4 research outputs found

    Averaging Covariance Matrices for EEG Signal Classification based on the CSP: an Empirical Study

    Get PDF
    International audienceThis paper presents an empirical comparison of covariance matrix averaging methods for EEG signal classification. Indeed , averaging EEG signal covariance matrices is a key step in designing brain-computer interfaces (BCI) based on the popular common spatial pattern (CSP) algorithm. BCI paradigms are typically structured into trials and we argue that this structure should be taken into account. Moreover, the non-Euclidean structure of covariance matrices should be taken into consideration as well. We review several approaches from the literature for averaging covariance matrices in CSP and compare them empirically on three publicly available datasets. Our results show that using Riemannian geometry for averaging covariance matrices improves performances for small dimensional problems, but also the limits of this approach when the dimensionality increases

    Riemannian approaches in Brain-Computer Interfaces: a review

    Get PDF
    International audienceAlthough promising from numerous applications, current Brain-Computer Interfaces (BCIs) still suffer from a number of limitations. In particular, they are sensitive to noise, outliers and the non-stationarity of ElectroEncephaloGraphic (EEG) signals, they require long calibration times and are not reliable. Thus, new approaches and tools, notably at the EEG signal processing and classification level, are necessary to address these limitations. Riemannian approaches, spearheaded by the use of covariance matrices, are such a very promising tool slowly adopted by a growing number of researchers. This article, after a quick introduction to Riemannian geometry and a presentation of the BCI-relevant manifolds, reviews how these approaches have been used for EEG-based BCI, in particular for feature representation and learning, classifier design and calibration time reduction. Finally, relevant challenges and promising research directions for EEG signal classification in BCIs are identified, such as feature tracking on manifold or multi-task learning

    Robust common spatial patterns by minimum divergence covariance estimator

    No full text

    On robust spatial filtering of EEG in nonstationary environments

    Full text link
    corecore