22 research outputs found

    Reducing Drift in Parametric Motion Tracking

    Get PDF
    We develop a class of differential motion trackers that automatically stabilize when in finite domains. Most differ-ential trackers compute motion only relative to one previous frame, accumulating errors indefinitely. We estimate pose changes between a set of past frames, and develop a probabilistic framework for integrating those estimates. We use an approximation to the posterior distribution of pose changes as an uncertainty model for parametric motion in order to help arbitrate the use of multiple base frames. We demonstrate this framework on a simple 2D translational tracker and a 3D, 6-degree of freedom tracker

    PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume

    Full text link
    We present a compact but effective CNN model for optical flow, called PWC-Net. PWC-Net has been designed according to simple and well-established principles: pyramidal processing, warping, and the use of a cost volume. Cast in a learnable feature pyramid, PWC-Net uses the cur- rent optical flow estimate to warp the CNN features of the second image. It then uses the warped features and features of the first image to construct a cost volume, which is processed by a CNN to estimate the optical flow. PWC-Net is 17 times smaller in size and easier to train than the recent FlowNet2 model. Moreover, it outperforms all published optical flow methods on the MPI Sintel final pass and KITTI 2015 benchmarks, running at about 35 fps on Sintel resolution (1024x436) images. Our models are available on https://github.com/NVlabs/PWC-Net.Comment: CVPR 2018 camera ready version (with github link to Caffe and PyTorch code

    Cross Modal Distillation for Supervision Transfer

    Full text link
    In this work we propose a technique that transfers supervision between images from different modalities. We use learned representations from a large labeled modality as a supervisory signal for training representations for a new unlabeled paired modality. Our method enables learning of rich representations for unlabeled modalities and can be used as a pre-training procedure for new modalities with limited labeled data. We show experimental results where we transfer supervision from labeled RGB images to unlabeled depth and optical flow images and demonstrate large improvements for both these cross modal supervision transfers. Code, data and pre-trained models are available at https://github.com/s-gupta/fast-rcnn/tree/distillationComment: Updated version (v2) contains additional experiments and result

    Deformable Prototypes for Encoding Shape Categories in Image Databases

    Full text link
    We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.Office of Naval Research (Young Investigator Award N00014-06-1-0661

    Multiple constraints to compute optical flow

    Get PDF
    The computation of the optical flow field from an image sequence requires the definition of constraints on the temporal change of image features. In this paper, we consider the implications of using multiple constraints in the computational schema. In the first step, it is shown that differential constraints correspond to an implicit feature tracking. Therefore, the best results (either in terms of measurement accuracy, and speed in the computation) are obtained by selecting and applying the constraints which are best “tuned” to the particular image feature under consideration. Considering also multiple image points not only allows us to obtain a (locally) better estimate of the velocity field, but also to detect erroneous measurements due to discontinuities in the velocity field. Moreover, by hypothesizing a constant acceleration motion model, also the derivatives of the optical flow are computed. Several experiments are presented from real image sequences

    Hypercolumns for Object Segmentation and Fine-grained Localization

    Full text link
    Recognition algorithms based on convolutional networks (CNNs) typically use the output of the last layer as feature representation. However, the information in this layer may be too coarse to allow precise localization. On the contrary, earlier layers may be precise in localization but will not capture semantics. To get the best of both worlds, we define the hypercolumn at a pixel as the vector of activations of all CNN units above that pixel. Using hypercolumns as pixel descriptors, we show results on three fine-grained localization tasks: simultaneous detection and segmentation[22], where we improve state-of-the-art from 49.7[22] mean AP^r to 60.0, keypoint localization, where we get a 3.3 point boost over[20] and part labeling, where we show a 6.6 point gain over a strong baseline.Comment: CVPR Camera read

    Stochastic uncertainty models for the luminance consistency assumption

    Get PDF
    International audienceIn this paper, a stochastic formulation of the brightness consistency used in many computer vision problems involving dynamic scenes (motion estimation or point tracking for instance) is proposed. Usually, this model which assumes that the luminance of a point is constant along its trajectory is expressed in a differential form through the total derivative of the luminance function. This differential equation links linearly the point velocity to the spatial and temporal gradients of the luminance function. However when dealing with images, the available informations only hold at discrete time and on a discrete grid. In this paper we formalize the image luminance as a continuous function transported by a flow known only up to some uncertainties related to such a discretization process. Relying on stochastic calculus, we define a formulation of the luminance function preservation in which these uncertainties are taken into account. From such a framework, it can be shown that the usual deterministic optical flow constraint equation corresponds to our stochastic evolution under some strong constraints. These constraints can be relaxed by imposing a weaker temporal assumption on the luminance function and also in introducing anisotropic intensity-based uncertainties. We in addition show that these uncertainties can be computed at each point of the image grid from the image data and provide hence meaningful information on the reliability of the motion estimates. To demonstrate the benefit of such a stochastic formulation of the brightness consistency assumption, we have considered a local least squares motion estimator relying on this new constraint. This new motion estimator improves significantly the quality of the results

    Confidence measures for variational optic flow methods

    Get PDF
    In this paper we investigate the usefulness of confidence measures for variational optic flow computation. To this end we discuss the frequently used sparsification strategy based on the image gradient. Its drawbacks motivate us to propose a novel, energy-based confidence measure that is parameter-free and applicable to the entire class of energy minimising optic flow techniques. Experimental evaluations show that this confidence measure leads to excellent results, independently of the image sequence or the underlying variational approach

    Lucas/Kanade meets Horn/Schunck : combining local and global optic flow methods

    Get PDF
    Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas-Kanade technique or BigĂĽn\u27s structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of differential methods in four ways: (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemproal and nonlinear extensions to this hybrid method are presented. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure
    corecore