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ABSTRACT
This paper presents an empirical comparison of covariance
matrix averaging methods for EEG signal classification. In-
deed, averaging EEG signal covariance matrices is a key
step in designing brain-computer interfaces (BCI) based on
the popular common spatial pattern (CSP) algorithm. BCI
paradigms are typically structured into trials and we argue
that this structure should be taken into account. Moreover,
the non-Euclidean structure of covariance matrices should
be taken into consideration as well. We review several ap-
proaches from the literature for averaging covariance matri-
ces in CSP and compare them empirically on three publicly
available datasets. Our results show that using Riemannian
geometry for averaging covariance matrices improves perfor-
mances for small dimensional problems, but also the limits of
this approach when the dimensionality increases.

Index Terms— common spatial pattern, SPD matrices,
robust averaging, Riemannian geometry, EEG signal classifi-
cation, brain-computer interface (BCI)

1. INTRODUCTION

Brain-computer interface (BCI) systems [1] aim at trans-
lating brain signals into control signals, such brain signals
being usually processed using machine learning methods.
Among the possible paradigms, in recent years, BCI ap-
proaches based on motor imagery (MI) have been developing
rapidly [2]. In this paradigm, subjects are asked to imagine
the movements of their limbs, e.g., hand movements. Dif-
ferent areas of the brain show an alteration in the regular
activity according to the imagined movement performed, and
this activity can be measured through an electroencephalo-
gram (EEG). The main motivation of BCI is to establish a
novel communication channel for healthy and disabled peo-
ple to interact with the environment. In fact, the information
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of the mental state of a subject can be used for controlling a
computer application or a robotic device such as a wheelchair.

A very challenging task with BCI is to find a reliable rep-
resentation of brain signals. To do so, a feature extraction
method is necessary and, among all, Common Spatial Pattern
(CSP) [3, 4] is certainly the most popular for classifying os-
cillatory EEG signals such as those observed during MI. The
idea behind CSP is to compute the most suitable spatial fil-
ters to discriminate between different types of EEG signals in
a BCI protocol based on changes in oscillations (e.g., motor
imagery, steady state visually evoked potential, etc.). Practi-
cally, it reduces the volume conduction effect — the spatial
spread of information after the electrical signals go through
the skull and skin— on the filtered signal.

The core idea of CSP is to simultaneously diagonalize
the average covariance matrices (averaged over trials) of the
class-related signals. Thus, using poorly estimated or noisy
covariance matrices often leads to poor spatial filters, and
thus poor BCI performances [5]. Hence, improving covari-
ance matrix estimators should improve CSP performance.

Moreover, covariance matrices are symmetric positive-
definite (SPD) and Riemannian geometry has been shown ef-
fective for handling such data [6–9]. Links between CSP and
Riemannian approaches have even been discussed in [10].
Altogether, several methods are available and theoretically
relevant to average covariance matrices. However, it is not
known yet which method is the most appropropriate for which
EEG classification context (e.g., for which data dimensional-
ity). Therefore, in this study, we review and experimentally
compare the pros and cons of various methods for averaging
covariance matrices in BCI design.

2. MOTIVATIONS

2.1. Common Spatial Pattern

Based on the pioneering work of Fukunaga et al. in 1970 [3],
the CSP is nowadays the most popular algorithm for spatial
filtering in motor imagery experiments. The main idea is to
use a linear transformation to project the multi-channel EEG



data into a low-dimensional subspace. The aimed transfor-
mation maximizes the variance of signals of one class and at
the same time minimizes the variance of signals of the other
class [1, 4, 11].

Formally, let X ∈ RN×C be the data matrix which corre-
sponds to a trial of imaginary movement; N is the number of
observations in a trial and C is the number of channels. We
want the linear transformation XCSP = X ·WT where the
m spatial filters wj ∈ RC , composing the projection matrix
W ∈ Rm×C , extremize the following Rayleigh quotient:

J(w) =
wT Σ1w

wT Σ2w
. (1)

Σi ∈ RC×C is the spatial covariance matrix of the band-pass
filtered EEG signals from class i. For a given trial matrix X ,
the empirical covariance estimator is

S =
1

N − 1
XTX. (2)

Σi, the spatial covariance for class i, is usually computed by
averaging the trial covariance matrices as

Σi =
1

|ϕi|
∑
j∈ϕi

Sj , (3)

where ϕi is the set of trials belonging to each class and |ϕ|
denotes the cardinality of ϕ. Notably, such a computation of
covariance matrices assumes the EEG signals to have a zero
mean (which is true in practice for band-pass filtered signals).

The problem in Eq. (1) can be solved as a generalized
eigenvalue problem involving the matrices Σ1 and Σ2 and has
lead to various extensions and variants [4].

In this article, we do not focus on the CSP algorithm it-
self but rather on the estimation of Σ from the trial covariance
matrices. Indeed, every variant of CSP is based on covariance
estimations and we argue that this point is too often underes-
timated and that the implicit choice of averaging as in Eq. (3)
should be considered more carefully.

It should be stated that the maximum likelihood estima-
tor (MLE) of the covariance matrix as shown in Eq. (2) can
be very sensitive to outliers. From a sample perspective, hav-
ing robust estimations of the trial covariance matrices is also
likely to improve the CSP performances. Although this point
is very important, we are adopting a trial perspective, as also
studied in [12], and we try to find a robust way of down-
weighting noisy trials in the class-covariance estimation. In
this view, we do not try to down-weight or discard individual
EEG samples that may be noisy but rather an entire trial (i.e.
groups of samples), e.g., artifactual trials.

Using the trial covariance matrices as features, some re-
cent works [6–8] have shown the usefulness of using particu-
lar geometries for manipulating this kind of data.
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Fig. 1. Comparison between Euclidean (straight dashed lines)
and Riemannian (curved solid lines) distances measured be-
tween points of the space P2.

2.2. Different geometries for SPD matrices

SPD matrices —covariance matrices in our case— belong to
a Euclidean1 space (namely the space of symmetric matri-
ces). For example, 2 × 2 SPD matrix A can be written as

A =

[
a b
b c

]
with ac− b2 > 0, a > 0 and c > 0. Then

symmetric matrices can be represented as points in R3 and
the constraints can be plotted as a cone, inside which SPD
matrices lie strictly (see Fig. 1). A straightforward approach
to averaging matrices in this space would be to simply use the
Euclidean distance δe:

δe(A,B) = ‖A−B‖F , (4)

where ‖·‖F denotes the Frobenius norm. The Euclidean ge-
ometry of symmetric matrices implies that distances are com-
puted along straight lines according to δe (see Fig. 1 again).

Implicitly, averaging covariance matrices based on Eu-
clidean geometry resorts to the formula in Eq. (3). However,
this Euclidean geometry suffers from disavantages. First, as
noted in [13], the space of SPD matrices equipped with a
Euclidean geometry produces a non-complete space. As il-
lustrated in Fig. 1, extrapolating between two SPD matrices
may lead to indefinite matrices. As averaging is just an inter-
polation problem, this is not a major issue but the so-called
swelling effect highlighted in [14] is more problematic. The
effect translates the fact that the determinant of the average
of two matrices can be bigger than both of their determinants.
The implied distortion is then an artifact from the geometry.

To avoid this, we use a more natural metric to compare

1Note that, in order to be a Euclidean space, the set if SPD matrices should
be equipped with the Frobenius inner product, 〈A,B〉F = Tr(A>B) and
the derived norm ||A||F =

√
〈A,A〉F .



SPD matrices, namely, the LogEuclidean distance δl:

δl(A,B) = ‖log (A)− log (B)‖F , (5)

where log(·) stands for the matrix logarithm. The LogEu-
clidean metric (and the derived distance and kernel) has been
used in the literature [6, 14].

Finally, as shown in [15], using the proper Riemannian
metric, a distance between two SPD matrices A and B can be
computed along curves (namely geodesic). In this Rieman-
nian geometry, the SPD matrics becomes a complete space
and the distance between its members is defined as:

δr(A,B) = ‖log(A−
1
2BA−

1
2 )‖F . (6)

As illustrated in Fig. 1, when using this Riemannian geome-
try, the space Pd becomes a complete manifold. As already
stated in [14], this distance is immune to the swelling effect. It
could be a good candidate for averaging covariance matrices.

3. AVERAGE OF COVARIANCE MATRICES

As discussed in [16] for diffusion tensor imaging, averag-
ing covariance matrices can be tackled from several different
ways, depending on the chosen geometry. Independently of
the chosen geometry, the problem of averaging a set of objects
in a metric space can be expressed as Eq. (7) and it generalizes
the well-known least squares principle in Euclidean spaces.

min
Σ

∑
i

δ2(Si,Σ). (7)

Using the Euclidean distance δe (in Eq. (4)), the Eu-
clidean average ΣE is obtained with the closed-form solution
in Eq. (3). On the other hand, as shown in [14], when using
the LogEuclidean distance δl (as in Eq. (5)), we have the
following closed-form solution:

ΣL = exp

(∑
i

log (Si)

)
, (8)

where exp(.) denotes the matrix exponential.
However, when the Riemannian distance δr is used, there

is no closed-form solution for computing the Karcher mean
ΣR and optimization techniques [17,18] are used. In practice,
as it was numerically found stable and fast to converge, we
use the algorithm proposed in [19].

Even when a suitable distance is used in the Eq. (7), the
square in the formula makes the problem sensitive to outliers.
To remedy this problem, the square is removed from the for-
mula. Then, computing a median is done by solving

min
Σ

∑
i

δ(Si,Σ). (9)

Owing to the curvature properties of the space, the exis-
tence and uniqueness of the median Σm for δr has been stud-
ied in [20] and an iterative algorithm has been proposed.

Using information geometry [21], divergences can also be
used to handle structured objects such as covariance matrices.
Adopting such a point of view, a trial approach has been used
in [12]. From a set of observed covariance matrices Si, un-
der the assumption that the matrices follow a Wishart distri-
bution with µ degrees of freedom, the robust estimator Σd is
the matrix minimizing its β-divergence with the observations.
As stated in [12], this estimator can be computed by an iter-
ative procedure. Implicitly, this approach compares Wishart
distributions and it finds a distribution —in practice, only its
parameter— that is the closest to the distributions that most
likely generated the observations.

Here, we compare these 5 approaches2, i.e., the standard
MLE averaging (Eq. (3)) minimizing δ2

e , the LogEuclidean
mean minimizing δ2

l , the Karcher mean [19] minimizing δ2
r ,

the Riemannian median minimizing δr and the divergence
based averaging [12] minimizing β-div.

4. NUMERICAL EXPERIMENTS

4.1. Data description

In order to compare the covariance averaging algorithms,
we used EEG data from 17 subjects, from 3 publicly avail-
able data sets of BCI competitions, as in [4]. These three
datasets contain motor imagery (MI) EEG signals. The first
two datasets were collected in a multi-class setting, with the
subjects performing more than 2 different MI tasks. For these
2 datasets, we evaluate our algorithms on two-class problems
by selecting only signals of left- and right-hand MI trials.

• BCI competition IV dataset IIa [22] contains EEG sig-
nals (recorded from 22 electrodes) from 9 subjects who
performed left-hand, right-hand, foot and tongue MI. A
training and a testing sets were available for each subject,
both sets containing 72 trials for each class.

• BCI competition III dataset IIIa [23] comprises EEG sig-
nals (recorded from 60 electrodes) from 3 subjects who
performed left-hand, right-hand, foot and tongue MI. A
training and a testing sets were available for each subject.
Both sets contain 45 trials per class for subject 1, and 30
trials per class for subjects 2 and 3.

• BCI competition III dataset IVa [24] consists of EEG sig-
nals (recorded from 118 electrodes) from 5 subjects, who
performed right hand and foot MI. A training set and a
testing set were available for each subject, with different
sizes. More precisely, 280 trials were available for each
subject, among which 168, 224, 84, 56 and 28 composed

2In Table 1, we gather the results of the different methods and refer to
them by the cost they minimize.



the training set for subject A1, A2, A3, A4 and A5 respec-
tively, the remaining trials composing their test set.

For all data sets, EEG signals were band-pass filtered in 8-30
Hz, using a 5th order Butterworth filter. For each trial, we
extracted features from the time segment located from 0.5s to
2.5s after the cue instructing the subject to perform MI.

4.2. Classifier setup

For the minimum divergence estimator from [12], we set as
recommended µ = N

20 and β = 0.001, respectively the de-
grees of freedom of the Wishart distributions in the model
and the parameter of the β-divergence. The feature extracted
from every trial consists of the log-variance EEG signal
projected on the 6 selected CSP filters (as recommended
in [11]). Then those features are fed to a linear support vec-
tor machine (SVM) [25] with C parameter chosen among
[0.1, 1, 10, 100, 1000] by a cross-validation procedure (on 30
iterations with 80%− 20% splits).

4.3. Results and discussion

The first column of Table 1 shows the classification results
obtained after various averaging on small dimensional co-
variance matrices (22 EEG channels). In this case, the Rie-
mannian geometry (either Riemannian mean or median and
LogEuclidean mean) seems to have a clear advantage in the
mean accuracy (over subjects) ranging from 78.78% up to
79.24% against 76.31% for the Euclidean geometry. This
may be due to the fact that the estimated covariance matri-
ces are completely SPD (enough time samples were available
for estimating each trial covariance properly) and then the av-
eraging methods behave well. With the default setting, the
divergence-based approach also shows a good empirical be-
haviour. However, it should be noted that the impact of the
geometry seems to be subject dependent (as for example the
Riemannian geometry seems to particularly suit to Subject 4).

As shown in the two right columns of Table 1, when the
dimensionnality of the covariance matrices grows (60 or 118
EEG channels), the situation seems to be less in favour of
the Riemannian geometry. Indeed, as the dimension grew, we
reach the limit of the SPD assumption of empirical covari-
ance matrices. Then, the Riemannian geometry becomes less
efficient3. For example, the Euclidean geometry completely
outperforms its Riemannian counterparts with a mean accu-
racy (over subjects) of 79.27% against 74.03% for the best of
its competitors. Independently of this, our implementation of
the divergence based approach encountered numerical diffi-
culties as the dimension grows. Indeed, the iterative approach
described in [12] involves the determinant of a covariance ma-
trix elevated at the power (µ−C − 1)β and some Γ function
is numerically ill-behaved.

3Note that in the datasets, as the dimensions grows, the number of trials
gets smaller and this also affects the performance of the averaging methods.

5. CONCLUSIONS

In this empirical study, we adopted a trial perspective on EEG
data and empirically compared several approaches for aver-
aging trials. From our evaluations on three different datasets,
Riemannian geometry appears useful for averaging covari-
ance matrices for small dimensional problems. When the di-
mensionality grows, numerical problems appear and the Eu-
clidean geometry seems to be more suited.

In this study, we left aside the already difficult problem of
estimating the trial covariance matrices. In BCI data, when
enough time samples are available, robust estimators such as
the one proposed in [12] or in [26] (although it has been criti-
cized in [27]) could be investigated as a substitute to the MLE.
Otherwise, when the number of time samples is insufficient
(as for example in the third experiment) and in case of corre-
lated time samples, the matrices are almost indefinite, shrink-
age —a form of regularization— should be used as in [28,29].
Also, the interaction between these estimators and the averag-
ing remains unclear and should be empirically investigated.

In this paper, we studied the different averaging methods
for covariance matrices under various scenarii. As a future
work, some more numerical experiments should be carried
out, by changing the rate of outliers and plotting the CSP pat-
terns, in order to strengthen our analysis of the problem.

We try to evaluate what other geometries could bring
to CSP methods but a promising way would be to extract
smaller dimensional covariance matrices. As such, ap-
proaches like [30] could bridge the gap that currently separate
CSP-based approaches and Riemannian approaches in BCI.
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