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Abstract

Extreme learning machine (ELM) is an emerging machine learning technique for training single hidden layer feed-

forward networks (SLFNs). During the training phase, ELM model can be created by simultaneously minimizing the

modeling errors and norm of the output weights. Usually, squared loss is widely utilized in the objective function of

ELMs, which is theoretically optimal for the Gaussian error distribution. However, in practice, data collected from

uncertain and heterogeneous environments trivially result in unknown noise, which may be very complex and cannot

be described well using any single distribution. In order to tackle this issue, in this paper, a robust ELM (R-ELM) is

proposed for improving the modeling capability and robustness with Gaussian and non-Gaussian noise. In R-ELM,

a modified objective function is constructed to fit the noise using mixture of Gaussian (MoG) to approximate any

continuous distribution. In addition, the corresponding solution for the new objective function is developed based on

expectation maximization (EM) algorithm. Comprehensive experiments, both on selected benchmark datasets and

real world applications, demonstrate that the proposed R-ELM has better robustness and generalization performance

than state-of-the-art machine learning approaches.

Keywords: Extreme learning machine, non-Gaussian noise, mixture of Gaussian, expectation maximization

algorithm

1. Introduction

In the past decade, extreme learning machine (ELM), as a type of generalized single hidden layer feedforward

networks (SLFNs), has been intensively studied both in theory and applications [1]. Unlike the traditional gradient

based training approaches for SLFNs, which are easy to trap in the local minimum and time-consuming, the hidden

layer parameters of ELM are assigned randomly without iterative tuning, and then it only needs to solve the least-5

square problem [2, 3]. Accordingly, ELM has much faster learning speed and is easier to implement than state-of-the-

art machine learning approaches. Theoretically, Huang et al. [4] have proven the universal approximation of ELM.

In addition, ELM has been extended to online learning [5, 6], structure optimization [7, 8], ensemble learning [9, 10],

imbalance learning [11, 12], representation learning [13, 14, 15], as well as residual learning [16, 17], etc. For real

world applications, ELM has been implemented to landmark recognition [18, 19], industrial production [20, 21], and10

wireless localization [22, 23], etc.

As mentioned above, ELM is becoming an increasingly significant research topic in the machine learning field,

but majority of the existed ELMs assume that the data utilized for modeling are pure without noise and outliers, or

with Gaussian error distribution. However, data uncertainty is inevitable in practical scenarios due to sampling errors,

measurement errors, and modeling errors, etc., which may lead to noise subject to unknown distributions. It means15

that noise of the real world applications should be more complex, which may follow Gaussian distribution, Laplace

distribution, or mixed distributions. In addition, the performance of the data-driven predictor will degrade seriously if
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the data are chaotic or too noisy. Therefore, ELMs without considering the effects of uncertainties may be not suffi-

cient. There are usually two ways for strengthening the modeling capability of ELM in uncertain scenarios, including

outlier detection and removing, and modifying objective function. For example, FIR-ELM was proposed to reduce20

the input disturbance by removing some undesired signal components through the FIR filtering [24]. He et al. [25]

designed a hierarchical ELM to deal with high-dimensional noisy data, in which some groups of subnets were pro-

posed for simultaneously reducing data dimension and filtering noise. However, the aforementioned outlier detection

based ELMs may identify pure data as outliers, which easily break the original data structure and cause information

loss. Another set of solutions is to enhance the robustness of the data-driven predictor by modifying the objective25

function of ELM. Specifically, second order cone programming, widely utilized in robust convex optimization prob-

lems, was introduced into ELM, but the computational burden of the novel ELM was relatively heavy [26]. Lu et al.

[27] rewrote the objective function of ELM and proposed a probabilistic regularized ELM (PR-ELM) by incorporat-

ing the distribution information of modeling error into the modeling process, in which both the modeling error mean

and the modeling variance were included in the modified objective function. The experimental results indicated that30

the proposed PR-ELM had a well-fitting performance and was more robust to noise. Although, ELMs with modified

objective functions can achieve satisfactory performance in several tasks, the squared loss is still utilized in most of

them, which may not guarantee that those ELMs can achieve the optimal solutions if the noise follows non-Gaussian

distribution.

In order to tackle this issue, in this paper, a robust ELM (R-ELM) is proposed for improving the modeling capa-35

bility and robustness of ELM in dealing with tasks with Gaussian and non-Gaussian noise. Different from the existed

ELMs, which minimize the output weights and modeling errors with the assumption that noise follows Gaussian dis-

tribution, a new objective function of R-ELM is constructed, in which the characteristic of noise is described using

mixture of Gaussian (MoG) for approximating the feature mapping between the inputs and the outputs. In addition,

expectation maximization (EM) algorithm is implemented for estimating the parameters in the proposed R-ELM. The40

main contributions can be summarized as the following aspects:

1) A robust objective function is developed based on MoG for enhancing the modeling capability with complex

and unknown noise. Specifically, the squared loss of the modeling errors in the original objective function of ELM

is replaced by MoG. Thus, the modified objective function enables R-ELM to be more robust due to the excellent

capability of MoG for approximating any continuous noise distribution.45

2) Considering the analytical solutions of the parameters in the modified objective function of R-ELM cannot be

calculated directly, EM algorithm is implemented to help obtain the optimal parameters.

3) Comprehensive experiments have been conducted, the corresponding experimental results indicate that R-

ELM outperforms state-of-the-art machine learning approaches on both selected benchmark datasets and real world

applications.50

The paper is organized as follows: Section 2 presents the ELM theory. The details of the proposed R-ELM

are shown in Section 3, including the limitations of modeling with Gaussian noise, motivations of improving the

modeling capability of ELM with unknown noise, modified objective function of R-ELM, and the corresponding

solving process. Experimental results and further analysis on selected benchmark datasets are reported in Section

4, followed by the performance verification on two real world applications in Section 5. Finally, discussions, and55

conclusions and future works are respectively given in Section 6 and Section 7.

2. ELM Theory

In this section, a brief introduction of ELM theory is firstly given to facilitate the understanding of the following

sections.

ELM was proposed for training the SLFNs with a three-layer structure, including: input layer, hidden layer, and60

output layer (see Fig. 1). Different from state-of-the-art machine learning approaches, its hidden layer parameters are

generated randomly without iterative tuning, reducing the learning problem to that of estimating the optimal output

weights β for a given dataset {(xi, yi)}Ñi=1
⊂ Rn × Rm.

Accordingly, ELM can be treated as a linear combination of L activation functions:

fELM(x) =

L
∑

i=1

βihi(x) = h(x)β (1)

2
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Figure 1: Basic structure of ELM

where L denotes the number of hidden nodes, and h(x) denotes the mapped feature vector, respectively.

The above equation can be rewritten in compact matrix form as

Hβ = Y (2)

where H refers to the hidden layer output matrix:

H =

























h(x1)
...

h(xÑ)
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h1(x1) · · · hL(x1)
...

. . .
...

h1(xÑ) · · · hL(xÑ)

























(3)

and Y refers to the training data target matrix:

Y =



























yT
1
...

yT

Ñ



























=

























y11 · · · y1m

...
. . .

...

yÑ1 · · · yÑm

























(4)

The objective function of ELM is to simultaneously minimize the norm of the output weights and the modeling65

error:

Min :
1

2
∥β∥2 + 1

2
C

Ñ
∑

i=1

ξ2
i

s.t.,h (xi)β = yi − ξi, i = 1, . . . , Ñ

(5)

where C is a regularization coefficient for strengthening the generalization performance, and ξi represents the model

noise, respectively.

According to the Karush-Kuhn-Tucker (KKT) theorem, we can estimate the output weights by

β̃ =



















HT
(

I
C
+HHT

)−1
Y, Ñ < L

(

I
C
+HT H

)−1
HT Y, Ñ > L

(6)

where β̃ represents the estimated value of β, and I represents the unit matrix.

In summary, ELM can be described by Algorithm 1.70
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Algorithm 1 ELM

Input: Given a training dataset {(xi, yi)}Ñi=1 ⊂ Rn × Rm, an activation function g(·), and hidden nodes number L.

1: Randomly assign hidden layer parameters ai and bi, i = 1, . . . , L;

2: Calculate the hidden layer output matrix H;

3: Calculate the estimated output weights β̃ using (6).

3. Robust Modeling with Unknown Noise

In this section, the details of the proposed R-ELM will be given, including limitations of modeling with Gaussian

noise, motivation of improving the modeling capability of ELM with unknown noise, objective function of R-ELM,

and the corresponding solving process.

3.1. Limitations of Modeling with Gaussian Noise75

For a given learning problem, our goal is to create a predictor which can map the input to the output well. Data-

driven predictor is usually constructed depending on a corresponding training dataset, but based on the assumptions

that the input data are not corrupted with noise, and errors are only confined to the output, or even there is noise, its

effect is usually does not fully considered in the learning formulation, such as the objective function of ELM in (5).

However, in practice, the above assumptions cannot hold, because sampling errors, measurement errors, and modeling80

errors result in the complex and unknown noise, and may seriously degrade the performance of the created predictor.

Some robust predictors were proposed based on the assumption that the noise follows Gaussian distribution, but it also

may follow other unknown distributions, such as Laplace distribution, Beta distribution, and even mixture of several

kinds of distributions. Thus, the above assumptions are not reliable in such cases [28, 29].

Considering an arbitrary target function, when we build a predictor for it, we have

y = f (x) + ξ (7)

where f (·) is the created model.85

Thus, (2) should be modified as

Hβ + ξ = Y (8)

Assuming that ξ ∼ N(0, σ2), we have the following probability density function:

P(ξi) =
1

√
2πσ2

exp













−
ξ2

i

2σ2













(9)

The corresponding likelihood function should be

P(ξ) =

Ñ
∏

i=1

P(ξi) =

(

1
√

2πσ2

)Ñ

exp



































−

Ñ
∑

i=1

ξ2
i

2σ2



































(10)

By replacing ξi with yi, (10) can be rewritten as

P(y|β) =

(

1
√

2πσ2

)Ñ

exp



































−

Ñ
∑

i=1

(yi − h (xi)β)2

2σ2



































(11)

Accordingly, the log style of the above likelihood function can be represented as

L(y|β) = − Ñ

2
log

(

2πσ2
)

−



































Ñ
∑

i=1

(yi − h (xi)β)2

2σ2



































(12)
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By maximizing (12), we can obtain the optimal β:

β̃ = arg max L (y|β) = arg min

Ñ
∑

i=1

(yi − h (xi)β)2 (13)

However, if the original Gaussian noise is changed as other kinds of noise distributions, we cannot obtain the

optimal β through (13). Therefore, if a predictor is created based on the assumption that the noise follows a spe-

cific distribution, such as Gaussian distribution or Laplace distribution, it cannot guarantee to obtain the satisfactory

performance.

3.2. Motivation of Improving Modeling Capability with Unknown Noise90

According to (8), the estimated output weights of ELM without the regularization coefficient can be expressed as

β̃
Ψ
=

(

HT H
)−1

HT Y

=

L
∑

i=1

HT
i

(

Hiβ
Ψ
i
+ ξi

)

L
∑

i=1

HT
i

Hi

= βΨ +

L
∑

i=1

HT
i
ξi

L
∑

i=1

HT
i

Hi

(14)

The estimated output weights of ELM with the regularization coefficient should be

β̃ =

(

I

C
+HT H

)−1

HT Y

=

(

I

C
+HT H

)−1
(

HT H
)

[

(

HT H
)−1

HT Y

]

=



















(

HT H
)





















(

HT H
)−1

C
+ I







































−1

(

HT H
)

[

(

HT H
)−1

HT Y

]

=





















(

HT H
)−1

C
+ I





















−1

(

HT H
)−1 (

HT H
)

[

(

HT H
)−1

HT Y

]

=





















(

HT H
)−1

C
+ I





















−1
[

(

HT H
)−1

HT Y

]

=





















(

HT H
)−1

C
+ I





















−1

β̃
Ψ

(15)

and can be represented as

β̃ =

L
∑

i=1

HT
i

(

Hiβ
Ψ
i
+ ξi

)

I
C
+

L
∑

i=1

HT
i

Hi

(16)
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According to (14) and (16), when dealing with the specific tasks, the hidden layer output matrix of ELM may

change largely due to the random assigned hidden layer parameters and the effects of noise, which sequentially leads

to the corresponding change of the output weights. As we know, the unstable fluctuations of the output weights

increase both of the structural risk and the empirical risk of ELM [30].

For the approximation capability of ELM, Huang et al. [4, 31] have proved that ELM can approximate an arbitrary95

continuous target function with a very small error δ (δ > 0). Accordingly, we have the following theorem to guarantee

the robustness of ELM in handling modeling tasks with unknown noise.

Theorem 1. Given any small value δ̂ (δ > δ̂ > 0), and activation function, which is infinitely differentiable in any

internal, if the effects of external disturbance from the noise can be reduced or eliminated, ELM can approximate any

target function with error δ̂.100

Proof. Let ∆H and ∆β denote the change of the hidden layer output matrix and the output weights, caused by the

external disturbance from the noise, respectively. Thus, (2) is modified as

(H + ∆H)(β + ∆β) = Y (17)

(H + ∆H)(β + ∆β) = Hβ (18)

H∆β + ∆H∆β = −(∆Hβ) (19)

after that, we have

∆β = −(∆Hβ)(H + ∆H)† (20)

where (H + ∆H)† denotes the Moore-Penrose generalized inverse of matrix (H + ∆H).

According to (20), we have

∥∆β∥ ≤ ∥∆Hβ∥
∥

∥

∥(H + ∆H)†
∥

∥

∥ (21)

Accordingly, the right term of (21) is the upper bound of ∥∆β∥, if we can reduce or eliminate the effects of external

disturbance of the noise, both
∥

∥

∥(H + ∆H)†
∥

∥

∥ and ∥∆Hβ∥ will be smaller, enabling ∥∆β∥ to be smaller, so ELM will be

more robust with better generalization performance. �

Remark 1. Bartlett [32] has proved that the generalization performance of the feedforward neural network with105

smaller model noise and output weights should be better, and the conclusion is also true for ELM [16, 31].

Remark 2. Actually, (8) is the explicit expression of the relationship among the created model, noise, and data,

and (18) is the corresponding implicit expression. In (18), the effects of noise are denoted by ∆H and ∆β, respectively.

Generally, there are two popular modified schemes to tackle the above issue:

1) Removing or filtering the noise components of the data. This scheme aims to improve the data quality by110

data cleansing techniques or low-pass filters. However, it may simultaneously remove the normal data and break the

original data structure, which seems to be unreasonable.

2) Optimizing the objective function, which is the sum of the output weights squares and the sum of the error

squares. This scheme aims to reduce the effects of both the structural risk and empirical risk. However, it only can

work well under the assumption that noise follows Gaussian distribution, which usually cannot hold. Practically,115

noise is usually subject to unknown distributions, such as Laplace distribution, Beta distribution, and even mixed

distributions.

In order to tackle the above issues, we should propose a more robust and efficient machine learning approach to

strengthen the modeling capability with unknown noise. Considering the excellent capability of mixture of Gaussian

(MoG) of approximating any continuous noise distribution, we modify the original objective function of ELM by120

embedding MoG, in which the characteristic of noise is described using MoG [33].

3.3. Objective Function of R-ELM

According to the above theoretical analysis, the objective function of ELM in (5) is not suitable in several scenar-

ios. If we describe the feature of noise using MoG instead of the original one in the objective function, the proposed

6



approach should be more robust. The probability density function of MoG is

P (ξ) =

K̃
∑

j=1

π jN j

(

ξ|0, σ2
j

)

(22)

where π j > 0 denotes the weighted coefficient, and
K̃
∑

j=1

π j = 1, N j

(

ξ|0, σ2
j

)

denotes the Gaussian distribution with

(

0, σ2
j

)

, and K̃ is the number of independent Gaussian distributions of MoG, respectively.

Thus, the objective function of R-ELM can be mathematical represented as

Min :
1

2
∥β∥2 − 1

2
C

Ñ
∑

i=1

log

K̃
∑

j=1















π j















1
√

2πσ j

exp















−
ξ2

i

2σ2
j











































s.t.,h (xi)β = yi − ξi, i = 1, . . . , Ñ

(23)

The likelihood function of ξ can be expressed as

P (ξ|ϑ) =

Ñ
∏

i=1

P
(

ξi|ϑ
)

=

Ñ
∏

i=1

K̃
∑

j=1

π jN j

(

ξi|0, σ2
j

)

(24)

where ϑ =
(

π1, π2, ..., πK̃ , σ
2
1
, σ2

2
, ..., σ2

K̃
,β

)

denotes the set of parameters need to be estimated.125

The corresponding log style is

L (ξ|ϑ) =

Ñ
∑

i=1

























log

K̃
∑

j=1

π j

























1
√

2πσ2
j

exp















−
ξ2

i

2σ2
j































































(25)

As mentioned above, MoG can theoretically approximate any continuous noise distribution, thus the proposed

R-ELM should be more robust than ELM, especially in handling tasks with uncertainties.

Remark 3. According to the analysis of the above sections, the objective function in (5) is suitable for the

noise following Gaussian distribution, and other similar objective functions can be constructed for different single

noise distributions. However, noise of the real world applications is usually complex and unknown, it is difficult to130

character, leading to the poor robustness of the objective functions only for the specific noise distributions. Differently,

we treat the noise as the random variables without prior knowledge following MoG distribution, and utilize the second

term of (23) to character the features of noise.

In the new objective function, the optimal number of Gaussian mixtures κ is an important user-specified parameter.

In order to guarantee the approximation capability of MoG, we should initialize a relatively large K̃, but there are135

usually redundant components. Thus, if there is no distinct difference between two components, we can merge them

without performance degradation. As depicted in Fig. 2, assuming that we use the R-ELM with 5-component MoG

to represent a given target function, and there are two components with the same horizontal coordinate. According to

Fig.2, we can find that the line connects the centers of the other 3 components, but just goes through the middle of

the two components, this indicates that these two components are redundant. If we merge them, the new component140

will have an inflated variance, and the approximation capability of the new 4-component MoG should be similar to

the original 5-component MoG. A common pruning rule for the redundant components is that if the variance of the

arbitrary two components are similar, they can be merged as a new ‘big’ component, which is also applied to search

the optimal number of Gaussian mixtures in this paper.
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Figure 2: Redundant components in MoG

3.4. Solving Process of R-ELM145

Considering that the analytical solutions of the parameters in ϑ cannot be calculated directly, we implement

expectation maximization (EM) algorithm to estimate these parameters [34]. Assuming that the complete data include

the observed data ξi, and the unobservable component indicator matrix ω = (ω1,ω2, ...,ωÑ)T , ωi = (ωi1, ωi2, ..., ωiK̃)

denotes the corresponding unobservable component indicator vector. If ξi comes from the jth component, then ωi j =

1, and others of ωi should be 0, thus,
K̃
∑

j=1

ωi j = 1, and
Ñ
∑

i=1

K̃
∑

j=1

ωi j = Ñ. Thus, according to (23), we have

L (θ|ϑ) =

Ñ
∑

i=1

K̃
∑

j=1

ωi j















log π j −
1

2
log

(

2πσ2
j

)

−
ξ2

i

2σ2
j















(26)

where θ = (ξ,ω) denotes the complete dataset.

EM algorithm involves two phases, including the E-step and M-step. In the E-step, according to ξ, and the

estimated ϑ̃q after q times’ iteration, we can obtain the following expression by calculating the conditional expectation

of L(θ|ϑ) with respect to ω:

Q
(

ϑ|ϑ̃q

)

=

Ñ
∑

i=1

K̃
∑

j=1

λi j

(

log π j

)

+

Ñ
∑

i=1

K̃
∑

j=1

λi j















−1

2
log 2π − 1

2
logσ2

j −
ξ2

i

2σ2
j















(27)

where λi j stands for the posterior responsibility of the ith observation ξi coming from the jth component of MoG:

λi j = E
(

ωi j

)

=
π

q

j
N j

(

ξ
q

i
|0, σ2,q

j

)

K̃
∑

j=1

π
q

j
N j

(

ξ
q

i
|0, σ2,q

j

)

(28)

In the M-step, Q function can be maximized iteratively, and then obtain all the parameters in ϑ. By calculating the

partial derivatives of (28), we can obtain the updated expressions of π j and σ2
j
:

π j =

Ñ
∑

i=1

λi j

Ñ
(29)

σ2
j =

Ñ
∑

i=1

ξ2
i

















Ñ
∑

i=1

λi j

















−1

(30)
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Actually, maximizing the above Q function equals to maximizing the following expression:

fβ = −
Ñ

∑

i=1

K̃
∑

j=1

λi j

ξ2
i

2σ2
j

= −
Ñ

∑

i=1

















K̃
∑

j=1

λi j

2σ2
j

















(yi − h (xi)β)2

= −∥µ ⊙ (Y −Hβ)∥2

(31)

where µ = (µ1, µ2, ..., µÑ)T denotes the weight vector, and µi =

√

K̃
∑

i=1

λi j

2σ2
j

, ⊙ is the Hadamard product, respectively.

The dual optimization problem of (31) can be represented as

Min : ∥(µ ⊙ ξ)∥2

s.t.,Hβ = Y − ξ
(32)

Thus, (23) can be modified as

Min :
1

2
∥β∥2 + 1

2
C∥(µ ⊙ ξ)∥2

s.t.,Hβ = Y − ξ
(33)

The Lagrangian function of (33) is

L (β, ξ,α) =
1

2
∥β∥2 + 1

2
C∥(µ ⊙ ξ)∥2 − αT (ξ − Y +Hβ) (34)

where α =
(

α1, α2, . . . , αÑ

)T
denotes the Lagrangian coefficient.

After that, according to the KKT theorem, by setting the gradient of the above Lagrangian function with respect

to (β, ξ,α) equal to zero, we have
∂L

∂β
= 0→ β = HTα (35a)

∂L

∂ξ
= 0→ ξ = C−1diag(µ)−2α (35b)

∂L

∂α
= 0→ ξ − Y +Hβ = 0 (35c)

Substituting (35b) in (35c), we have

α =
[

C−1diag(µ)−2
]−1

(Y −Hβ) (36)

Substituting (36) in (35a), we have

β=

[

I+HT
[

C−1diag(µ)−2
]−1

H

]−1

HT
[

C−1diag(µ)−2
]−1

Y (37)

After that, we can calculate the predicted output of R-ELM:

fR−ELM(x) = Hβ = H

[

I +HT
[

C−1diag(µ)−2
]−1

H

]−1

HT
[

C−1diag(µ)−2
]−1

Y (38)

Remark 4. Due to the random feature mapping mechanism, the learning problem of ELM is reduced to that150

of estimating the optimal output weights. Similarly, R-ELM model also can be created based the calculated output

weights using (37). According to (6), the hidden layer parameters of ELM included in the hidden layer output matrix

9



H have effects on the output weights with predetermined C and Y. Differently, both the hidden layer parameters and µ

have effects on the output weights of R-ELM, it means that the model performance of R-ELM is partially associated

with MoG.155

Accordingly, R-ELM can be summarized as Algorithm 2.

Algorithm 2 R-ELM

Input: Given a training dataset {(xi, yi)}Ñi=1 ⊂ Rn × Rm, an activation function g(·), the number of hidden nodes L, the

regularization factor C, and initialized number of Gaussian mixtures K̃.

1: Hidden layer parameters initialization. Randomly generating the hidden layer parameters of R-ELM ai and bi,

i = 1, . . . , L;

2: Update the parameters of MoG using EM algorithm. Calculate λi j using (28), update π j and σ2
j

using (29) and

(30), sequentially update ξi until it reaches a predefined threshold;

3: Model building. Obtain the output weights β using (37), and then create the R-ELM model using (38).

4. Performance Verification on Benchmark Datasets

In this section, some selected benchmark datasets are employed to verify the effectiveness of the proposed R-

ELM by comparing with a number of state-of-the-art machine learning approaches, including ELM [2], residual

compensation ELM (RC-ELM) [16], PR-ELM [27], support vector machine (SVM), and back-propagation neural

network (BPNN). In addition, all the experiments are conducted using Matlab 2015b running on a i5 3.2 GHz CPU

with 4G RAM. In the experiments, the following root mean square error (RMS E) is chosen as the evaluation criterion:

RMS E =

√

√

√

√
z
∑

i=1

(yi − ỹi)
2

z
(39)

where ỹi denotes the predicted value of yi, and z is the number of samples used in the experiments, respectively.

4.1. Experimental Settings

In order to verify the validity of the proposed R-ELM with unknown noise, we will add the following kinds of160

noise into the datasets:

1) Gaussian noise: noise follows N(0, 0.12);

2) Gaussian noise: noise follows N(0, 1);

3) Laplace noise: noise follows L(0, 0.52);

4) Mixed noise: noise includes 30% Gaussian noise following N(0, 1), 30% Gaussian noise following N(0, 0.32),165

30% Gaussian noise following N(0, 0.12), and 10% Laplace noise following L(0, 0.12), respectively.

We firstly evaluate the performance using the following ‘SinC’ function:

y(x) =

{

sin(x)/x, x , 0

1, x = 0
(40)

Both of the number of the training samples and the testing samples are 5000, and all of them are created uniformly

randomly distributed on the interval (-10,10), respectively. The above four types of noise are added to the training

samples, while the testing samples remain noise-free.

In addition, we also select three regression datasets, including Auto-MPG, Abalone, California Housing, and a170

time series prediction dataset, i.e., Mackey-Glass, from the UCI Machine Learning Repository. Table 1 lists the details

of the selected benchmark datasets, including attribute number, training data number, and testing data number. In the

experiments, all the data are normalized to the range [0,1]. For the sake of simplicity, we choose the Sigmoid as the

activation functions of ELM, RC-ELM, PR-ELM, and R-ELM, and other user specified parameters of all the machine

learning approaches are determined using cross validation method.175
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Table 1: Details of the Selected Benchmark Datasets

Datasets #Attributes #Training Data #Testing Data

Auto-MPG 7 320 72

Abalone 8 3000 1177

California Housing 8 8000 12640

Mackey Glass 4 1500 500

The Mackey-Glass data are generated by the following time-delay differential equation:

dx(t)

dt
=

0.2x(t − τ)
1 + x10(t − τ)

− 0.1x(t) (41)

where x(t) stands for the values of time series at time t, τ = 17 denotes the delayed time. We initially set the x(0) = 1.2

and x(t) = 0 for t < 0. Furthermore, a sinusoid with amplitude 0.2 is added to the series to obtain the nonstationary

time series, as depicted in Fig. 3. After that, we predict y(t) = x(t + 6) from the past values of this time series:

[x(t), x(t − 2), x(t − 12), x(t − 18); x(t + 6)] (42)

We collect 2000 data pairs based on (42), in which the first 1500 input-output instances for training, while the

other 500 for testing.
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Figure 3: Mackey-Glass chaotic time series

4.2. Simulation Results and Analysis

Fig. 4 illustrates the comparison results of ‘SinC’ with different kinds of noise. Accordingly, we can find that the

performance of the four machine learning approaches are comparative and close to the actual value when the data are180

corrupted by Gaussian noise N(0, 0.12). When the added noise changes as Gaussian noise N(0, 1), their performance

become worse than before, but all of them still can track the ‘SinC’ curve. However, when we add Laplace noise into

the data, the accuracy of some approaches become worse. For example, ELM and RC-ELM have deviated from the

actual value at the peaks. Furthermore, in Fig. 4(d), when we add mixed noise into the data, ELM, RC-ELM, and

even PR-ELM seriously deviate from the actual value, but R-ELM still can fit it well in most of the situations. This185

is because R-ELM can approximate the mixed noise through the MoG in the modified objective function. In addition,

PR-ELM is more robust than ELM and RC-ELM, because PR-ELM not only minimizes the output weights, as well

as both the mean and variance of the modeling error. However, it still cannot obtain satisfactory performance with the

data corrupted by unknown noise, the reason is that squared loss is still utilized in the objective function of PR-ELM.
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(c) Laplace noise L(0, 0.52)
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(d) Mixed noise

Figure 4: Comparison results of ‘SinC’ with different kinds of noise

The detailed comparison results both with and without additional noise of different approaches are listed in Ta-190

bles 2-5. According to Table 2, when the benchmark data are pure, the performance of all the approaches are almost

comparative. In Table 3, when we add Gaussian noise into the datasets, all of the approaches are still not affected

seriously. However, when we add Laplace noise into the datasets, the performance of ELM, RC-ELM, SVM, and

BPNN become worse. After we add mixed noise into the datasets, even PR-ELM becomes unstable, but R-ELM still

can obtain satisfactory performance.195

Fig. 5 depicts the comparison results between R-ELM and PR-ELM on Mackey-Glass dataset with mixed noise.

Accordingly, it is easy to observe that R-ELM outperforms PR-ELM in most of the situations, which also validates

the aforementioned theoretical analysis.

Table 2: Comparison Results on Selected Benchmark Datasets without Additional Noise

Datasets ELM RC-ELM PR-ELM R-ELM SVM BPNN

Auto-MPG 0.1271 0.1202 0.1197 0.1189 0.1269 0.1355

Abalone 0.0759 0.0731 0.0718 0.0735 0.0782 0.0931

California Housing 0.1293 0.1160 0.1172 0.1161 0.1158 0.1329

Table 3: Comparison Results on Selected Benchmark Datasets with Gaussian Noise

Datasets ELM RC-ELM PR-ELM R-ELM SVM BPNN

Auto-MPG 0.1351 0.1232 0.1220 0.1223 0.1325 0.1397

Abalone 0.0812 0.0757 0.0769 0.0751 0.0801 0.1001

California Housing 0.1302 0.1181 0.1179 0.1173 0.1202 0.1319
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Table 4: Comparison Results on Selected Benchmark Datasets with Laplace Noise

Datasets ELM RC-ELM PR-ELM R-ELM SVM BPNN

Auto-MPG 0.1467 0.1329 0.1296 0.1298 0.1442 0.1609

Abalone 0.1027 0.0933 0.0856 0.0831 0.1058 0.1103

California Housing 0.1360 0.1198 0.1181 0.1168 0.1299 0.1320

Table 5: Comparison Results on Selected Benchmark Datasets with Mixed Noise

Datasets ELM RC-ELM PR-ELM R-ELM SVM BPNN

Auto-MPG 0.1711 0.1693 0.1602 0.1381 0.1789 0.1920

Abalone 0.1539 0.1525 0.1439 0.1022 0.1421 0.1670

California Housing 0.1411 0.1203 0.1215 0.1189 0.1376 0.1409
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Figure 5: Comparison errors between R-ELM and RC-ELM of Mackey-Glass data

5. Performance Verification on Real World Applications

In the above section, we have conducted experiments on selected benchmark datasets to demonstrate the perfor-200

mance of the proposed R-ELM. Then, we further evaluate the validity of R-ELM using two real world applications,

including gas utilization ratio (GUR) prediction and hot metal silicon content (HMSC) prediction in blast furnace

ironmaking process.

Blast furnace is one of the dominant unit for producing molten iron in the manufacture of iron and steel with

large uncertainties. It usually has multi-variable, strong nonlinear and highly complex characteristics, leading to the205

noise complex and unknown (see Fig. 6) [35]. GUR is one of the most concerned indicators reflecting the blast

furnace status, and HMSC is a main indicator of product quality and thermal state inside blast furnace. It is critical

to accurately predict GUR and HMSC for monitoring and assessing the operation state of blast furnace. Specifically,

the experimental data are collected from a blast furnace with inner volume of 2500 m3, and we randomly select 1500

data pairs for the following experiments (1000 data pairs for training, and the other 500 for testing). Some important210

variables are considered as the input features, such as blast volume (m3/min), blast pressure (kPa), blast temperature

(◦C), oxygen enrichment percentage (wt%), permeability index (m3/min ·kPa), top temperature (◦C), and top pressure

(kPa), etc.

5.1. Gas Utilization Ratio Prediction

Some statistical properties of the aforementioned variables of the experimental data are firstly calculated, including215

maximum, minimum, mean, and standard deviation (SD). The corresponding results are detailed in Table 6 and
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Figure 6: Inside of blast furnace

Table 7, respectively. Specifically, Table 6 lists the statistical properties of GUR in respect of the training data and

testing data, and Table 7 lists the statistical properties of the selected variables. Accordingly, both of the training data

and testing data demonstrate various statistical properties, indicating the characteristics of violent fluctuation of the

experimental data. It means that those data can better verify the generalization performance of R-ELM. As we know,220

variables with large magnitude should have larger effects on the modeling than the ones with magnitude, thus all the

experimental data are normalized into (0, 1) with the same magnitude to eliminate the influence of dimension among

variables.

Table 6: Statistical properties of training data and testing data of GUR

Data Max Min Mean SD

Training 48.90 47.25 48.08 0.35

Testing 49.15 47.35 48.26 0.39

Table 7: Statistical properties of the variables of GUR

No. Variable Max Min Mean SD

1 blast volume 4925.4 4866.7 4898.2 10.75

2 blast pressure 382.27 361.52 372.14 3.94

3 blast temperature 1134.1 1127.5 1130.1 1.28

4 oxygen enrichment percentage 45.96 35.22 42.43 1.21

5 permeability index 37.54 29.32 32.01 1.60

6 top temperature 308.52 202.10 276.83 23.21

7 top pressure 224.66 215.95 220.36 1.57

Fig. 7 illustrates comparison results of scatter distributions of ELM, RC-ELM, PR-ELM, and R-ELM, which can

indicate the correlation between the predicted values and the actual values. Accordingly, it can be found that the225

scatter points of R-ELM are more concentrated in the black line (the black line y = x denotes the actual value),

and the predicted values of other approaches are relatively far away from the black line. In addition, Fig. 8 depicts

error autocorrelation functions of those approaches, in which the error autocorrelation function of R-ELM closely
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Figure 7: Scatter distributions of GUR prediction
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Figure 8: Error autocorrelation functions of GUR prediction

approximates to the white noise sequence. According to Fig. 7 and Fig. 8, the predicted results of those approaches

are consistent with the actual GUR changing trend, but with differences in the agreement degree. We can find that230

the predicted result of ELM has the lowest agreement with the actual GUR values, and the predicted result of R-

ELM is better than RC-ELM and PR-ELM. Actually, the difference of the predicted results between R-ELM and

RC-ELM is little. The reason is that RC-RLM also can reduce the effects of noise through the hierarchical residual

compensation mechanism. The detailed comparison results are summarized in Table 8. As observed from Table 8,

R-ELM distinctly outperforms other approaches. Furthermore, the training RMSE and testing RMSE of R-ELM are235

almost two times better than ELM, SVM, and BPNN. In summarize, all the comparison results indicate the excellent

modeling capability of R-ELM.

Table 8: Detailed Comparison Results of GUR Prediction

Approach Training RMSE Testing RMSE

ELM 0.1329 0.0927

RC-ELM 0.0605 0.0590

PR-ELM 0.0988 0.0706

R-ELM 0.0500 0.0410

SVM 0.1528 0.0855

BPNN 0.2106 0.2523

5.2. Hot Metal Silicon Content Prediction

Similarly, considering the influence on the convergence speed and model complexity, all the data are firstly nor-

malized into [0, 1] in HMSC prediction. It should note that HSMC is not normalized, because it has been controlled240

within (0.3, 0.7). The comparison predicted results of the selected samples of ELM, RC-ELM, PR-ELM, and R-ELM

are illustrated in Fig. 9, in which the black line, red line, green line, blue line, and pink line denote the actual values,

predicted results of ELM, RC-ELM, PR-ELM, and R-ELM, respectively. According to Fig. 9, R-ELM can track the

actual HSMC values well, and better than other approaches. In addition, we can find that the predicted result of ELM

is far from the actual HSMC values in several situations, this is because ELM has weaker tolerance capability of245
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Figure 9: Comparison results of HMSC prediction
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Figure 10: Scatter distributions of HMSC prediction

complex and unknown noise. Differently, RC-ELM can utilize the residuals to improve the performance, PR-ELM

has better robustness due to their modified objective functions considering the modeling errors caused by noise. The

scatter diagrams of all the four approaches are depicted in Fig. 10, in which the regression points of R-ELM are closer

to the black line. In addition, we also plot the probability density function (PDF) curves of all the four approaches in

Fig. 11 for further demonstrating the dynamic tracking capability of them. According to Fig. 11, the PDF curve of250

R-ELM is higher and narrower, indicating that the corresponding errors are more concentrated near the mean 0 and

the variance is also smaller. Thus, R-ELM can provide more accurate predicted result of HMSC.
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Figure 11: Probability density function curves of different approaches
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6. Discussions

6.1. Influence Factors of Modeling Capability of ELM

In essence, three factors mainly confine the modeling capability of ELM, including:255

1) Sensitive objective function. The objective function of ELM is sensitive to the non-Gaussian noise, which

widely exists in the real world applications. In order to tackle this issue, robust variants are proposed, such as R-ELM

and PR-ELM, in which the original objective function of ELM is modified to approximate the complex and unknown

noise distribution.

2) Limited representation capability of the single hidden layer structure. Huang et al. [4, 31] have proven that260

ELM can theoretically reach the global optimum under the given network structure and user specified parameters.

However, the finite training data may not guarantee the consistent good performance of ELM in the uncertain and

heterogeneous environments due to its single hidden layer structure. Multilayer ELMs (ML-ELM) were designed for

strengthening the representation capability of ELM. Different form conventional deep learning, ML-ELM integrates

the representation learning and decision making into a whole training process, in which multiple hidden layers stacked265

using ELM autoencoder (ELM-AE) are for extracting high-level features, and a final layer of ELM or an ELM predic-

tor/classifier at the last component for decision making. Accordingly, the proposed R-ELM also can be utilized as the

decision maker for enhancing the performance of ML-ELM in handling tasks with complex and unknown noise. It

should note that, R-ELM is mainly for regression problems, but classification problems may also involve the modeling

problems with non-Gaussian noise, such as fault diagnosis [36, 37], thus how to construct robust ELM classifier by270

embedding MoG should be considered.

3) Random feature mapping mechanism. One of the advantages of ELM is the randomly generated hidden layer

parameters, which makes ELM have very fast learning speed, even thousands of times faster than BPNN, SVM,

and some conventional deep learning approaches. Simultaneously, it also leads to the instability of ELM [38, 39,

40, 41]. ELM is sensitive to the randomization range of the hidden layer parameters, whose change may cause275

serious performance degradation. However, there is still no clear and theoretical criterion to guide the selection of the

randomization range for specific tasks. Usually, the randomization range is set as a fixed one, but different data have

their own distributions, so it cannot guarantee ELM to obtain the satisfactory performance for different tasks with

some specific randomization ranges.

6.2. Others280

According to (1), ELM is actually a linear combination of several activation functions. Random feature mapping

mechanism transforms the original nonlinear data-driven modeling into a learning problem of estimating the optimal

output weights using least-square manner. Differently, according to (23) and (37), due to the embedded MoG, the

analytical solutions of R-ELM cannot be calculated directly through least-square manner. Thus, we need perform EM

algorithm to estimate the parameters of MoG component. In addition, the robust technique utilized in R-ELM also285

can be applied to the neural networks with similar objective function form of ELM, such as L2 optimization based

objective functions.

Robust modeling and robust control actually have the similar goal, which is to optimize the corresponding results

with external uncertainties. Specifically, R-ELM is to create robust data-driven model for accurate feature mapping

from the input to the output with complex and unknown noise, and the hierarchical nonstationary filter for networked290

Markov switching repeated scalar nonlinear systems proposed in [42] is to guarantee that it can track the setting values

under external disturbance.

7. Conclusions

Most of the existing ELMs can theoretically obtain the optimal solutions under the assumption that the noise

follows Gaussian distribution. However, in practice, noise of the real world applications is usually subject to unknown295

distributions, i.e., Gaussian, non-Gaussian, or even mixed distributions, which easily leads to the suboptimal solutions

of these ELMs. In this paper, R-ELM is proposed to strengthen the modeling capability of classic ELM with unknown

noise. Specifically, a modified objective function is constructed, in which the characteristic of noise is described

utilizing MoG. Accordingly, it should be more robust even in the presence of unknown noise without performance
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attenuation, due to the excellent capability of MoG for approximating any continuous noise distribution. In addition,300

EM algorithm is performed for solving the modified objective function of R-ELM. Comprehensive experiments on

selected benchmark datasets and real world applications indicate that the proposed R-ELM outperforms state-of-the-

art machine learning approaches. Similar to classic ELM, R-ELM is a batch learning algorithm, we consider to

extend R-ELM for online modeling problems in our future work, enabling it more practical. In addition, R-ELM

focuses on regression problems, we also consider to modify its objective function to enhance the modeling capability305

of classification problems with unknown noise.
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