2,560 research outputs found

    Minimally Constrained Stable Switched Systems and Application to Co-simulation

    Full text link
    We propose an algorithm to restrict the switching signals of a constrained switched system in order to guarantee its stability, while at the same time attempting to keep the largest possible set of allowed switching signals. Our work is motivated by applications to (co-)simulation, where numerical stability is a hard constraint, but should be attained by restricting as little as possible the allowed behaviours of the simulators. We apply our results to certify the stability of an adaptive co-simulation orchestration algorithm, which selects the optimal switching signal at run-time, as a function of (varying) performance and accuracy requirements.Comment: Technical report complementing the following conference publication: Gomes, Cl\'audio, Beno\^it Legat, Rapha\"el Jungers, and Hans Vangheluwe. "Minimally Constrained Stable Switched Systems and Application to Co-Simulation." In IEEE Conference on Decision and Control. Miami Beach, FL, USA, 201

    A virtual actuator approach for the secure control of networked LPV systems under pulse-width modulated DoS attacks

    Get PDF
    In this paper, we formulate and analyze the problem of secure control in the context of networked linear parameter varying (LPV) systems. We consider an energy-constrained, pulse-width modulated (PWM) jammer, which corrupts the control communication channel by performing a denial-of-service (DoS) attack. In particular, the malicious attacker is able to erase the data sent to one or more actuators. In order to achieve secure control, we propose a virtual actuator technique under the assumption that the behavior of the attacker has been identified. The main advantage brought by this technique is that the existing components in the control system can be maintained without need of retuning them, since the virtual actuator will perform a reconfiguration of the plant, hiding the attack from the controller point of view. Using Lyapunov-based results that take into account the possible behavior of the attacker, design conditions for calculating the virtual actuators gains are obtained. A numerical example is used to illustrate the proposed secure control strategy.Peer ReviewedPostprint (author's final draft

    Nondeterministic hybrid dynamical systems

    Get PDF
    This thesis is concerned with the analysis, control and identification of hybrid dynamical systems. The main focus is on a particular class of hybrid systems consisting of linear subsystems. The discrete dynamic, i.e., the change between subsystems, is unknown or nondeterministic and cannot be influenced, i.e. controlled, directly. However changes in the discrete dynamic can be detected immediately, such that the current dynamic (subsystem) is known. In order to motivate the study of hybrid systems and show the merits of hybrid control theory, an example is given. It is shown that real world systems like Anti Locking Brakes (ABS) are naturally modelled by such a class of linear hybrids systems. It is shown that purely continuous feedback is not suitable since it cannot achieve maximum braking performance. A hybrid control strategy, which overcomes this problem, is presented. For this class of linear hybrid system with unknown discrete dynamic, a framework for robust control is established. The analysis methodology developed gives a robustness radius such that the stability under parameter variations can be analysed. The controller synthesis procedure is illustrated in a practical example where the control for an active suspension of a car is designed. Optimal control for this class of hybrid system is introduced. It is shows how a control law is obtained which minimises a quadratic performance index. The synthesis procedure is stated in terms of a convex optimisation problem using linear matrix inequalities (LMI). The solution of the LMI not only returns the controller but also the performance bound. Since the proposed controller structures require knowledge of the continuous state, an observer design is proposed. It is shown that the estimation error converges quadratically while minimising the covariance of the estimation error. This is similar to the Kalman filter for discrete or continuous time systems. Further, we show that the synthesis of the observer can be cast into an LMI, which conveniently solves the synthesis problem

    Stabilizing Randomly Switched Systems

    Full text link
    This article is concerned with stability analysis and stabilization of randomly switched systems under a class of switching signals. The switching signal is modeled as a jump stochastic (not necessarily Markovian) process independent of the system state; it selects, at each instant of time, the active subsystem from a family of systems. Sufficient conditions for stochastic stability (almost sure, in the mean, and in probability) of the switched system are established when the subsystems do not possess control inputs, and not every subsystem is required to be stable. These conditions are employed to design stabilizing feedback controllers when the subsystems are affine in control. The analysis is carried out with the aid of multiple Lyapunov-like functions, and the analysis results together with universal formulae for feedback stabilization of nonlinear systems constitute our primary tools for control designComment: 22 pages. Submitte

    Strong exponential stability of switched impulsive systems with mode-constrained switching

    Full text link
    Strong stability, defined by bounds that decay not only over time but also with the number of impulses, has been established as a requirement to ensure robustness properties for impulsive systems with respect to inputs or disturbances. Most existing results, however, only consider weak stability. In this paper, we provide a method for calculating the maximum overshoot and the decay rate for strong (and weak) global uniform exponential stability bounds for non-linear switched impulsive systems. We consider the scenario of mode-constrained switching where not all transitions between subsystems are allowed, and where subsystems may exhibit unstable dynamics in the flow and jump maps. Based on direct and reverse mode-dependent average dwell-time and activation-time constraints, we derive stability bounds that can be improved by considering longer switching sequences for computation. We provide numerical examples that illustrate the weak and strong exponential stability bounds and also how the results can be employed to ensure the stability robustness of nonlinear systems that admit a global state weak linearization.Comment: 23 pages, 4 figure

    Vibration suppression in multi-body systems by means of disturbance filter design methods

    Get PDF
    This paper addresses the problem of interaction in mechanical multi-body systems and shows that subsystem interaction can be considerably minimized while increasing performance if an efficient disturbance model is used. In order to illustrate the advantage of the proposed intelligent disturbance filter, two linear model based techniques are considered: IMC and the model based predictive (MPC) approach. As an illustrative example, multivariable mass-spring-damper and quarter car systems are presented. An adaptation mechanism is introduced to account for linear parameter varying LPV conditions. In this paper we show that, even if the IMC control strategy was not designed for MIMO systems, if a proper filter is used, IMC can successfully deal with disturbance rejection in a multivariable system, and the results obtained are comparable with those obtained by a MIMO predictive control approach. The results suggest that both methods perform equally well, with similar numerical complexity and implementation effort

    Issues in the design of switched linear systems : a benchmark study

    Get PDF
    In this paper we present a tutorial overview of some of the issues that arise in the design of switched linear control systems. Particular emphasis is given to issues relating to stability and control system realisation. A benchmark regulation problem is then presented. This problem is most naturally solved by means of a switched control design. The challenge to the community is to design a control system that meets the required performance specifications and permits the application of rigorous analysis techniques. A simple design solution is presented and the limitations of currently available analysis techniques are illustrated with reference to this example

    Stability of a class of multi-agent tracking systems with unstable subsystems

    Get PDF
    In this work, we pre-deploy a large number of smart agents to monitor an area of interest. This area could be divided into many Voronoi cells by using the knowledge of Voronoi diagram and every Voronoi site agent is responsible for monitoring and tracking the target in its cell. Then, a cooperative relay tracking strategy is proposed such that during the tracking process, when a target enters a new Voronoi cell, this event triggers the switching of both tracking agents and communication topology. This is significantly different from the traditional switching topologies. In addition, during the tracking process, the topology and tracking agents switch, which may lead the tracking system to be stable or unstable. The system switches either among consecutive stable subsystems and consecutive unstable subsystems or between stable and unstable subsystems. The objective of this paper is to design a tracking strategy guaranteeing overall successful tracking despite the existence of unstable subsystems. We also address extended discussions on the case where the dynamics of agents are subject to disturbances and the disturbance attenuation level is achieved. Finally, the proposed tracking strategy is verified by a set of simulations

    A Survey of Decentralized Adaptive Control

    Get PDF

    Decentralized and Fault-Tolerant Control of Power Systems with High Levels of Renewables

    Get PDF
    Inter-area oscillations have been identified as a major problem faced by most power systems and stability of these oscillations are of vital concern due to the potential for equipment damage and resulting restrictions on available transmission capacity. In recent years, wide-area measurement systems (WAMSs) have been deployed that allow inter-area modes to be observed and identified.Power grids consist of interconnections of many subsystems which may interact with their neighbors and include several sensors and actuator arrays. Modern grids are spatially distributed and centralized strategies are computationally expensive and might be impractical in terms of hardware limitations such as communication speed. Hence, decentralized control strategies are more desirable.Recently, the use of HVDC links, FACTS devices and renewable sources for damping of inter-area oscillations have been discussed in the literature. However, very few such systems have been deployed in practice partly due to the high level of robustness and reliability requirements for any closed loop power system controls. For instance, weather dependent sources such as distributed winds have the ability to provide services only within a narrow range and might not always be available due to weather, maintenance or communication failures.Given this background, the motivation of this work is to ensure power grid resiliency and improve overall grid reliability. The first consideration is the design of optimal decentralized controllers where decisions are based on a subset of total information. The second consideration is to design controllers that incorporate actuator limitations to guarantee the stability and performance of the system. The third consideration is to build robust controllers to ensure resiliency to different actuator failures and availabilities. The fourth consideration is to design distributed, fault-tolerant and cooperative controllers to address above issues at the same time. Finally, stability problem of these controllers with intermittent information transmission is investigated.To validate the feasibility and demonstrate the design principles, a set of comprehensive case studies are conducted based on different power system models including 39-bus New England system and modified Western Electricity Coordinating Council (WECC) system with different operating points, renewable penetration and failures
    • …
    corecore