621 research outputs found

    Investigation to develop a multistage forest sampling inventory system using ERTS-1 imagery

    Get PDF
    The author has identified the following significant results. The annotation system produced a RMSE of about 200 m ground distance in the MSS data system with the control data used. All the analytical MSS interpretation models tried were highly significant. However, the gains in forest sampling efficiency that can be achieved by using the models vary from zero to over 50 percent depending on the area to which they are applied and the sampling method used. Among the sampling methods tried, regression sampling yielded substantial and the most consistent gains. The single most significant variable in the interpretation model was the difference between bands 5 and 7. The contrast variable, computed by the Hadamard transform was significant but did not contribute much to the interpretation model. Forest areas containing very large timber volumes because of large tree sizes were not separable from areas of similar crown cover but containing smaller trees using ERTS image interpretation only. All correlations between space derived timber volume predictions and estimates obtained from aerial and ground sampling were relatively low but significant and stable. There was a much stronger relationship between variables derived from MSS and U2 data than between U2 and ground data

    Mitigating Crack Propagation in a Highly Maneuverable Flight Vehicle Using Life Extending Control Logic

    Get PDF
    In this research, life extending control logic is proposed to reduce the cost of treating the aging problem of military aircraft structures and to avoid catastrophic failures and fatal accidents due to undetected cracks in the airframe components. The life extending control logic is based on load tailoring to facilitate a desired stress sequence that prolongs the structural life of the cracked airframe components by exploiting certain nonlinear crack retardation phenomena. The load is tailored to include infrequent injections of a single-cycle overload or a single-cycle overload and underload. These irregular loadings have an anti-intuitive but beneficial effect, which has been experimentally validated, on the extension of the operational structural life of the aircraft. A rigid six-degree-of freedom dynamic model of a highly maneuverable air vehicle coupled with an elastic dynamic wing model is used to generate the stress history at the lower skin of the wing. A three-dimensional equivalent plate finite element model is used to calculate the stress in the cracked skin. The plate is chosen to be of uniform chord-wise and span-wise thickness where the mechanical properties are assigned using an ad-hoc approach to mimic the full scale wing model. An in-extensional 3-node triangular element is used as the gridding finite element while the aerodynamic load is calculated using the vortex-lattice method where each lattice is laid upon two triangular finite elements with common hypotenuse. The aerodynamic loads, along with the base-excitation which is due to the motion of the rigid aircraft model, are the driving forces acting on the wing finite element model. An aerodynamic control surface is modulated based on the proposed life extending control logic within an existing flight control system without requiring major modification. One of the main goals of life extending control logic is to enhance the aircraft\u27s service life, without incurring significant loss of vehicle dynamic performance. The value of the control-surface deflection angle is modulated so that the created overstress is sufficiently below the yield stress of the panel material. The results show that extension in crack length was reduced by 40% to 75% with an absence of damage mitigation logic. Moreover, the desired structural integrity is satisfied without affecting the air vehicle dynamic performance

    Contribution to Load Alleviation in Aircraft Pre-design and Its Influence on Structural Mass and Fatigue

    Get PDF
    This thesis develops and demonstrates an aircraft pre-design process for loads analysis, load alleviation, structural optimization and fatigue analysis. It is shown that the consideration of maneuver and gust load alleviation in early design stages is a promising concept to reduce wing bending moments, structural mass and extend the fatigue life. The reference aircraft considered are two mid-range configurations: one with a backward and another one with a forward swept wing, respectively. In the loads analysis, quasi-steady maneuvers and dynamic 1-cos gusts are considered. For the load alleviation during maneuvers, the ailerons are deflected symmetrically with precalculated amplitudes. For the gust load alleviation, a feed-forward, proportional control algorithm is set up and the main input for the controller is the gust angle of attack. Analogous to maneuver load alleviation, the ailerons are deflected symmetrically. With the post-processed loads from the simulations, the structure of the wing and horizontal tailplane (HTP) is optimized toward mass minimization. The constraints considered are material strength, buckling stability and static aeroelastic requirements. The steps loads analysis and structure optimization of the developed design process are conducted iteratively until the wing box mass converges. For the reference aircraft, the load alleviation yields a reduction of wing box mass by 2.8% and 6.1%, respectively. Beyond that, a qualitative fatigue analysis is carried out to compare the fatigue behaviors of the active and passive aircraft (with and without load alleviation). In this step, loads due to continuous turbulence and ground-air-ground cycles are considered. For the reference missions, the fatigue life of the active aircraft is improved by 28% and 12% respectively, on top of the mass benefit. However, these numbers of fatigue life improvement are only valid for the considered loads and selected positions. If more loading conditions or structure elements are taken into account, the fatigue benefit may vary. As a conclusion, the proposed process can serve to gain an insight into the benefits of load alleviation for a given aircraft in the pre-design phase, before it advances to the next design stage

    A small perturbation based optimization approach for the frequency placement of high aspect ratio wings

    Get PDF
    Design denotes the transformation of an identified need to its physical embodiment in a traditionally iterative approach of trial and error. Conceptual design plays a prominent role but an almost infinite number of possible solutions at the outset of design necessitates fast evaluations. The traditional practice of empirical databases loses adequacy for novel concepts and an ever increasing system complexity and resource scarsity mandate new approaches to adequately capture system characteristics. Contemporary concerns in atmospheric science and homeland security created an operational need for unconventional configurations. Unmanned long endurance flight at high altitudes offers a unique showcase for the exploration of new design spaces and the incidental deficit of conceptual modeling and simulation capabilities. The present research effort evolves around the development of an efficient and accurate optimization algorithm for high aspect ratio wings subject to natural frequency constraints. Foundational corner stones are beam dimensional reduction and modal perturbation redesign. Local and global analyses inherent to the former suggest corresponding levels of local and global optimization. The present approach departs from this suggestion. It introduces local level surrogate models to capacitate a methodology that consists of multi level analyses feeding into a single level optimization. The innovative heart of the new algorithm originates in small perturbation theory. A sequence of small perturbation solutions allows the optimizer to make incremental movements within the design space. It enables a directed search that is free of costly gradients. System matrices are decomposed based on a Timoshenko stiffness effect separation. The formulation of respective linear changes falls back on surrogate models that approximate cross sectional properties. Corresponding functional responses are readily available. Their direct use by the small perturbation based optimizer ensures constitutive laws and eliminates a previously necessary optimization at the local level. The great economy of the developed algorithm makes it suitable for the conceptual phase of aircraft design.Ph.D.Committee Chair: Mavris, Dimitri; Committee Member: Bauchau, Olivier; Committee Member: Schrage, Daniel; Committee Member: Volovoi, Vitali; Committee Member: Yu, Wenbi

    Aeronautical Engineering, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 352 reports, articles and other documents introduced into the NASA scientific and technical information system in November 1983

    Aeronautical engineering: A continuing bibliography with indexes (supplement 304)

    Get PDF
    This bibliography lists 453 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 207)

    Get PDF
    This bibliography lists 484 reports, articles and other documents introduced into the NASA scientific and technical information system in November 1986

    Feature Papers of Drones - Volume I

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 1–8 are devoted to the developments of drone design, where new concepts and modeling strategies as well as effective designs that improve drone stability and autonomy are introduced. Articles 9–16 focus on the communication aspects of drones as effective strategies for smooth deployment and efficient functioning are required. Therefore, several developments that aim to optimize performance and security are presented. In this regard, one of the most directly related topics is drone swarms, not only in terms of communication but also human-swarm interaction and their applications for science missions, surveillance, and disaster rescue operations. To conclude with the volume I related to drone improvements, articles 17–23 discusses the advancements associated with autonomous navigation, obstacle avoidance, and enhanced flight plannin
    • …
    corecore