1,473 research outputs found

    Torque control of switched reluctance motors

    Get PDF
    This paper presents the performance of an instantaneous torque control method. The simulation and experimental results illustrate the capability of Switched Reluctance Motors (SRM) being used in the motor drive industry. Based on experimental data, the advantages of this control method and its disadvantages in practical implementation were studied. The model used in the simulation is the linear magnetic model which has the 12/8 structure, the same structure as the experimental switched reluctance motor

    Multiple Objective Co-Optimization of Switched Reluctance Machine Design and Control

    Get PDF
    This dissertation includes a review of various motor types, a motivation for selecting the switched reluctance motor (SRM) as a focus of this work, a review of SRM design and control optimization methods in literature, a proposed co-optimization approach, and empirical evaluations to validate the models and proposed co-optimization methods. The switched reluctance motor (SRM) was chosen as a focus of research based on its low cost, easy manufacturability, moderate performance and efficiency, and its potential for improvement through advanced design and control optimization. After a review of SRM design and control optimization methods in the literature, it was found that co-optimization of both SRM design and controls is not common, and key areas for improvement in methods for optimizing SRM design and control were identified. Among many things, this includes the need for computationally efficient transient models with the accuracy of FEA simulations and the need for co-optimization of both machine geometry and control methods throughout the entire operation range with multiple objectives such as torque ripple, efficiency, etc. A modeling and optimization framework with multiple stages is proposed that includes robust transient simulators that use mappings from FEA in order to optimize SRM geometry, windings, and control conditions throughout the entire operation region with multiple objectives. These unique methods include the use of particle swarm optimization to determine current profiles for low to moderate speeds and other optimization methods to determine optimal control conditions throughout the entire operation range with consideration of various characteristics and boundary conditions such as voltage and current constraints. This multi-stage optimization process includes down-selections in two previous stages based on performance and operational characteristics at zero and maximum speed. Co-optimization of SRM design and control conditions is demonstrated as a final design is selected based on a fitness function evaluating various operational characteristics including torque ripple and efficiency throughout the torque-speed operation range. The final design was scaled, fabricated, and tested to demonstrate the viability of the proposed framework and co-optimization method. Accuracy of the models was confirmed by comparing simulated and empirical results. Test results from operation at various torques and speeds demonstrates the effectiveness of the optimization approach throughout the entire operating range. Furthermore, test results confirm the feasibility of the proposed torque ripple minimization and efficiency maximization control schemes. A key benefit of the overall proposed approach is that a wide range of machine design parameters and control conditions can be swept, and based on the needs of an application, the designer can select the appropriate geometry, winding, and control approach based on various performance functions that consider torque ripple, efficiency, and other metrics

    Cost-Effective and High-Efficiency Variable-Speed Switched Reluctance Drives With Ring-Connected Winding Configuration

    Get PDF
    This paper presents a novel converter topology for six-phase switched reluctance motor (SRM) drives, which reduces the number of switches and diodes by half, compared with the conventional asymmetric half-bridge converter, but needs no additional energy storage component. A dynamic model of a six-phase SRM is developed in the MATLAB/SIMULINK environment and conventional current chopping and angle position control techniques are applied to the proposed converter, demonstrating successful operation across the full speed range with modified conventional control techniques, lower converter losses, and higher system efficiency compared with the asymmetric half-bridge converter. Experimental tests comparing two versions of the proposed converter with an asymmetric half-bridge are described and verify the predictions of the simulations

    SRM drives for electric traction

    Get PDF
    "GAECE" -- PortadaDescripció del recurs: 11 maig 2020GAECE (Grup d’accionaments elèctrics amb commutació electrònica). The group of electronically commutated electrical drives is a research team of Universitat Politècnica de Catalunya (UPC BARCELONATECH), which conducts investigation in four areas: electrical drives, power electronics, mechanics and energy and sustainability. Regarding electrical drives, research focuses on the development of new reluctance, permanent magnet and hybrid electrical drives. The main goal of those electrical drives is the integration of the power converter/controller and the mechanical transmission, being specially intended for the traction of light electric vehicles. That research is carried out by using the analysis of finite elements, taking into account eco-design criteria, considering new materials and new control strategies.First editio

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Robust Non-Permanent Magnet Motors for Vehicle Propulsion

    Get PDF
    There has been growing interest in electrical machines that reduce or eliminate rare-earth material content. Traction applications are among the key applications where reducing cost and hence reduction or elimination of rare-earth materials is a key requirement. This paper will assess the potential of three non-permanent magnet options in the context of vehicle propulsion applications: 1) a conventional Switched Reluctance Machine (SRM), 2) a DC-biased Reluctance Machine (DCRM) and, 3) a Wound Field Flux Switching Machine (WFFSM). The three machines were designed to achieve the hybrid vehicle traction requirements of 55kW peak and 30kW continuous over a speed range going from 2800rpm to 14000rpm. Their performance will be compared and the key opportunities and challenges will be highlighted. Preliminary experimental results for the DCRM will be presented

    Advancements in Flux Switching Machine Optimization : Applications and Future Prospects

    Get PDF
    This work was supported by the Commonwealth Scholarship Commission, U. K., under Grant Number: NGCN-180-2021Peer reviewe

    Optimum Switching Angle Of Switched Reluctance Motor Using Response Surface Methodology

    Get PDF
    Switched Reluctance Motor has numerous advantages compared to another electric motor. Simple structure, low-cost production, robustness, and high fault tolerance have been remarkable milestones. Still, the problem of excitation angle at power converter becomes crucial, especially for traction use, requiring higher torque at low speed for starting and acceleration. Therefore, this research emphasized finding the optimum excitation angle at low speed using Response Surface Methodology, a practical application to achieve the highest torque, as indicated by the best speed in the constant torque region. As a result, using Matlab simulation, the adaptive combination of optimum angles reached 2691 rpm quicker than a single excitation angle with 2568 rpm, an increase of 4.79% higher speed using RSM optimization. According to the experimental data, the adaptive combination of optimum angle achieved 2475 rpm better than the single excitation angle reached 2340 rpm, an increase of 5.77% higher speed using the Response Surface Methodology

    Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine

    Get PDF
    Optimal performance of the electric machine/drive system is mandatory to improve the energy consumption and reliability. To achieve this goal, mathematical models of the electric machine/drive system are necessary. Hence, this motivated the editors to instigate the Special Issue “Mathematical Approaches to Modeling, Optimally Designing, and Controlling Electric Machine”, aiming to collect novel publications that push the state-of-the art towards optimal performance for the electric machine/drive system. Seventeen papers have been published in this Special Issue. The published papers focus on several aspects of the electric machine/drive system with respect to the mathematical modelling. Novel optimization methods, control approaches, and comparative analysis for electric drive system based on various electric machines were discussed in the published papers

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used
    corecore