796 research outputs found

    Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments

    Get PDF
    This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution.National Institutes of Health (U.S.) (Grant R01 DC 000117)National Institutes of Health (U.S.) (Grant R01 DC DC7152)National Institutes of Health (U.S.) (Grant 2R44DC010524-02

    Coding Strategies for Cochlear Implants Under Adverse Environments

    Get PDF
    Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise

    UbiEar: Bringing location-independent sound awareness to the hard-of-hearing people with smartphones

    Get PDF
    Non-speech sound-awareness is important to improve the quality of life for the deaf and hard-of-hearing (DHH) people. DHH people, especially the young, are not always satisfied with their hearing aids. According to the interviews with 60 young hard-of-hearing students, a ubiquitous sound-awareness tool for emergency and social events that works in diverse environments is desired. In this paper, we design UbiEar, a smartphone-based acoustic event sensing and notification system. Core techniques in UbiEar are a light-weight deep convolution neural network to enable location-independent acoustic event recognition on commodity smartphons, and a set of mechanisms for prompt and energy-efficient acoustic sensing. We conducted both controlled experiments and user studies with 86 DHH students and showed that UbiEar can assist the young DHH students in awareness of important acoustic events in their daily life.</jats:p

    Biophysical modeling of a cochlear implant system: progress on closed-loop design using a novel patient-specific evaluation platform

    Get PDF
    The modern cochlear implant is one of the most successful neural stimulation devices, which partially mimics the workings of the auditory periphery. In the last few decades it has created a paradigm shift in hearing restoration of the deaf population, which has led to more than 324,000 cochlear implant users today. Despite its great success there is great disparity in patient outcomes without clear understanding of the aetiology of this variance in implant performance. Furthermore speech recognition in adverse conditions or music appreciation is still not attainable with today's commercial technology. This motivates the research for the next generation of cochlear implants that takes advantage of recent developments in electronics, neuroscience, nanotechnology, micro-mechanics, polymer chemistry and molecular biology to deliver high fidelity sound. The main difficulties in determining the root of the problem in the cases where the cochlear implant does not perform well are two fold: first there is not a clear paradigm on how the electrical stimulation is perceived as sound by the brain, and second there is limited understanding on the plasticity effects, or learning, of the brain in response to electrical stimulation. These significant knowledge limitations impede the design of novel cochlear implant technologies, as the technical specifications that can lead to better performing implants remain undefined. The motivation of the work presented in this thesis is to compare and contrast the cochlear implant neural stimulation with the operation of the physiological healthy auditory periphery up to the level of the auditory nerve. As such design of novel cochlear implant systems can become feasible by gaining insight on the question `how well does a specific cochlear implant system approximate the healthy auditory periphery?' circumventing the necessity of complete understanding of the brain's comprehension of patterned electrical stimulation delivered from a generic cochlear implant device. A computational model, termed Digital Cochlea Stimulation and Evaluation Tool (‘DiCoStET’) has been developed to provide an objective estimate of cochlear implant performance based on neuronal activation measures, such as vector strength and average activation. A patient-specific cochlea 3D geometry is generated using a model derived by a single anatomical measurement from a patient, using non-invasive high resolution computed tomography (HRCT), and anatomically invariant human metrics and relations. Human measurements of the neuron route within the inner ear enable an innervation pattern to be modelled which joins the space from the organ of Corti to the spiral ganglion subsequently descending into the auditory nerve bundle. An electrode is inserted in the cochlea at a depth that is determined by the user of the tool. The geometric relation between the stimulation sites on the electrode and the spiral ganglion are used to estimate an activating function that will be unique for the specific patient's cochlear shape and electrode placement. This `transfer function', so to speak, between electrode and spiral ganglion serves as a `digital patient' for validating novel cochlear implant systems. The novel computational tool is intended for use by bioengineers, surgeons, audiologists and neuroscientists alike. In addition to ‘DiCoStET’ a second computational model is presented in this thesis aiming at enhancing the understanding of the physiological mechanisms of hearing, specifically the workings of the auditory synapse. The purpose of this model is to provide insight on the sound encoding mechanisms of the synapse. A hypothetical mechanism is suggested in the release of neurotransmitter vesicles that permits the auditory synapse to encode temporal patterns of sound separately from sound intensity. DiCoStET was used to examine the performance of two different types of filters used for spectral analysis in the cochlear implant system, the Gammatone type filter and the Butterworth type filter. The model outputs suggest that the Gammatone type filter performs better than the Butterworth type filter. Furthermore two stimulation strategies, the Continuous Interleaved Stimulation (CIS) and Asynchronous Interleaved Stimulation (AIS) have been compared. The estimated neuronal stimulation spatiotemporal patterns for each strategy suggest that the overall stimulation pattern is not greatly affected by the temporal sequence change. However the finer detail of neuronal activation is different between the two strategies, and when compared to healthy neuronal activation patterns the conjecture is made that the sequential stimulation of CIS hinders the transmission of sound fine structure information to the brain. The effect of the two models developed is the feasibility of collaborative work emanating from various disciplines; especially electrical engineering, auditory physiology and neuroscience for the development of novel cochlear implant systems. This is achieved by using the concept of a `digital patient' whose artificial neuronal activation is compared to a healthy scenario in a computationally efficient manner to allow practical simulation times.Open Acces
    • …
    corecore