's position one at a time as in the cases of conventional algorithms, our RNN solution aims at trajectory positioning and takes into account the relation among the received signal strength indicator (RSSI) measurements in a trajectory. Furthermore, a weighted average filter is proposed for both input RSSI data and sequential output locations to enhance the accuracy among the temporal fluctuations of RSSI. The results using different types of RNN including vanilla RNN, long short-term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM) are presented. On-site experiments demonstrate that the proposed structure achieves an average localization error of 0.750.75 m with 80%80\% of the errors under 11 m, which outperforms the conventional KNN algorithms and probabilistic algorithms by approximately 30%30\% under the same test environment.Comment: Received signal strength indicator (RSSI), WiFi indoor localization, recurrent neuron network (RNN), long shortterm memory (LSTM), fingerprint-based localizatio

    State Preserving Extreme Learning Machine for Face Recognition

    Get PDF
    Extreme Learning Machine (ELM) has been introduced as a new algorithm for training single hidden layer feed-forward neural networks (SLFNs) instead of the classical gradient-based algorithms. Based on the consistency property of data, which enforce similar samples to share similar properties, ELM is a biologically inspired learning algorithm with SLFNs that learns much faster with good generalization and performs well in classification applications. However, the random generation of the weight matrix in current ELM based techniques leads to the possibility of unstable outputs in the learning and testing phases. Therefore, we present a novel approach for computing the weight matrix in ELM which forms a State Preserving Extreme Leaning Machine (SPELM). The SPELM stabilizes ELM training and testing outputs while monotonically increases its accuracy by preserving state variables. Furthermore, three popular feature extraction techniques, namely Gabor, Pyramid Histogram of Oriented Gradients (PHOG) and Local Binary Pattern (LBP) are incorporated with the SPELM for performance evaluation. Experimental results show that our proposed algorithm yields the best performance on the widely used face datasets such as Yale, CMU and ORL compared to state-of-the-art ELM based classifiers

    Semi-Sequential Probabilistic Model For Indoor Localization Enhancement

    Full text link
    This paper proposes a semi-sequential probabilistic model (SSP) that applies an additional short term memory to enhance the performance of the probabilistic indoor localization. The conventional probabilistic methods normally treat the locations in the database indiscriminately. In contrast, SSP leverages the information of the previous position to determine the probable location since the user's speed in an indoor environment is bounded and locations near the previous one have higher probability than the other locations. Although the SSP utilizes the previous location information, it does not require the exact moving speed and direction of the user. On-site experiments using the received signal strength indicator (RSSI) and channel state information (CSI) fingerprints for localization demonstrate that SSP reduces the maximum error and boosts the performance of existing probabilistic approaches by 25% - 30%

    Autonomous learning for face recognition in the wild via ambient wireless cues

    Get PDF
    Facial recognition is a key enabling component for emerging Internet of Things (IoT) services such as smart homes or responsive offices. Through the use of deep neural networks, facial recognition has achieved excellent performance. However, this is only possibly when trained with hundreds of images of each user in different viewing and lighting conditions. Clearly, this level of effort in enrolment and labelling is impossible for wide-spread deployment and adoption. Inspired by the fact that most people carry smart wireless devices with them, e.g. smartphones, we propose to use this wireless identifier as a supervisory label. This allows us to curate a dataset of facial images that are unique to a certain domain e.g. a set of people in a particular office. This custom corpus can then be used to finetune existing pre-trained models e.g. FaceNet. However, due to the vagaries of wireless propagation in buildings, the supervisory labels are noisy and weak. We propose a novel technique, AutoTune, which learns and refines the association between a face and wireless identifier over time, by increasing the inter-cluster separation and minimizing the intra-cluster distance. Through extensive experiments with multiple users on two sites, we demonstrate the ability of AutoTune to design an environment-specific, continually evolving facial recognition system with entirely no user effort

    Adaptive Grey Wolf Optimization Technique for Stock Index Price Prediction on Recurring Neural Network Variants

    Get PDF
    In this paper, we propose a Long short-term memory (LSTM) and Adaptive Grey Wolf Optimization (GWO)--based hybrid model for predicting the stock prices of the Major Indian stock indices, i.e., Sensex. The LSTM is an advanced neural network that handles uncertain, nonlinear, and sequential data. The challenges are its weight and bias optimization. The classical backpropagation has issues of dangling on local minima or overfitting the dataset. Thus, we propose a GWO-based hybrid approach to evolve the weights and biases of the LSTM and the dense layers. We have made the GWO more robust by introducing an approach to improve the best possible solution by using the optimal ranking of the wolves. The proposed model combines the GWO with Adam Optimizer to train the LSTM. Apart from the LSTM, we have also implemented the Adaptive GWO on other variants of Recurring Neural Networks (RNN) like LSTM, Bi-Directional LSTM, Gated Recurrent Units (GRU), and Bi-Directional GRU and computed the corresponding results. The Adaptive GWO here evolves the initial weights and biases of the above-discussed neural networks. In this research, we have also compared the forecasting efficiency of our proposed work with a particle-warm optimization (PSO) based hybrid LSTM model, simple Grey-wolf Optimization (GWO), and Adaptive PSO. According to the experimental findings, the suggested model has effectively used the best initial weights, and its results are the best overall

    Robust occupancy inference with commodity WiFi

    Full text link
    Accurate occupancy information of indoor environments is one of the key prerequisites for many pervasive and context-aware services, e.g. smart building/home systems. Some of the existing occupancy inference systems can achieve impressive accuracy, but they either require labour-intensive calibration phases, or need to install bespoke hardware such as CCTV cameras, which are privacy-intrusive by default. In this paper, we present the design and implementation of a practical end-to-end occupancy inference system, which requires minimum user effort, and is able to infer room-level occupancy accurately with commodity WiFi infrastructure. Depending on the needs of different occupancy information subscribers, our system is flexible enough to switch between snapshot estimation mode and continuous inference mode, to trade estimation accuracy for delay and communication cost. We evaluate the system on a hardware testbed deployed in a 600m 2 workspace with 25 occupants for 6 weeks. Experimental results show that the proposed system significantly outperforms competing systems in both inference accuracy and robustness
    corecore