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Progress on closed-loop design using a novel patient-specific

evaluation platform.

Andreas N. Prokopiou

Abstract

The modern cochlear implant is one of the most successful neural stimulation

devices, which partially mimics the workings of the auditory periphery. In the last

few decades it has created a paradigm shift in hearing restoration of the deaf popu-

lation, which has led to more than 324,000 cochlear implant users today. Despite its

great success there is great disparity in patient outcomes without clear understand-

ing of the aetiology of this variance in implant performance. Furthermore speech

recognition in adverse conditions or music appreciation is still not attainable with

today’s commercial technology. This motivates the research for the next generation

of cochlear implants that takes advantage of recent developments in electronics,

neuroscience, nanotechnology, micro-mechanics, polymer chemistry and molecular

biology to deliver high fidelity sound.

The main difficulties in determining the root of the problem in the cases where

the cochlear implant does not perform well are two fold: first there is not a clear

paradigm on how the electrical stimulation is perceived as sound by the brain, and

second there is limited understanding on the plasticity effects, or learning, of the

brain in response to electrical stimulation. These significant knowledge limitations

impede the design of novel cochlear implant technologies, as the technical specifica-

tions that can lead to better performing implants remain undefined.

The motivation of the work presented in this thesis is to compare and contrast the

cochlear implant neural stimulation with the operation of the physiological healthy

auditory periphery up to the level of the auditory nerve. As such design of novel

cochlear implant systems can become feasible by gaining insight on the question
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‘how well does a specific cochlear implant system approximate the healthy auditory

periphery? ’ circumventing the necessity of complete understanding of the brain’s

comprehension of patterned electrical stimulation delivered from a generic cochlear

implant device.

A computational model, termed Digital Cochlea Stimulation and Evaluation

Tool (‘DiCoStET’) has been developed to provide an objective estimate of cochlear

implant performance based on neuronal activation measures, such as vector strength

and average activation. A patient-specific cochlea 3D geometry is generated using a

model derived by a single anatomical measurement from a patient, using non-invasive

high resolution computed tomography (HRCT), and anatomically invariant human

metrics and relations. Human measurements of the neuron route within the inner ear

enable an innervation pattern to be modelled which joins the space from the organ of

Corti to the spiral ganglion subsequently descending into the auditory nerve bundle.

An electrode is inserted in the cochlea at a depth that is determined by the user of

the tool. The geometric relation between the stimulation sites on the electrode and

the spiral ganglion are used to estimate an activating function that will be unique

for the specific patient’s cochlear shape and electrode placement. This ‘transfer

function’, so to speak, between electrode and spiral ganglion serves as a ‘digital

patient ’ for validating novel cochlear implant systems. The novel computational

tool is intended for use by bioengineers, surgeons, audiologists and neuroscientists

alike.

In addition to ‘DiCoStET’ a second computational model is presented in this

thesis aiming at enhancing the understanding of the physiological mechanisms of

hearing, specifically the workings of the auditory synapse. The purpose of this

model is to provide insight on the sound encoding mechanisms of the synapse. A

hypothetical mechanism is suggested in the release of neurotransmitter vesicles that

permits the auditory synapse to encode temporal patterns of sound separately from

sound intensity.

DiCoStET was used to examine the performance of two different types of filters

Chapter 0 Andreas N. Prokopiou 7
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used for spectral analysis in the cochlear implant system, the Gammatone type filter

and the Butterworth type filter. The model outputs suggest that the Gammatone

type filter performs better than the Butterworth type filter. Furthermore two stim-

ulation strategies, the Continuous Interleaved Stimulation (CIS) and Asynchronous

Interleaved Stimulation (AIS) have been compared. The estimated neuronal stim-

ulation spatiotemporal patterns for each strategy suggest that the overall stimu-

lation pattern is not greatly affected by the temporal sequence change. However

the finer detail of neuronal activation is different between the two strategies, and

when compared to healthy neuronal activation patterns the conjecture is made that

the sequential stimulation of CIS hinders the transmission of sound fine structure

information to the brain.

The effect of the two models developed is the feasibility of collaborative work

emanating from various disciplines; especially electrical engineering, auditory physi-

ology and neuroscience for the development of novel cochlear implant systems. This

is achieved by using the concept of a ‘digital patient’ whose artificial neuronal ac-

tivation is compared to a healthy scenario in a computationally efficient manner to

allow practical simulation times.

8 Chapter 0 Andreas N. Prokopiou
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Chapter 1

Introduction

1.1 Deafness today

‘I was compelled early to isolate myself, to live in loneliness, when I at times tried to

forget all this, O how harshly was I repulsed by the doubly sad experience of my bad

hearing, and yet it was impossible for me to say to men speak louder, shout, for I am

deaf, ..., forgive me when you see me draw back when I would gladly mingle with you,

my misfortune is doubly painful because it must lead to my being misunderstood, for

me there can be no recreations in society of my fellows, refined intercourse, mutual

exchange of thought, only just as little as the greatest needs command disposition,

..., such incidents brought me to the verge of despair, but little more and I would

have put an end to my life - only art it was that withheld me, ..., and so I endured

this wretched existence - truly wretched, an excitable body which a sudden change

can throw from the best into the worst state.’

The words of a 32 year old Ludwig van Beethoven strike at the heart of the

problem of deafness. Hearing impairment is the most common of sensory impair-

ments [149, 211] and if left untreated it affects communication and therefore con-

tributes to social isolation, anxiety, depression and cognitive decline. The main

causes of hearing loss are chronic ear infections, excessive noise exposure, use of
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ototoxic medications and ageing. The World Health Organization (WHO) identifies

the extend of people suffering from disabling hearing loss as 5.3% of the world’s

population, i.e. 360 million people of which 32 million are children (less than 15

years old)[371]. 77% from that population, i.e. 278 million people [370], suffer from

profound hearing impairment which qualifies for a cochlear implant surgery. Fur-

thermore, approximately 0.5-5 of every 1000 infants are born with or develop in

early childhood disabling hearing loss, and nearly one out of every three persons

over the age of 65 are affected by hearing loss [371].

Human population is increasing and ageing, both factors that contribute to the

accelerated growth of the number of people with disabling hearing loss and the need

for better treatment methods. According to WHO, the population of individuals

over the age of 65 is expected to double between 2008 and 2030 [371], which will

create a significant need for treating hearing impairment. Current production of

hearing aids meets less than 10% of global need [371], and the cochlear implant

supply meets less than 0.1% of the need [371].

1.2 Evolution of Auditory Prostheses

The attempts to remedy hearing loss date back to as early as the 17th century,

with the use of ear trumpets which evolved in the modern hearing aid. Despite the

success of the hearing aid to establish it self as a cure for hearing loss it is practically

useless for profound hearing loss and total deafness. For the cases that the hearing

aid fails to provide any form of cure the cochlear implant has been shown in 1977

[19] to provide useful hearing sensations.

1.2.1 History of Cochlear Implants

The first experiment was performed by Alessandro Volta in 1790. At that time he

was experimenting with what was a type of chemical battery, which could produce

about 50V. He connected conducting wires to the cathode and anode and then
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Figure 1.1: Cochlear implant developers and places of origin. The initial stages of
development are depicted with the thin lines, and clinical applications of devices are
depicted with the thick lines. Most of these devices are no longer in use, and many
of the development efforts have been discontinued, or acquired by larger industries.
See figure 1.4 for an updated status. Figure extracted from [375]

placed their termination in his ear canals. According to his reports he experienced

a ”boom within the head followed by a sensation of sound similar to thick boiling

soup.”. Whilst it is not sure if he managed to directly activate his own auditory

nerve or create an electromechanical effect to give the sensation of sound, it still

remains as the first ever report of electrical stimulation elicited auditory percept.

1950-mid 1980s

The first surgery where a medical device was implanted with the aim of transferring

sound energy into the auditory nerve of a deaf patient was performed in Paris in

1957. It was performed by the French-Algerian surgeons Andre Djourno and Charles

Eyries, who had previously experimented in 1950 and got some promising results.

They used a solenoid coil connected to a stump of the auditory nerve to make

a transcutaneous inductive link. The patient reportedly [375] used the device for
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Figure 1.2: Cochlear implant events time-line. The three stages of the cochlear im-
plant lifeline with important events that marked their transitions. Figure extracted
from [393]

several months before its failure and could discriminate large changes in frequency

of stimulation below 1 kHz and recognize speech in a predetermined set of words.

The first device was mainly useful to recognise presence of environmental sounds

and aid with lip-reading by providing understanding of speech rhythm. A second

device was re-implanted after the failure of the first one, for it to shortly fail again.

News of this accomplishment inspired William House, who in 1961 implanted a

single electrode device in two deaf patients. Both patients immune system rejected

the devices after 2 weeks, but in the meantime useful hearing with electric stimu-

lation was reported. This lead to the collaboration with Jack Urban, an electrical

engineer, in developing a complete system that was commercialized by 3M, see fig-

ure 1.1. The device achieved US FDA approval in 1984 [144]. The device had a
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Figure 1.3: An overview of the discoveries leading to the development of the multiple-
channel cochlear implant. Figure extracted from [43]

few hundred annual implantations in the mid 1980s, but had remarkably inferior

performance to today’s devices. 3M eventually was phased out of the market and

taken over by the Cochlear Corporation, see figure 1.4.

During the same period, Blair Simmons at Stanford University in 1964 im-

planted a cluster of six stainless steel electrodes into the auditory nerve of a pa-

tient. Robert White also at Stanford University developed the first VLSI-based

multichannel cochlear implant system. Stanford University entered an agreement

with Biostem in 1983 towards developing a commercial device but their effort was

fruitless.

Some years later at the University of California, San Francisco (UCSF), Robin

Michelson in 1971 implanted a single-channel device in four deaf patients. Around
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1985 the UCSF team collaborated with Storz after developing an analog, four-

channel device but its commercialization was not successful.

The early designs of the cochlear implant were of various design ideologies. The

early design of the modern cochlear implant appeared in 1978. Graeme Clark in

Australia developed a cochlear implant system with 22 electrode channels and im-

planted two deaf patients. This lead to a public and private corporate agreement in

1979 between the Melbourne University and Nucleus Limited to manufacture and

market the new multi-electrode design. In the mid 1980s its main rival was the 3M

House single channel device, which was eventually acquired by Nucleus after the

first consensus conference conclusion of : ”multi-channel implants may have some

superior features in adults when compared with the single-channel type” [258] that

gave a clear advantage to the Australian design.

mid 1980s-2014

Figure 1.4: Academia transition into the cochlear implant industry. This flow chart
shows the development of the cochlear implant from academic research to indus-
trial commercialization. UCSF stands for University of California, San Francisco,
HEI for House Ear Institute, and ABC for Advanced Bionics Corporation. Note
that Advanced Bionics was acquired by Boston Scientific in 2004 (for $742 million)
but had been bought back by its principals as a private company in 2007. Figure
extracted from [55]

Today there are four main competitors in the cochlear implant market: Cochlear
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Corporation, Med-El, Advanced Bionics and Neurelec1, see figure 1.4.

Cochlear Corporation is the spin-off of Nucleus which went public in 1995 and

has by far the largest market share. Other than single channel design of 3M it

acquired several other cochlear implant designs. In the Utah University an analog,

six-electrode implant with a percutaneous plug interface was developed leading to

the Symbion device, later renamed as the Ineraid. This device, given its percuta-

neous plug interface, was suited for research purposes. In the same time at Antwerp

University, in collaboration with Philips Hearing Instruments, an 8-channel bipolar,

or 15-channel monopolar stimulation device was created, the so called Laura. Both

Laura and Ineraid were bought and discontinued by Cochlear Corporation.

Med-El originated from the Technical University of Vienna. Ingeborg Horchmair-

Desoyer and Erwin Hachmair in the 1970s designed several multi-electrode systems

and implanted five patients. They later switched to a single-channel device and

collaborated with 3M. This lead to the foundation of Med-El in 1989 and the pro-

duction of three generations of multi-electrode systems since.

Advanced Bionics Corporation acquired the UCSF electrode design in 1993 after

the joint efforts with Storz were not commercially successful and has since produced

the Clarion series devices, see figure 1.4.

Neurelec, which was founded in 2006, was the fruit of the early effort of Claude

Henri Chouard, who had implanted 21 patients in the 1970s using a multi-electrode

(5-7 monopolar electrodes) with a percutaneous link. These efforts lead to the design

of the Digisonic, which is a 15-channel monopolar device which is still marketed by

Neurelec.

Two relatively recent advances that, even though they exist as commercial prod-

ucts and are still a matter of academic research, are the electroacoustic stimulation

(EAS) and bilateral cochlear implantation. The former enables a much greater

inclusion of patients, by relaxing the implantation criteria. If someone is not com-

pletely deaf but has severe to profound deafness a hearing aid does not provide the

1Note that Neurelec is to be acquired by William Demant Group. [http://www.neurelec.
com/en/]
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required treatment, it has been shown that cochlear implantation can be beneficial

[345, 155]. This benefit will of course only be delivered if the surgery is successful

and the residual hearing is preserved, which is mostly to be attributed to a surgeon’s

experience and the electrode design — usually shorter electrodes are used — rather

than the cochlear implant processing system. Bilateral cochlear implantation also

provides benefits because both ears can receive input, but as yet no commercial

speech processing technique can fully preserve the binaural cues [389].

Future

Figure 1.5: Performance of modern Cochlear Implants. This bar chart shows speech
recognition scores in quiet background using Nucleus Freedom system [10], the Clar-
ion HiRes90k system [172], and the Med-El Opus system [6]. This figure was ex-
tracted from [55]

As it can be seen from figure 1.5, there is not a great difference between the

devices of the three main market sharers in the cochlear implant commercial as-

pect. Also this is the best possible scenario, given that the test was performed in

a quiet environment and was applied only for speech and not music. Music is still

not perceived very well for the average cochlear implant user [389]. Furthermore

speech understanding in adverse listening conditions, such as competing speakers or

background noise, is greatly deteriorated [394].

This inevitably sparks research at universities, where several start-up compa-

nies are also developing advanced and low-cost multi-electrode cochlear implants
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[55]. Some examples of such companies include: Advanced Cochlear Systems (www.

advcoch.com) in Seattle, Nurobiosys Corporation in Seoul [3], and Nurotron

Biotechnology Inc based in both Irvine and Hangzhou (www.nurotron.com). Dif-

ferent research centres also exist with some examples being: the Iowa Cochlear Im-

plant Project [102], Hearing4all (www.hearing4all.eu) and ICanHear (www.

icanhear-itn.eu).

Academic and commercial combined efforts are aiming at making a better cochlear

implant. It is only a matter of time to see whether they will be successful in impact-

ing the world market of cochlear implant systems, and deliver a better treatment to

patients.

1.3 The modern cochlear implant is not good enough

Present-day cochlear implants (CIs) support a high level of function for the great

majority of patients, as indicated in part by sentence scores of 80% correct or higher

for most patients and the ability of most patients to use the telephone [376]. How-

ever, even the high-scoring patients still do not hear as well as listeners with normal

hearing, particularly in adverse conditions such as speech presented in competition

with noise or other talkers. In addition, and much more importantly, a wide variance

between subject performance persists, even with the current processing strategies

and implant systems, and even with bilateral implants or combined electro acoustic

stimulation (EAS) [378]. Thus, although great progress has been made, much re-

mains to be done [378, 376, 44, 187] as is shown in the following list of the major

remaining problems with modern cochlear implants [376, 378]

• A high variability in outcomes.

• Difficulty in recognizing speech in adverse situations for all patients.

• Highly limited access to music and other sounds that are more complex than

speech.
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• A possible deficit in the representation of ‘fine structure’ or fine-frequency

information with present ‘envelope based’ strategies such as CIS (see section

5.2 for a more in depth discussion).

• Similar to the above point, there exists a less-than-resolute representation of

fundamental frequencies (F0s) for complex sounds, which most likely requires

a good representation of the first several harmonics of the F0, at the correct

tonotopic sites, in addition to the F0 itself.

• A high effort in listening is required for all CI patients, including the top

performers in achieving their high scores, and especially including patients

with lower levels of performance, in struggling to understand portions of speech

and to ‘glue’ those portions together into a whole using contextual cues [376].

• Little or no sound localization ability, except for users of bilateral CIs or

bimodal sound synchronous systems [85]

• The different stimulation sites on the electrode array of the cochlear implant

are surrounded by a conductive fluid, the perilymph, which causes channel

cross talk and reduction in the ability of the subject to discriminate between

stimulation sites.

• Damage caused by modern electrode designs, see section 5.1.2 for a more in

depth discussion.

• Likely limitations imposed by impairments in auditory pathway or cortical

function, due, for example, to long periods of auditory deprivation before

receiving a cochlear implant or stunted cognitive development caused by deaf-

ness.

1.4 Thesis Layout

The following chapter gives a detailed discussion on the anatomy of the human

auditory periphery, with special emphasis on the auditory receptor cells. Chapter
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3 discusses the hearing physiology, with special emphasis on the physiology of the

auditory periphery and specifically the phenomena observed at the auditory nerve

in the presence of sound stimuli. Furthermore, a brief discussion on the pathology

of the auditory system is presented with special emphasis on pathological conditions

that are of special significance to cochlear implantation. Chapter 4 presents vari-

ous mathematical models of the auditory periphery that aim to define a paradigm

of the operation of the auditory periphery. Chapter 5 presents a systematic ap-

proach to the modern cochlear implant, the various advances made in the design

of the system, the patient admittance criteria, and finally the current understand-

ing on the psychoacoustic phenomena elicited by electrical stimulation. Chapter

6 presents a novel computational tool developed entitled ‘Digital Cochlea Stimu-

lation and Evaluation Tool’ (DiCoStET), which is aimed to be used by surgeons,

engineers and neuroscientists to aid in collaborative work for the design of novel

cochlear implant technologies. Chapter 7 presents some examples of the operation

of DiCoStET and discusses some novel objective performance measures developed

for assessing cochlear implant technologies. Chapter 8 presents a novel model of

synaptic vesicle release into the cleft of the inner hair cell and auditory nerve fibre,

which relates sound stimulus with post synaptic membrane conductance changes

of the auditory neuron projections. Chapter 9 presents a conclusion of the thesis,

where a hypothetical ideal cochlear implant design is discussed alongside the thesis

contributions. Finally Chapter 10 presents the future direction of the DiCoStET,

which aims at becoming a hierarchical model to permit across spatial, temporal,

and organizational scale modelling.
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Chapter 2

Human Ear Anatomy

The human ear enables sensation of mechanical vibrations. It is an evolutionary

derivative of the lateral line canals that developed in early aquatic vertebrates, and

is still used by fish to sense surrounding water pressure fluctuations. Given its

origin the detection of mechanical vibrations is fluid based, the organ of hearing has

an internalised system of fluid filled spaces where pressure fluctuations are sensed.

Highly specialised receptor cells, termed hair cells, have stereocilia projections which

extend a few micrometers above the surface of the cell and can easily detect motion

in the range of a few nanometers (i.e. in the range of atomic vibrations!) [147].

The transfer of mechanical waves from the surrounding medium requires additional

systems for the efficient transmission in this internalised fluid space. These systems

are located in the external and middle ear, and their anatomy is further discussed

in Section 2.1 and Section 2.2 respectively.

2.1 External (Outer) Ear

The pinna, or auricle, is what comes to most people’s mind when they think about

the ear. The pinna is a complicated folding of the skin that is strengthened with

elastic cartilage and dense connective tissue. This part of the external ear is shaped

in such a way so as to collect sound waves and through its complex shape and create

a directionally varying spectral modulation that aids in localisation [274] (section
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Figure 2.1: Overview of the ear. As shown in the above figure, (1) Squamous tempo-
ral, (2) External auditory meatus, (3) Malleus, (4) Incus, (5) Tympanic membrane,
(6) Pharyngotympanic tube, (7) Stapes, (8) Lateral semicircular canal, (9) Anterior
semicircular canal, (10) Vestibule, (11) Cochlea, (12) Posterior semicircular canal,
(13) Internal auditory meatus, (14) Pinna, (15) Groove for sigmoid sinus. Figure
extracted from [53]

3.1). The tympanic membrane, or ear drum, is a cone shaped disk membrane, whose

convex side faces the interior. Anatomically it closes the ear canal and separates

the tympanic cavity, or middle ear, from the external ear.
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2.2 Middle ear

Figure 2.2: Schematic diagram of the middle and inner ear. As shown in the above
figure, (1) Endolymphatic sac, (2) Endolymphatic duct, (3) Ampulla of posterior
semicircular duct, (4) Ampulla of anterior semicircular duct, (5) Maculla of utricle,
(6) Ampulla of lateral semicircular duct, (7) Membrana limitans, (8) Macula of
saccule, (9) Malleus, (10) Incus, (11) Stapes and oval window, (12) Ductus reuniens,
(13) Round window, (14) External auditory meatus, (15) Tympanic membrane,
(16) Scala tympani, (17) Organ of Corti, (18) Cochlear duct, (19) Scala vestibuli,
(20) Perilymphatic duct. Figure extracted from [53]

The middle ear is an air-containing space which has two perforations and con-

tains a chain of three small bones, also known as the ossicles, which are the malleus,

incus and stapes. One perforation is for the tensor tympani muscle, whose tendon

hooks around a bony process and then ends in the neck of the malleus. The function

of the tensor tympani is to contract when high pressure sounds are impacting the

tympanic membrane in a process known as the acoustic reflex, thus limiting trans-

mission of damaging levels of acoustic energy. The other perforation connects to

the pharyngotympanic tube, also known as the Eustachian tube. Its function is to

allow pressure equalization between the middle ear and the outer ear, and proper

ventilation and drainage of excess mucus. If it is obstructed then there is a painful
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built-up of pressure which can deteriorate hearing, due to stiffening and deformation

of the tympanic membrane.

The purpose of the ossicles is the transmission of mechanical energy from the

tympanic membrane to the inner ear (see section 3.1). The three bones are connected

to each other via synovial joints, which allow free movement, they are held in position

by ligaments.

2.3 Inner Ear

The inner ear region is made out a system of membranous ducts that are encapsu-

lated in bone, and the whole structure is embedded in the temporal bone. Inside the

membrane ducts are the receptor structures for both hearing, the cochlear system,

and balance, the vestibular system. For the purposes of this report the vestibular

system will be ignored, and focus will be given to the cochlear system.

The cochlea has a spiralling cone shape which resembles a snail shell. Usually

it forms two and a half turns around the conical axis but this is highly variable

amongst subjects [75]. Shape variations of the cochlea do not affect the perception

of sound. The central conical axis is termed the modiolus, and contains the auditory

nerve. A spiralling bony ledge, which resembles the threads on a conical screw, is

called the osseous spiral lamina. This bony ledge serves as the fixation point of the

basilar membrane closest to the modiolus. The basilar membrane spans the entire

length of the spiralling canal and its width increases as it gets closer to the apex

of the cochlea. Its fixation point furthest from the modiolus is the spiral ligament,

which is a thick fibrous endosteum lining in the inside part of the osseous labyrinth.

There are three fluid filled ducts within the cochlea, the scala tympani, scala

media and scala vestibuli. Scala tympani and vestibuli contain perilymph and are

connected at the apex of the spiralling cochlea whereas the scala media contains

endolymph and does not connect with the other two scalae. The basilar membrane

separates the scala tympani and the scala media, and the Reissner’s membrane sep-

arates the scala media and the scala vestibuli. A very specialized neuroepithelium,
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called the organ of Corti, rests on the basilar membrane and protrudes into the

endolymph containing scala media. The organ of Corti is covered by a gelatinous

membrane called the tectorial membrane, in which the stereocilia of the receptor

cells are embedded (outer hair cells), or rest in a groove called Hensen’s stripe (in-

ner hair cells).

2.4 Organ of Corti: Inner and Outer hair cells

Two types of cells are present in the organ of Corti, receptor and supporting cells

(see figure 2.3). The sensory cells of the organ of Corti, where the cochlear nerve

terminates at their bases, consist of two types of cells, the inner and outer hair

cells. Between the outer and inner hair cells there are two rows of rod, or pillar

cells that form an arch as they join, the so called inner tunnel of Corti. Through

that tunnel traverse the neural projections that are destined for the outer hair cells,

which sometimes might travel along the tunnel for up to to 0.6 mm [333] before

they form a synapse with the outer hair cell base. Another purpose for the arch

in the tunnel is thought to be to provide structural stability during sound induced

vibrations [274].

The inner hair cells form a single row of cells where as the outer hair cells

form three to five rows, (figure 2.4). The inner hair cells are considered to serve

the function of sensing the disturbances of the entire structure because of their

afferent innervation, (figure 2.5). The outer hair cells are considered to serve the

function of actively controlling the resonance of the structure given the presence

of the electromotile prestin molecules and efferent innervation (figure 2.6), but the

exact mechanism of doing so is still unclear. Further discussion on this topic can be

found in section 3.2.

The reason these receptor cells are called hair cells is from the stereocilia pro-

jections at their top. These stereocilia act as stiff, rigid levers and if pushed to far

they will fracture. This rigidity arises from a core of tightly packed actin filament

cross-linked by espin and fimbrin forming what is known as a paracrystaline array.
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Figure 2.3: Organ of Corti illustration. As shown in the above figure, (1) Tectorial
membrane, (2) Stria vascularis, (3) Capillary, (4) Auditory teeth, (5) Interdental
cell, (6) Spiral limbus, (7) Hensen’s stripe, (8) Reticular lamina, (9) Inner spiral
sulcus, (10) Cells of Held, (11) Inner hair cell, (12) Fibres of cochlear nerve destined
for the outer hair cells, (13) Spaces of Nuel (cuniculum intermedium), (14) Outer
hair cells, (15) Outer tunnel (cuniculum externum), (16) Cells of Hensen, (17) Cells
of Claudius, (18) Outer spiral sulcus, (19) Inner phalangeal cell, (20) Osseous spiral
lamina, (21) Afferent (blue) and efferent (red) fibres of cochlear nerve destined for
the inner hair cells, (22) Habenula perforata, (23) Inner rod(pillar cell), (24) Vas
spirale, (25) Inner tunnel of Corti (cuniculum internum), (26) Outer rod (pillar cell),
(27) Outer phalangeal cells (of Deiters), (28) Basilar membrane, (29) Perilymphatic
cells facing the scala tympani, (30) Crista basilaris. Figure extracted from [53]

Acoustic overstimulation disorderes the paracrystal which causes bending or kinking

in the regular structure of the stereocilia, suggesting that mechanical integrity of
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Figure 2.4: Scanning electron micrograph of the hair cells of a guinea pig. (A) Upper
surface of the organ of Corti without the tectorial membrane, showing three rows of
outer cells and one row of inner hair cells. (scale bar, 5µ m) (B) A vertical section
through the linings of the outer hair cells shows the phalanges of the Deiters’ cells
(arrow) and how they run at angle to the outer hair cells that appear like columns.
(scale bar, 5µ m) (C) Three to five straight rows of stereocilia are visible on the top
of an inner hair cell. (scale bar, 1µ m) (D) On the outer hair cells, the stereocilia
form three rows of V- or a W-shaped rows. Figure extracted from [274].

the stereocilia is maintained by the integrity of the paracrystal [274].

Various isoforms of myosin that together with actin usually form the contractile

filaments of muscle tissue are localized at different points as shown in figure 2.7.

Plasma membrane calcium ATPase (PMCA) and calmodulin are both associated

with the plasma membrane but more concentrated in the tips of the stereocilia,

indicating involvement of calcium ions with the mechanotransduction mechanism.

At the lower end of the stereocilia, the shaft narrows and a small proportion of the

paracrystal appears to penetrate into the apex of the cell to form a rootlet with

dense material containing tropomyosin, a muscle contracting protein, and calbindin

with calmodulin, both calcium binding and regulating proteins, surrounding them.
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Figure 2.5: Schematic of an inner hair cell. This diagram shows the location of
important molecules and organelles. Notice the lack of prestin molecules in the
plasma membrane which, in the inner hair cell, is lined with cisternae and cortical
lattice. Furthermore only afferent connections are present. Figure extracted from
[11].

Furthermore the cuticular plate forming the apex of the cell is also a matrix of

filaments, not as organized as the paracrystaline tips but also rigid. Surrounding

the cuticular plate circumferential rings of highly ordered opposing polarity actin

filaments exist. [274, 11]

Intricate cross-links exists between the stereocilia that couple the stereocilia in

such a manner that when in micro-manipulation perturbation experiments the entire

stereocilia bundle tends to move together [147]. Tip links exist that are 150-180 nm

long and made up of a 8-11 nm fine strand and begin as a single strand from

a short stereocilium and bifurcate before joining a taller stereocilium, see figure

2.7. These links are of particular interest because they couple the stimulus-induced
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Figure 2.6: Schematic of an outer hair cell. This diagram shows the location of
important molecules and organelles. Notice the high density of the electromotile
prestin molecules in the plasma membrane and the absence of it in the inner hair
cell in figure 2.5. Figure extracted from [11].

movement to the transducer areas of the stereocilia. As the tallest sterocilium is

deflected away from the shorter sterocilium the tip links become taut, and therefore

by direct mechanical action the mechanotransducer channels are pulled open [148].

The construct of each bundle varies so as to tune this level mechanism to a particular

frequency and therefore perform spectral enhancement at the cellular level [148].
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Furthermore the geometrical arrangement of the cross-linking, especially the tip

links, is such that maximum energy from the stimulus is coupled to them [274]. The

tip link transmits with great fidelity a large dynamic range of motion ranging from

sub-nanometer to micron displacements without fatigue. Furthermore it is believed

to be involved in the adaptation process of prolonged exposure to sounds via active

tuning of myosin molecules that crawl up and down the actin filaments to tense or

relax the tip link filament accordingly [109, 274]. Further discussion on the various

models that explain these mechanisms is given in section 3.3.
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Figure 2.7: Stereocilia arrangement and the mechano-transduction gating mecha-
nisms. (a) Outer hair cell bundle with the direction of deflection of the bundle which
leads to depolarization of the hair cell being shown. Scale bar = 1 µm. (b) Inner
hair cell bundle. The bundle is straighter and disordered than the outer hair cell.
Scale bar = 2 µm. (c) Schematic of a section through a bundle displaying the main
structures and molecules present. (d) Schematic of the basic mechano-transduction
concept (e) Four different possible locations for the mechanoelectrical transducer
(MET) channels (green spheres). Evidence exists for each of these arrangements,
but none of them predicts all of the experimental data. Figure modified from [11].
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2.5 Human inner hair cell synapses and innerva-

tion

The base of the inner hair cell forms synaptic connections to afferent nerve fibres

(figure 2.5). In the presynaptic region, i.e. inside the inner hair cell, exists an

organelle known as a synaptic ribbon, which is also known as synaptic bar [11] or

presynaptic body [248]. It appears as a dark ellipse in stained tissue micrographs,

see figure 2.8.

There have not been many studies on the human afferent synapse of the inner

hair cell due to the difficulty in obtaining specimens, and the relatively fast post-

mortem deterioration of the tissue [248, 245]. From the limited samples available

three key differences were observed between human and other species.

• There are less afferent nerve terminals per inner hair cells in humans than

animal species [245].

• Branching of radial afferent fibres is common in humans [248] whereas this is

not the case in other mammals [186, 331].

• Multiple synapses between a single large neuron and an inner hair cell is com-

mon in humans, whereas in the cat a single synapse between the neuron and

a hair cell was reported [186].

On the other hand a remarkable similarity across species exists in the morphology

of the afferent synapse, including the synaptic ribbon and the synaptic membrane

thickening. Furthermore the inner hair cell efferent innervation is the same in all

mammals. However, the shape of the ribbon synapse is highly variable and in some

large synapses there are multiple ribbon synapses present close to each other, see

figure 2.8(a). It was observed that 17% of the synapses did not have a presynaptic

body or vesicles [246]. Furthermore there was a significant variation in the diameter

of afferent neurons enabling classification in three categories; large, intermediate

and small fibres. Large fibres have diameters around 1.5 to 2 µm and large nerve
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terminals, up to 20 µm, forming multiple synapses per nerve. Furthermore branching

is common and a single neuron will join with up to three adjacent inner hair cells.

Intermediate fibres have a diameter around 1 µm and large nerve terminals. They

form two or three synaptic contacts and branching is not very common for them.

Small fibres have a diameter of around 0.75 µm and form bouton like terminals.

They have one or maybe two areas of contact with the inner hair cell and rarely

branch to form connections with more than one inner hair cell.
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Figure 2.8: Auditory ribbon synapse. (a) Synapse between an inner hair cell (IHC)
and a large fibre presumed to be afferent auditory nerve (A). The magnified in-
sert shows the presynaptic bodies (PB) surrounded by neurotransmitter vesicles.
The images are from a human subject [245]. (b) A freeze-fracture electron micro-
graph of the frog saccular hair cell active zone. It shows rows of particles in the
presynaptic membrane that are presumed to align with the synaptic ribbon and
correspond to ion channels. Note that the membrane dimples around the periph-
ery of the active zone are most likely the openings of membrane tubules rather
than sites of vesicle fusion. (c) Molecular specializations of the hair cell ribbon
synapse showing localization of proteins associated with the synaptic ribbon and
plasma membrane density of the cytomatrix at the active zone. Abbreviations are:
Voltage-gated calcium channels (VGCCs), α-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA)-type glutamate receptors (AMPARs), presynaptic calcium-
sensitive voltage-gated (BK) potassium channels (not present in all hair cells). Fig-
ure modified from [248, 304]
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Chapter 3

Hearing Physiology and the

Pathology of Deafness

This chapter aims at presenting various mechanisms and phenomena that charac-

terise the physiology of hearing. It is divided into four sections: the first section

discusses the physiology of sound collection and source localisation at the auditory

periphery. The second section discusses the mechanical response of the inner ear to

stimuli, specifically the basilar membrane stimulus induced oscillations. The third

section discusses the mechano-electrochemical mechanisms that exist in the sensory

cells of the inner ear that convert the oscillations of the basilar membrane to receptor

potential. The fourth section discusses the various phenomena observed at the level

of the auditory nerve, specifically the spatio-temporal pattern of action potentials

evoked from sound stimuli.

3.1 Sound energy collection and localisation

The auditory system collects acoustic waves from the surrounding medium and pro-

vide cues to the brain to determine the nature and location of the sound source. This

section is separated into two sections: the first one dealing with the mechanisms the

peripheral auditory system employs to capture acoustic energy and the second one

discusses the mechanisms in the peripheral auditory system that aid in determining
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the location of a sound source based on physical cues.

3.1.1 Acoustic energy transfer in the middle ear

The ear canal and pinna form a complex cylinder that is open at one end. Pressure

is maximum at the closed end and displacement is maximum at the open end.

Because the external ear is a complex acoustic cavity, the sound pressure variations

at the closed end (tympanic membrane) are highly frequency depended. However it

appears that the main resonances have complementary effects on the pressure gain

so that the increase is relatively uniform over the range from 2 to 7 kHz in humans

[274], (figure 3.1).

Figure 3.1: The efficiency of power transfer from the external sound field to the
middle ear in two species. Image extracted from [274].

A noteworthy mechanism is the impedance matching function of the ossicles.

Even if we take into account the pressure gain of the acoustic cavities, due to the

acoustic impedance mismatch of the cochlear fluids and air, the incident power

transmitted at 1 kHz would have been around 2% [249]. However measurements

have estimated a power transmutation of around 35% for 1 kHz incident sound

[297] which indicates an impedance transformer mechanism for better matching the

incident sound energy with the cochlear fluids. The impedance matching mechanism
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of the ossicles is based on two principles:

• The area of the tympanic membrane is larger than the stapes thus increasing

pressure at the oval window.

• The lever action of the three ossicles increases the force and decreases the

velocity.

The transfer function of the middle ear for humans is shown in figure 3.2

Figure 3.2: The transfer function of the middle ear in two species. Image extracted
from [274].

The bandpass characteristic can be explained by considering first the low fre-

quencies. As the frequency becomes lower the wavelength becomes longer hence the

displacement of the structures larger. This will therefore be limited by the elastic

stiffness of the ligaments that hold the ossicular bone chain. Also another factor

is the middle ear air cavity cannot equalise pressure fast enough for low frequency

vibration to be unhindered by air compression [274]. On the other hand higher

frequencies are hindered by various reasons. One is that the acceleration and hence

forces on the structures involved in power transmission increase with frequency.

This will lead the mass of the bones to play a role in attenuating via inertial losses

and energy absorption as heat. Furthermore high frequency vibrations break into

separate zones on the tympanic membrane, which limits transmission. Alongside

this, the motion of the stapes changes from piston-like to more complex modes of

movement [274].
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3.1.2 Directionality cues for sound localisation

Interaural sound levels and time difference plays a significant role in determining

sound location. The head acts as a shield which dampens the sound intensity be-

tween ears making a very effective cue if the sound is originating from the left or

from the right based on interaural level difference. The sound arrival times at the

two ears is another cue for the sound origin. As sound travels through air at a speed

of 343 ms−1 the sound will first be picked up from one ear then the other, thus in-

dicating which way the sound came from. The interaural time difference estimation

has a very impressive sensory limen of 10 µs in humans [147]. Molecular sensory

mechanisms that permit such impressive feat are further discussed in section 3.3.2

and chapter 8.

Intensity and timing differences of sound reception between the two ears are the

most important cues for sound localisation. However they do not account though for

the ability to distinguish in front from behind, or above from below [274], creating

a cone of confusion [240]. This information comes from the pinna and the concha

reflecting sound waves in the ear canal in a way that depends on the direction and

elevation of the sound source. Audio wavelengths that are short comprated to the

size of the pinna and the concha undergo destructive interferences. This manifests

as a drop in gain at around 10 kHz when the sound source is located straight ahead.

As the sound source is raised in space the drop in gain tends to move towards higher

frequencies (figure 3.3). When a sound is moved behind the ear waves are scattered

off and thus reducing the response in the 3-6 kHz region [274]. It is in this frequency

region that there are the greatest intensity changes as a sound source is moved in

the horizontal plane (figure 3.3.

3.2 The cochlea mechanics and tonotopy

One of the aspects of the cochlear function which makes its operation non-intuitive

is its non-linearity. Essentially the main manifestation of this non-linear behaviour
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Figure 3.3: Plot (A) illustrates the average pressure gain of the human external ear.
The pressure gain,

(
Pressureeardrum

Pressurefree field

)
, as a function of frequency for different orientation

of the sound source in the horizontal plane ipsilateral to the ahead. In other words,
zero degrees is straight ahead. Plot (B) shows the change in pressure gain as the
elevation of a sound source is altered in the cat. Note that around 10 and 20 kHz
there are changes in frequency. Image extracted from [274].

is the active amplification of the travelling wave along the basilar membrane with

the aim to generate sharp tuning. This sharp tuning is essential for the accurate

tonotopic processing the basilar membrane performs, see section 3.2.2 for a more in

depth discussion. Evidence to support active mechanisms — i.e., energy consump-

tion — behind the sharp tuning come from studies that have concluded that post

mortem study of cadaveric cochlea for revealing their mechanical properties will only

indicate the passive and linear behaviour of the cochlea, described in section 3.2.1

and none of the non-linear effects of the cochlea [274].
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3.2.1 Passive basilar membrane mechanics and its tonotopic

processing

The basilar membrane provides the primary filter function of the inner ear. Sound is

decomposed into its frequency components due to the mechanics of the basilar mem-

brane and the properties of the surrounding structures. The membrane is stiffer ans

narrower at the base than at the apex with its stiffness varying two orders of magni-

tude [274]. This combination of mechanical properties of width and stiffness produce

a structure that demonstrates a distance dependent displacement in response to a

single tone, or in other words a spatial encoding of frequency.

Since the basilar membrane becomes less stiff towards the apex, a certain pressure

gradient will introduce greater amplitudes of vibration towards the apex. On the

other hand as we move to the apex the mass of the basilar membrane becomes large

enough to limit the movement. As such vibrations close to the base are stiffness-

limited and vibrations close to the apex are mass-limited. In between the stiffness

limited part and the mass limited part of the cochlear partition, exists the point of

resonance (figure 3.4).

Inertial forces are greater for high frequency stimuli therefore as we increase the

frequency of vibration the mass limitation becomes more significant. This means

that higher stiffness is needed to match the higher magnitude of the inertial damping

(mass limitation) for high frequency sounds. This fact causes the resonant point

where the mass limitation and stiffness limitation match shift towards the base

where it is stiffer. Therefore higher frequency impulses resonate closer to the base

and lower frequency impulses resonate closer to the apex [274].

3.2.2 Non-linear active amplification mechanical effects

More specifically, the non-linearity of the cochlea is revealed in three ways:

• The non-linear growth of cochlear responses with stimulus intensity.

• The reduction in the response to one stimulus by a second stimulus, also known
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Figure 3.4: Illustration of the various mechanical properties and how they change
around a resonant point of the basilar membrane. In summary, the basal end of the
basilar membrane is too stiff to vibrate and the apical end is too heavy to vibrate.
The pressure decreases close to the resonance point due to friction. Amplitude of
vibration is equal to the product of pressure and admittance, notice the peak is a bit
before the resonant point. Phase is flat after resonance due to the fact that all the
compartments move together in the same phase since no standing wave is present.
Image modified from [274].

as ‘two tone suppression’.

• The generation of combination tones, also known as intermodulation distortion

products.

Non-linear growth of cochlear responses

The overall oscillation amplitude growth function as a response to sound loudness

can be separated into two parts. First, a nearly linear growth up to around 30

dBSPL exists, which is mainly dependent on active mechanics. Second, a saturating
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function exists for up to 80-100 dBSPL, which is dependent on the saturation of the

outer hair cell response (figure 3.5) [274].

Figure 3.5: Amplitude functions of the basilar membrane as the sound loudness
increases. Note the theoretical linear mechanics and active processes with their
saturating mechanics as they overlay in the combined response. Furthermore note
how acoustic trauma, presumably to the outer hair cells, causes the loss of the active
mechanisms. Image modified from [274].

The saturation of the active contribution can possibly occur at two stages: (1)

the transducer current as a function of the stereociliar displacement saturates and

(2) the motile mechanism of the outer air cells as a function of the transducer current

saturates. Evidence indicate that the saturation of the mechano-transduction is the

probable dominant factor [274].

Two tone suppression

The fast onset of suppression effects, around 0.1 ms [7], excludes any effect from

efferent mechanisms, thus leaving only mechanical effects as possible explanation

for the suppression phenomenon. The suppression mechanism is caused by the

reduction of the active amplification of a stimulus by another stimulus. This is

caused by the saturating input-output functions of the outer hair cells, meaning

that each stimulus will push the response to the other stimulus into the flatter part
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of the input-output function. As such the loudest stimulus will suppress the more

silent one by directly affecting the amplification of the travelling wave [274].

Combination tones

Combination tones are perceived at frequencies that are combinations of the primary

frequencies. If the primary frequencies are f2 and f1 , where f2 > f1 then the combi-

nation tones will be f2− f1 , (n + 1)f1− nf2 , or (n + 1)f2− nf1, where n = 1, 2, 3, . . .

, where out of all of them the cubic tone (2f1 − f2) and the difference tone (f2 − f1)

are the most prominently heard.

The combination tone is produced when the travelling wave of one primary over-

laps the active region of the travelling wave of the other primary. The active pro-

cesses generate the combination tones [274]. Generation of both symmetric and

antisymmetric types of combination tones, (figure 3.6), suggests that the cochlear

non-linearity has both components, consistent with the observed non-linearity of the

outer hair cell input-output function [274].

3.3 Mechano-electrochemical transduction mech-

anisms

The perturbation of the sensory cells, namely the inner and outer hair cells, triggers

a cascade of mechanisms that lead to the generation of action potentials that inform

the brain on the nature of the surrounding acoustic pressure fluctuations. This

section will focus on the conversion of energy from mechanical perturbation of the

stereocilia bundle to internal voltage fluctuations of the inner hair cell. For a more

in depth discussion on the generation of action potentials see Chapter 8.

The electromechanical transduction mechanism of the inner hair cell is located at

the tips of the stereocilia projections at the top of the hair cell. Three characteristics

of the stereocilia response to deflection are: (1) the directionality preference of the

deflection, (2) the speed of the transduction and (3) the adaptation effects.
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Figure 3.6: The different non-linearities and their corresponding combination tones
they generate. (A) An even order function generates an output with terms of the
form n(f1 ± f2) and even harmonics. (B) An odd order function will generate the
primaries and combination tones of the form nf1 ±mf2(n 6= m) and odd harmonics.
Image extracted from [274].

3.3.1 Directionality of stereocilia bending

As is discussed in the anatomy section (section 2.4), there is cross linking between

the stereocilia pillars forming a united bundle on top of the hair cell. This forms a

highly geometrical structure that acts as a unidirectional lever [274]. As such, all

surrounding fluid forces fluctuations as the basilar membrane displaces are experi-

enced by the stereocilia bundle as the vectorial projection along the axis of symmetry

(figure 3.7).

3.3.2 Speed of mechanotransduction

The inner hair cell mechano-transduction does not employ a secondary chemical

messenger mechanism. The advantage of having a direct tranduction without chem-

ical intervention is a great increase in the speed of response [147]. The transduction

by hair cells must be rapid so as to deal with the frequencies of biologically rele-
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Figure 3.7: Directional sensitivity of mechanotransduction: receptor potentials
recorded from a vestibular hair cell; the bundle was deflected along different axes
as indicated. The maximal response was evoked for bundle deflections along the
morphological axis of symmetry. Figure modified from [11]

vant stimuli. It is notable that hair cells operate much more quickly than do other

sensory-receptor cells of the vertebrate nervous system and indeed faster than neu-

rons themselves [147]. The mechanism by which the electromechanical transduction

occurs is illustrated in figure 3.8.

Thermal energy continuously moves the channel between its opened and closed

states so that the proportion of the time spent in one state would depend on the

energy difference, therefore on the spring displacement, see figure 3.8B. The trans-

ducer channels open and close with a very short delay. A study [49] showed that

the transducer current, in response to pulse stimuli, changed with a delay of 40

µs at a temperature of 22 oC. Furthermore this latency has a temperature depen-

dence, decreasing by a factor of 2.5 for every 10 oC increase between 1 oC and 38

oC [49, 274].

3.3.3 Adaptation of mechanotransduction

Sensory adaptation is defined as the decrease in a sensory response over time in the

presence of a constant stimulus. In the electromechanical transducer mechanism of

the inner hair cell two forms of adaptation exist, slow and fast adaptation, both
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Figure 3.8: (A) Kinetic description of the mechanotransducer channel and gating
spring in a two-state model. The channel opens and closes under the influence of
thermal energy. When it closes, it stretches the gating spring by an amount y. The
external stimulus separately stretches the other end of the gating spring by a distance
x. (B) Energy level of the channel plus gating spring, as a function of position of
the gate. On the horizontal axis, the displacement of the gate is marked on a
hypothetical scale of distance. The lower curved line is the hypothetical relation
between internal energy and displacement of the gate, in the absence of external
displacement of the other end of the gating spring. The function shows two minima,
one in the open position and one in the closed position. (C) The energy of the closed
state minus the energy of the open state, when there is no tension on the gating
spring. The position of the lowest energy is the favoured state in which the channel
spends most of its time. External stretch of the gating spring changes the shape of
the function, increasing the energy level more when the gate is closed than when it
is open so that now the open state is favoured. The two most favoured states, with
and without external extension of the gating spring, are marked by the black dots.
Figure modified from [145, 274].

regulated by calcium [274]. Slow adaptation occurs over 10 to 100s of milliseconds

and is thought to be mediated by a molecular motor, while fast adaptation occurs
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within a few milliseconds and is thought to result from either an inherent property

of the transduction channel itself or from an associated accessory protein [338].

Evidence [71] suggests that the hair cell mechanotransducer slow adaptation is

an active process, as the amount of adaptation varies with displacement amplitude

even if the amplitude of the current is constant [71]. This active mechanism is

illustrated in figure 3.9C. The intracellular fast adaptation mechanism is unknown

[338], but two possible models, the ‘channel-reclosure model’ and the ‘release model’,

are illustrated in figure 3.9D.

3.4 Signal digitisation: Auditory nerve spectral

representation

The auditory nerve action potential generation in response to sound reflects the

workings of the previous physiology of the auditory periphery. As shown in figure

3.10 auditory nerve responses to click sounds are highly variable, in a manner which

directly reflects the mechanical properties of the basilar membrane and the internal

inner ear structures. A collection of properties of the auditory nerve will be presented

in the following subsections which are characteristic to the auditory nerve’s action

potential generation in response to sound stimulus.

3.4.1 Spontaneous Rate and Dynamic Range

The auditory nerve elicits action potentials even in the absence of a sound stimulus.

This so called spontaneous rate is a randomly generated sequence of action potentials

that has an intrinsic rate. Several studies categorised the auditory nerves into either

two category types of low spontaneous rate and high spontaneous rate [78, 167]

or three category types of low, middle and high spontaneous rate [185, 380]. The

action potential generation without the present of stimulus is exemplified in figure

3.11, especially for the curve representing the high spontaneous rate neurons, by

observing that the firing rate does not begin from zero spikes per second.
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Figure 3.9: Stereocilia adaptation effect, example and models. (A) The effect of
adaptation can be described as a temporal shift in the probability to bundle dis-
placement relation. (B) An example showing fast and slow adaptation in response
to a step deflection of the hair bundle. Notice the reverse adaptation back to the
rest current after the displacement step ends.(C) Suggested mechanism for the slow
adaptation. Calcium induced myosin molecule forming a motor complex ”crawls”
down the actin core relaxing the tip link.(D) Two possible mechanisms for fast
adaptation. The channel-reclosure model suggests that the calcium ions that enter
the channel bind to the transduction apparatus and cause it to close. This creates
extra tension on the tip link causing the hair bundle to move slightly to the negative
deflection and hence channels close. The release model contrary to the other model
suggests that calcium ions binding to the transduction apparatus cause release of
tension hence actively favouring positive movement. This release in tension will
cause the transduction apparatus to close and hence increase the tension in the tip
link and pull the hair bundle to the negative direction. Figure modified from [11]

3.4.2 Rate-Level Functions

The discharge rate of the three categories of auditory nerves are shown in figure

3.11 in response to single tone sinusoids. Something to be noted is that the dynamic

range of all the auditory nerves, regardless of type, is wider for narrowband or
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Figure 3.10: An illustration of the post-stimulus-time histograms of the auditory
nerve response to clicks. The indicated frequency is the characteristic frequency of
the fibre. Note that low-frequency fibres exhibit ringing (a-e) at the characteristic
frequency, whereas high frequency fibres do not (f-i). High-frequency fibres also
show a later phase of activation. Figure was extracted from [274]

broadband noise than the response to single tones. This could possibly be a result

from suppression mechanisms [274].

3.4.3 Adaptation

Adaptation exists in - at least - two mechanisms of the hair cell, the electromechan-

ical transduction mechanism and the auditory nerve synapse. The former is further

discussed in section 3.3. The latter is of interest to this section because adaptation

mechanisms in the auditory synapse affect directly the action potential generation

of the auditory nerve. Note that the mechano-electrical transduction adaptation

exhibits a high-pass filter characteristic [50] hence it is not expected to reduce the

neurotransmitter vesicle release, except for very low frequency sounds.

Two types of adaptation have been reported to describe the reduction in the

action potential generation rate after the onset of a sustained acoustic stimula-

tion. These have been called rapid adaptation, lasting about 10ms, and short-term
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Figure 3.11: Discharge rate of single auditory neurons as a function of stimulus
level. The stimulus used in this examples is a pure tone sinusoid tuned at the centre
frequency of each neuron. Curve (a) is typical of a high spontaneous rate neuron,
curve (b) is typical of a medium spontaneous rate neuron and curve (c) is typical of
a low spontaneous rate neuron. Figure extracted from [239]

.

adaptation, lasting around 20–90ms. Fast adaptation is thought to be caused pre-

dominantly due to the depletion and refilling of the ready for release pool of synaptic

vesicles. This is based on the observation that the presynaptic calcium current does

not decline significantly during the course of the stimulus. [242, 309, 266].

Three other mechanisms could potentially contribute to the rapid auditory adap-

tation: (1) Opening of calcium activated potassium channels cause the reduction of

the receptor potential, as a form of feedback control [174], (2) Post-synaptic desensi-

tization of glutamate receptors can cause the inhibition of action potential generation

[279], and (3) Auditory nerve refractory period [104].

3.4.4 Phase locking and Synchronisation

Deflection of the stereocilia hair bundle on top of the inner hair cell causes neu-

rotransmitter to be released and action potentials to be generated at the auditory

nerve (section 3.3). This manifests itself as a transition from the random spon-
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taneous firing of the auditory nerve to a synchronisation, or phase locking, of the

timing of spike occurrences to match a stimulating sinusoid. For low-frequency sinu-

soids the action potentials tend to occur during the positive-half cycle of the stimulus

waveform. Furthermore this phenomenon applies for all auditory nerves regardless

of their characteristic frequency. The degree of phase-locking decreases with in-

creasing stimulating frequency until action potentials in the auditory nerve become

nearly random with respect to the stimulus period [274]. The frequency where phase

locking declines to random firing patterns in the cochlear nerve is roughly between

1 and 4 kHz, but it varies for different species and even within an individual cochlea

[274].

3.4.5 Characteristic Frequency

Auditory nerves respond to single tones stimuli in a frequency selective manner. In

other words, the acoustic pressure of the input stimulus that is required to increase

the firing rate of the neuron depends on the stimulus frequency. This a direct con-

sequence of the basilar membrane tonotopic tuning (section 3.2). The definition of

the threshold for the plotting of the tuning curves shown in figure 3.12 is considered

to be the acoustic pressure in dB SPL where the firing rate of the neuron increases

by 20% compared to the spontaneous rate.

3.4.6 Level-dependent tuning and Best Frequency shifts

In the previous section the frequency-threshold, or tuning curves, was described

as a way to assess the frequency response of a single auditory neuron. A rather

different approach to describe the frequency response of the auditory nerve is the iso-

intensity contours shown in figure 3.13. These contours are generated by maintaining

a constant acoustic pressure (in dBSPL) and varying the frequency so as to extract

the firing rate, or action potential generation rate, as a function of frequency.

Note that the width of contour curves increases as acoustic pressure increases

regardless of characteristic frequency. This can be attributed to the saturation of
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Figure 3.12: Auditory neurons at different cochlea locations tuning, or frequency-
threshold, curves. These recordings were obtained from anaesthetised cats perform-
ing single neuron measurements. Note that the difference in line style is only for
clarity of the diagram. Figure extracted from [239]

the neuron’s firing rate and also at the broadening of the basilar membrane response

to loud sounds [294]. Furthermore with increasing level the frequency at which the

auditory nerve seems to be most responsive to appears to shift. This frequency is

called best frequency and it is different from the characteristic frequency described

in a previous section. In other words, if the acoustic pressure of the stimulating

sound is near threshold then the best frequency and the characteristic frequency are

the same, but the sound level changes the best frequency shifts [274].

3.4.7 Level-dependent Phase

In a previous section the ability of auditory neurons to phase-lock to a stimulus was

discussed (section 3.4.4). The phase locked pattern of the neurons does not align

temporally with the peak of the of the stimulus waveform [4]. Furthermore this

phase shift increases linearly with increasing frequency, and it also depends on the

stimulus level.

For frequencies below the characteristic frequency of the neuron the action po-

tentials tend to occur gradually later as the sound level increases. In contrast, for
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Figure 3.13: Iso-intensity contours for a single auditory neuron. These recordings
were obtained from a single neuron of an anaesthetised squirrel monkey . The num-
ber next to each curve indicates the sound level (dB SPL) used for that recording.
Note that the frequency producing maximal firing varies as a function of level. Fig-
ure extracted from [274]

frequencies above the characteristic frequency of the neuron the action potentials

tend to occur gradually earlier as the sound level increases. Near the character-

istic frequency the phase angle that is preferable to action potential generation is

approximately independent of sound level [4]. It is likely that these level depen-

dent phase shifts are caused by the basilar membrane mechanics, more specifically

the level-dependent bandwidth change of the basilar membrane magnitude response

[294].

3.4.8 Suppression

Suppression is the phenomenon by which the rate of the auditory nerve for a given

tonal sound is reduced when there is simultaneous presence of a different tone [274].

The tone that is exciting is known as the probe where the tone that is suppressing

is known at the suppressor. On average the latency difference between excitation

and suppression is around 0.1 ms [7], and more recent evidence indicates that if the

travel time along the cochlear duct is taken into account then suppression occurs in
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the time-scale of about two cycles [357]. This very short time-scale for the onset of

suppression suggests that it does not result from local inhibitory synaptic mecha-

nisms, which have a delay time of around 1 ms [274]. The same latency argument

also excludes efferent suppression and this has been confirmed experimentally [167].

There have been two ways in which suppression effects have been measured. Rate

suppression which refers to the decrease in the average firing rate of action potentials

for a particular neuron. Synchrony (or phasic) suppression which refers to the range

of low frequencies that can phase lock to the tonal stimulus and the reduction of the

neurons phase-locking abilities in the presence of a suppressor tone. The amount of

suppression depends on the suppressor tone frequency and loudness (figure 3.14).
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Figure 3.14: Two tone suppression. (A) An example of three tonal stimuli. The
topmost is a 2-kHz, 20-ms tone (the probe) presented at 40 dB SPL. Below is a
3-kHz, 10-ms tone (the suppressor) presented at 60 dB SPL. The third stimulus
example shows the combined probe and suppressor tone presented together. Figure
extracted from [287] (B) The post-stimulus-time histogram of a suppressing tone
burst while a probe tune is present. Figure extracted from [274](C) The upper and
lower suppression areas of an auditory nerve neuron shown in the shaded area. They
are shown flanking the excitatory tuning curve which is indicated by the open circle
line. A sound stimulus in the shaded area is able to reduce the average firing rate
of the particular neuron by 20% or more. Figure extracted from [7]. (D) The upper
suppression area is explained with the suppressor higher frequency tone stimulating
the outer hair cells in the region of the lower in frequency probe tone. More in detail
discussion of this mechanism in Section 3.2. Figure extracted from [274]
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Chapter 4

‘Matlab Auditory Periphery’

Model: Reverse engineer the

human ear

Extensive observations by anatomists and physiologists have provided a wealth of

data describing the response to sound of each part along the route of the auditory pe-

riphery. Computer models can be used to cascade the auditory periphery physiolog-

ical stages gives the modeller the power to resynthesise the anatomical/physiological

analysis and create a non-intuitive representation of the sound at the auditory nerve,

which would otherwise be an impossibly complex problem.

This chapter will present an overview of various models concerned with the

auditory system. Special focus will be given to the Matlab Auditory Periphery

(MAP) model, developed by Professor Ray Meddis and various collaborators [287,

26]. It is freely distributed through https://github.com/rmeddis/MAP. The

principal reason behind the choice of this particular model is its aim to bridge the gap

between physiology and psychophysics. By setting a cascade of stages representing

the physiology and anatomy of the human auditory periphery it seeks to explain

some of the observations in the psychology of hearing. This aligns closely with

the aim of the cochlear implant stimulation model that is presensted in Chapter 6.
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Furthermore the modular design of the MAP model can be easily upgraded to new

information about the anatomy and the physiology of the individual constituents of

the auditory system and permit collaborative research. This modular organization

permits intuitive integration with the cochlear implant stimulation model.

Other models also exist that focus on the auditory system, see Table 4.1. They

can predict psychophysical phenomena such as a model for the loudness perception

[241] and a model for the human sensitivity to amplitude modulation [60] with-

out inclusion of the full anatomical cascade, hence much less computational power.

They serve the purpose of addressing particular questions which align mostly with

psychoacoustic phenomena instead of anatomical physiology. Whilst this speciality

makes them very efficient for their purpose, excludes them from integration with

the cochlear implant stimulation model developed.

4.1 Various phenomenological models

The conceptualization of a phenomenological model is based on the black box ab-

straction of certain physiological phenomena. The main concern is to produce the

right output for a certain input without directly following the biophysical processes

involved. This permits the modeller to employ any means available given the con-

strains set by the range of possible assumptions and the existing technology that is

used to realise the model. This chapter deals with phenomenological models; dif-

ferent kind of models are reviewed elsewhere, a concise review on transmission line

models can be found in [68] and two reviews on mechanical cochlear models can be

found in [57, 146].

Many of the characteristics of the auditory nerve’s response to sound are de-

pended on the physiology of the auditory periphery, see Section 3.4 for a discussion

on the topic. A selection of models is based on the physiological response of the

auditory nerve to sound stimuli, and are designed by building a cascade of separate

models. These are termed composite models and all share a bottom up approach,

which is based on the underlying assumption that a representation of the auditory
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nerve can be produced by the realistic modelling of the responses of the previous

physiological processing stages [200]. The modern composite models are realised

using digital signal processing techniques which essentially has two limitations, the

mathematical model must be stable in the digital (z-domain), and their computa-

tion times must be practically short. Furthermore the model should be elegant,

i.e. strive to describe more phenomena with the fewest possible parameters. This

provides a more comprehensive way to explore the parameter space and gives the

modeller a more intuitive understanding on the model operation.

Various models use different approaches and different criteria to validate their

operation. There is a lack of consensus on a specific dataset of auditory nerve

recordings that describe specific properties. Hence models usually focus on specific

phenomena without a rigorous analysis for all, currently known, elicited phenomena

from various recordings of the auditory nerves [200]. The aim of this section is to list

some of the most well known models of the auditory periphery and compare them on

their relative performance on reproducing the main physiological phenomena that

pertain spectral analysis characteristic of the auditory periphery. The comparison

is summarised in table 4.1 which is an updated version of a similar table that exists

in Lopez-Poveda (2005) [200].

Auditory filter models need to fulfil a variety of roles, requiring a set of properties,

some of which include [208]:

• Simplicity of description.

• Bandwidth control since the bandwidth should be modelled as a function of

the characteristic frequency of the cochlear place that it represents, and also

as a function of sound level.

• Realistic and controllable relationship between peak shape and side tails.

• Filter shape low frequency favouring asymmetry since physiological data shows

a steeper high frequency roll-off than the low frequency tail.

• Stimulus level-dependent gain at the peak gain variation.

Chapter 4 Andreas N. Prokopiou 69



Biophysical Modelling of a Cochlear Implant System

• Stable low-frequency tail, since physiological data suggest that the low-frequency

response does not vary much with signal level.

• Ease of implementation as stable digital filters.

• Provide some connection to the underlying traveling-wave hydrodynamics.

Other than cascading filters that directly implement a transmission line fil-

tering action similar to what a travelling wave would do, most filter models

are just phenomenological, or descriptions of abstract filters. But the filter-

cascade family was developed to connect with the mathematics of filtering by

wave propagation, via the WKB1 method [209]

• Good impulse-response timing and phase characteristics.

• Dynamic; because in addition to being parameterized by level, the filter will

ideally be dynamically variable, so that it can be used for processing sounds

that vary in level dynamically.

There are three main families of auditory filter models, the rounded exponential

family, the gammatone family and the cascade filter family. For an explicit discussion

on the applicability of them as auditory filters see Lyon 2010 [208].

4.1.1 The model of Deng and Geisler (1987)[59]

The motivation for the implementation of this model was the attempt to capture

what the authors termed ”synchrony capture”. This essentially is the non-linear

compression behaviour of the cochlea that leads to a specific formant in a speech

syllable inducing more synchrony to itself than predicted by linear methods from

the fibres threshold frequency tuning curve [59, 200].

The model consists of five stages shown diagrammatically in figure 4.1. The

first stage is a linear middle ear filter fitted to experimental data. The second

stage replicates the response of the entire cochlear partition by a set of difference

1Wentzel–Kramers–Brillouin
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equations describing the behaviour of the one-dimensional transmission line model

of Wickesberg and Geisler (1986) [372]. The descriptive parameters of the cochlear

partition are the damping and stiffness along the basilar membrane. To achieve non-

linear behaviour the damping parameter was made to vary as a function of the basilar

membrane displacement. The third stage represents the inner hair cell function by

means of a simple sigmoid-type of memoryless non-linearity followed by a low pass

filter. It transforms partition velocity into inner hair cell receptor potential. The

fourth stage represents the synaptic effects and transforms the receptor potential

into probability of firing of auditory nerve fibres. The fifth stage is a correlator

bank that is presumed to represent possible central processes [59, 200].

The model becomes unstable for long duration signals because of round-off errors

[200]. Although it lacks specific tests for verifying the models ability for suppres-

sion and adaptation, it was compared against experimental data from speech sound

induced activity on the auditory nerve [224]. The main conclusion was that the

cochlear compressive non-linearity and the synaptic adaptation non-linearity are

crucial for an auditory model to produce realistic auditory nerve representation of

speech.

4.1.2 The multiple bandpass non-linearity (MBPNL) Model

of Goldstein (1990)[113, 114]

The motivation for the implementation of this model was to provide a unified account

of complex non-linear phenomena (see Section 3.4 for a discussion) that characterise

basilar membrane and auditory nerve responses to sound. It was specifically designed

to capture a phenomenon referred to as ”simple tone interaction” [271], which is a

form of two tone suppression between a moderate-level tone at the auditory nerves

centre frequency (section 3.4.5) and a high acoustic pressure tone with very low

frequency.

The model layout is described in figure 4.2, where through careful filter param-

eter setting the model achieves level-depended tuning and best frequency shifts.
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Figure 4.1: Block diagram of the composite model of Deng and Geisler. Figure
extracted from [59]

Furthermore with the low frequency expansive non-linearity it accounts for the fact

that the amount of suppression increasing faster for low side suppression than from

high side suppressors [114].

The focus of the model to account for non-linearities of the basilar membrane that

manifest themselves to the auditory nerve response succeeds in creating a realistic

non-linear loudness growth cochlear model [224]. However since it does not attempt

to model the auditory nerves behaviour it lacks the ability to reproduce auditory

nerve firing rate-level functions, high and low spontaneous rate, phase locking effects

and adaptation [224].

4.1.3 The model of Jenison et al. (1991)[156]

The motivation for the implementation of this model is to explore the level-dependent

frequency selectivity for speech representation [200]. More specifically the authors

aimed to simulate the ”synchrony suppression” [384] phenomenon.
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Figure 4.2: Block diagram of the multiple bandpass non-linearity (MBPNL) model
of Goldstein (1990) [113]. Processing is a nonlinear mixing between a sensitive,
compressive, bandpass ’tip’ filter (H1-H2) and an insensitive, linearlike, lowpass ’tail’
filter (H3-H2). The medial olivocochlear (MOC) efferent control sets the amplifier
to represent the 40-50 dBSPL advantage of tip transmission for small signals. Image
extracted from [113]

This model is structured in a way that does not follow the processing stages of

the peripheral system. It is made up from three stages that lump together several

processing stages. The first stage uses FIR digital filters in a filter-bank to model

the iso-intensity response of auditory nerve fibres. This stage essentially informed

together the filtering mechanisms of the cochlea, inner hair cell transducer, synaptic

mechanisms and action potential generation. The second stage utilises a sigmoidal

nonlinearity to represent rate level functions that map sound pressure and instanta-

neous rate for each frequency channel. The third stage, by using a simple low pass

filter, gives the model a realistic frequency-dependent synchronization [200].

This model manages to produce non-linear phenomena for when the stimulat-

ing frequency is the centre frequency of the particular auditory nerve simulated.

However it fails to replicate the cochlea non-linearities for when the stimulating

frequency is other than the centre frequency [200].

4.1.4 The model of Giquere and Woodland (1994)[108, 107]

The motivation for the implementation of this model is the analogy mechanoacous-

tical and electrical systems. Furthermore, this is one of the few models [200] that

simulate the effects of outer hair cells and the efferent system [107].
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This model consists of five stages of analogue electrical networks. The first stage

was adapted from Killion and Clemis (1981) [170] and simulates the head transfer

function, more specifically it simulates the diffraction of a free-field sound by the

human torso, the head and the auricle. The second stage was adapted from Gardner

and Hawley (1972) [103] and aims to reproduce the acoustic resonance of the concha

and the ear canal cavity. Both stage one and two electric analogue schematics are

illustrated in figure 4.3

Figure 4.3: Electric analogue schematic of stage one and two of the Giquere and
Woodland model. The electroacoustic network of the outer ear is modelled as a
transmission line. Figure was extracted from [108]

The third stage is adapted from Lutman and Martin (1979) [205] and simulates

the pressure transmission and transformation through the middle ear. The design of

the electrical analogue circuit in figure 4.4 permits explicit modelling of the middle

ear acoustic reflex [200].

The fourth stage simulates the basilar membrane motion by using a transmission

line cochlear model (figure 4.5) is described elsewhere [399]. The role of the outer

hair cells is explicitly modelled as an alternating voltage labelled V ohc
n .

The fifth stage simulates inner hair cell transduction by assuming that the inner

hair cell input is proportional to the viscous drag of the surrounding fluid, which

itself is proportional to the basilar membrane motion. It performs the simulation

task by an electrical circuit network that is equivalent to the model of Meddis (1988)

[220].

An overview of the entire model of Giquere and Woodland is shown in figure 4.7.
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Figure 4.4: Electric analogue schematic of stage three of the Giquere and Woodland
model. It is connected to the left to the schematic in figure 4.3 and to the right with
to schematic in figure 4.5. Figure was extracted from [108]

Figure 4.5: The first and last segments of the electroacoustic transmission line model
of the cochlea. Notice the apical end of the line termination with the inductor LT
representing the acoustic mass of the cochlear fluid. The basal end boundary is
modelled as an open circuit. Figure was extracted from [108]

Figure 4.6: The analogue circuit representation of the inner hair cell model of Meddis
(1988) [220]. Figure was extracted from [108]

The assumption this model makes for simulating the efferent system is to regulate

the auditory nerve firing rate by modulating the input signal to the inner hair cell
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indirectly through modulating the velocity of the fluid surrounding the inner hair

cells. This model has the built-in capabilities to reproduce a wide range of auditory

related non-linear phenomena, but to date no rigorous testing and tuning has exem-

plified the applicability of this model to the various phenomena [200]. Furthermore

the investigation on the performance of this model [107] is purely visual and thus

subjective. The main conclusions with this model were that: level-dependent tuning

contributes to the representation of consonant sounds through spectral sharpening

and the cochlear efferent system contributes to the representation of stop and frica-

tive consonants [200].

Figure 4.7: Block diagram showing an overview of the model of Giquere and Wood-
land [108, 107] with special emphasis on the efferent supply modelling suppression
mechanisms from the higher brain centres. Figure was extracted from [107]
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4.1.5 Auditory Filters : The gammatone Filter

The remaining models (Robert and Eriksson [292], Carney et al [347], Irino and

Patterson [150], Meddis et al [199, 197, 47]) discussed in this section employ the

gammatone filter hence it is important to describe its characteristics. The motiva-

tion for the development of the gammatone filter was to enable the simulation of the

impulse response of auditory nerve fibres [224]. The impulse response of the gamma-

tone filter is the product of two components: a modulating (carrier) frequency that

is equal to the level-depended characteristic frequency of the auditory fibre (section

3.4.5) and a statistical gamma-distribution function that determines the amplitude

(envelope) of the impulse response.

One of the advantages of the gammatone filter is that it can be efficiently im-

plemented [325], which makes it a practically useful filter to be used in modelling

the entire cochlear partition. A filterbank of a collection of overlapping bandpass

can be used to approximate the function of the basilar membrane [269]. However

the gammatone filter is symmetric in its frequency response and is linear, i.e. level

independent. Both properties are not physiologically correct and therefore it is not

enough to pose as a realistic model.

Addressing these limitations an all-pole digital version of the filter with an asym-

metric frequency response was introduced to generate more realistic impulse re-

sponses of the basilar membrane [207]. This version of the gammatone filter has its

centre frequency, gain and bandwidth controlled by a single parameter, the quality

factor (Q). For large acoustic pressure inputs, the Q value is minimum and the filter

response becomes passive providing no gain at the peak frequency. For low acoustic

pressure inputs the Q value is maximum and the filter response becomes selective

by providing maximum gain for frequencies near the peak frequency [163].

4.1.6 The model of Robert and Eriksson (1999)[292]

The motivation for the implementation of this model is the realisation of a physio-

logically realistic cochlea filterbank. Its implementation of a distributed filterbank is
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unique in that the controlling feedback of each channel is not local to the correspond-

ing basilar membrane section but also affects its neighbouring sections. Furthermore

it employs a time delay in presenting the input at each basilar membrane section,

which is determined by the section’s centre frequency and is aimed at encompassing

several physiological factors such as acoustical, traveling wave and synaptic delays

[292].

The model consists of four stages, as shown in figure 4.8. The first stage sim-

ulates the frequency response of the outer and middle ears using linear bandpass

filters. The second stage models the cochlea, and it consists of a set of parallel filters

forming an overlapping filter bank. The input to the parallel filters is delayed by a

factor τ that depends on the centre frequency (CF), (section 3.4.5), of the basilar

membrane section as described by the equation: τ = 1
4CF

(
1+tanh log(600/CF)

1.4

)
. Each

basilar membrane section has two all-pole gammatone filters [207], one passive time-

independent filter and one active filter whose quality factor (Q) is time dependent

and modified by a feedback loop. The feedback loop consists of an outer hair cell

model (see figure 4.8), a Gaussian summation of the output of neighbouring sections

and finally a computation an effective quality factor (Q) by summing the effects of

neighbouring basal (high frequency) sections. The third stage of the model the basi-

lar membrane output is fed into a computational model of the inner hair cell and

auditory nerve system described previously by Meddis (1986,1988)[219, 220]. The

output of the third stage provides the probability of firing for a single auditory nerve

fibre. The fourth and final stage translates the probability of action potential gen-

eration into actual spike occurances by considering absolute and relative refractory

periods.

The feedback control is inspired from an earlier idea of Carney (1993) where

the feedback-process controls the quality factor (Q) of the active filter thus making

its tuning and gain characterised by the stimulus, and hence time-dependent [34].

The distributed form of feedback control enables suppression to be modelled with-

out using the compressive non-linearity used elsewhere [113, 199]. This model has
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Figure 4.8: Block diagram showing an overview of the model of Robert and Eriksson
[292]. Note the distributed feedback process where input from the basal regions di-
rectly affects the quality factor and from the neighbouring sections indirectly through
a filter. This permits the calculation of an effective quality factor through the Gaus-
sian summation of the neighbouring basilar membrane sections. Furthermore note
the explicit modelling of the outer hair cells by of a low pass filter, an asymmetric
saturation, a rectification function and a smoothing filter. Abbreviations not defined
elsewhere are: All pole gammatone filter (APGF), auditory nerve (AN). Figure was
extracted from [292]

been shown to realistically reproduce a number of basilar membrane characteristics,

especially suppression and specifically low-side suppression. However the cochlea’s

fast suppression effect [301] is not adequately modelled [292]. This limitation of the

model is most probably the cause of its failure to account for the level and frequency

dependence of the synchronization index, or the level-dependence of the phase-lock

response of the auditory nerve [200].
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4.1.7 The composite auditory nerve model of Carney and

colleagues[347, 397, 131, 34]

The composite model of Carney and colleagues was initially described in 1993 [34],

and was followed by an improved version in 2001 [397, 131]. The latest update to

the model was in 2003 [347]. The previous implementations of the Carney model

used symmetric gammatone filters [34, 397, 131, 224], which is unrealistic for an

auditory filter (see previous text). The latest iteration [347] addressed this issue by

designing assymetrical digital filters that produce the appropriate glide or ‘chirp’

as an impulse response. The term ‘frequency glide’ is synonymous with the term

‘chirp’ and both refer to the frequency-modulated character of the impulse response

of a basilar membrane section and the auditory nerve. This ‘chirp’ behaviour is a

characteristic of asymmetric filters [287].

Figure 4.9: Block diagram of the dynamic compressive gammachirp filter [150].
Abbreviations are: high pass asymmetric function (HP-AF) and passive gammachirp
(pGC). Note how the pGC and HP-AF in a more basal (hence higher frequency)
channel fp1L are used to estimate the level for the HP-AF in the signal path for the
dcGC filter with channel frequency fp1. Figure was extracted from [150]

The model has had various forms described in [347, 397, 131, 34] but here only
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the latest will be discussed [347]. The model consists of five stages as shown in figure

4.10. The first stage is a linear bandpass filter that models the response properties

of the middle ear. The second stage simulates the response of a basilar membrane

section. It consists of a gammatone filter whose time constant, hence gain and

bandwidth, vary dynamically in time in a level-dependent manner. In the model

reports [347, 397, 131, 34] this filter is referred to as ‘the signal path’. As the input

level increases the filter time constant is decreased resulting in a broader bandwidth

and a decreased gain. The stimulus dependent control on the time constant come

from ‘the control path’. This is designed to reflect the compressive non-linearity

of the basilar membrane site and its neighbouring sites. It consists of a cascade of

four segments in series [347]: (1) A nonlinear wideband filter that determines the

frequency range of the stimulus that affects the bandwidth and gain of the signal

path. The stimulus bandwidth that can affect the signal path is twice as wide

as the signal path bandwidth. Furthermore the centre frequency of the wideband

filter was set to a higher frequency, one corresponding to approximately 1.2 mm

basal shift on the basilar membrane from the place that represents the signal path

centre frequency. This was essential to achieve the auditory nerve suppression tuning

curve shape. (2) A symmetric logarithmic compressive function adopted from Zhang

(2001) [397] is used after the wideband filter to permit the control of the form of

the basilar membrane velocity intensity function. (3) Following the compression an

asymmetric second-order Boltzmann function is next in the cascade. It corresponds

to the membrane potential-displacement function of the outer hair cell, as suggested

by Mountain and Hubbard (1996) [244]. (4) The last part of the control path cascade

is a second-order low-pass filter with an 800-Hz cutoff frequency. The purpose of

this low pass filter is to set the time-course of the onset of the compression at a time

constant of 0.2 ms [290].

The third stage simulates the inner hair cell electromechanical transduction. It

consists of a cascade of a half-wave rectifier followed by logarithmic compression and

finally a low pass filter. The low pass filter is required to model the reduction in phase
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locking with increasing stimulus frequency. The fourth stage simulates the inner hair

cell and auditory nerve synapse via a time varying three store diffusion model [369].

The fifth and last stage models the auditory nerve discharge rate statistics in a way

comparable to a non-homogeneous Poisson process and introduces refractory effects

of the auditory nerve.

Figure 4.10: Block diagram showing an overview of the model of Carney and col-
leagues [347]. Note the separation between the signal path and the control path.
See text for discussion. Abbreviations are: Bandpass (BP), nonlinearity (NL), low-
pass (LP), σc = output of the control path, σ = real part of the pole closest to the
imaginary axis, σ0 = real part of the pole closest to the imaginary axis at quiet.
Figure was extracted from [347]

An important shortcoming of this model is that it does not account for the tails

of the auditory nerve tuning curves [200]. A version of this model [132] has been

described for the representation of complex stimuli such as speech for the normal

and impaired auditory nerve. Based on the model response it was shown [29] that

damage to both outer and inner hair cells affects the synchronization of the auditory

nerve response to vowel formants.

4.1.8 The compressive Gamma-Chirp filter of Irino and Pat-

terson [150, 152, 151]

The motivation for the implementation of the gammachirp model is the finding that

the impulse response of a section on the basilar membrane resembles a frequency
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modulated ’chirp’-like signal. The original gammachirp filter was designed in 1997

[151] and is similar to the all-pole gammatone filter [207] by having an asymmetric

gamatone-like behaviour. This was achieved by making the carrier tone frequency

modulated in such a manner that described the impulse response of the basilar

membrane. The original gammachirp was a linear filter, meaning that it is level

independent. This is not the case with the cochlear physiology [163]. A further

improvement to the gammachirp model was introduced in 2001 [152] by introducing

a filter with a compressive non-linearity. This enables the compressive gammachirp

to model the compressive growth of the basilar membrane response to the stim-

ulus [224]. The revised model still could not reproduce the two-tone suppression

because it not a ’true’ nonlinear filter, but rather a ’quasilinear’ filter whose shape

changes with level [276, 224, 200]. Addressing that limitation a time domain version

of the gammachirp model was developed in 2006 [150], the dynamic compressive

gammachirp filter where the two tone suppression and non-simulataneous masking

compression is shown to be adequately captured [150]. Furthermore the compres-

sive gammachirp has been shown [270] to be able to replicate the psychophysically

estimated human auditory filters over a wide range of centre frequencies and levels.

The compressive gammachirp filter is a cascade of three fundamental filter ele-

ments: a gammatone filter followed by a low-pass filter, followed by a high-pass filter

with a level-dependent corner frequency. The first two filters produce the low fre-

quency favouring asymmetry in the gammatone-like filter, which can be considered

to be the “passive” response of the BM. The third element in the cascade, the high-

pass filter, is responsible for the level-dependent gain and tuning characteristics of

the compressive gammachirp filter. In the dynamic version of the compressive gam-

machirp filter, the high pass filter is controlled by the level from the neighbouring

basilar membrane sections (see figure 4.9) thus giving the possibility of modelling

the two-tone suppression effect.

The dynamic compressive gammachirp filter is designed to model the basilar

membrane response to a sound stimulus. It does not incorporate a model of the inner
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hair cell transduction mechanisms, nor does it simulate the synaptic mechanisms

and action potential generation. As such, some non-linear phenomena such as rate-

level functions, spontaneous rates, adaptation and phase locking responses are not

applicable to this model.
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Table 4.1: Comparison between various models and their abilities to account for phenomena. Symbols used: ”X” = physiological
stage or phenomenon accounted for, ”≈X” = physiological stage or phenomenon is partially right, ”×” = model does not include the physiological stage, nor
does it reproduce the phenomenon, ”? ” = Existing feature but not specifically tested for the model. Abbreviations are BM = basilar membrane, IHC = inner
hair cell, OHC = outer hair cell, SR = spontaneous rate, HRTF = head related transfer function. Further discussion on the auditory nerve phenomena exists in
section 3.4

Deng &
Geisler

(1987) [59]

Goldstein
(1990)

[113, 114]

Jenison et
al. (1991)

[156]

Giguere &
Woodland

(1994)
[108, 107]

Robert &
Eriksson
(1999)
[292]

Zhang et al
(2001)
[397]

Sumner et
al (2002)

[342]

Tan &
Carney
(2003)
[347]

Irino &
Patterson

(2006)
[150]

Clark &
Meddis

(2012) [48]

Physiological Stages of the model
Outer-& middle-ear X X × X X X X X X X
Nonlinear BM X X × × X X X X X X
BM to IHC sterocilia coupling × × × × × × X × × X
OHC control × × × X X X ≈X X × X
Middle-ear reflex × × X × × × × × × X
IHC receptor potential X × × × × X X X × X
IHC calcium dynamics × × × × × × X × × X
IHC-auditory nerve synapse X × × X X X X X × X
Refractory effects × × × X X X X X × X

Auditory nerve phenomena the model reproduces
ANs with different SR ? × × X X ? X X × X
Rate-level functions ? × ≈X ≈X X X X X × X
Level-dependent tuning X X X X X ≈X X ≈X X X
Best frequency shifts with level × X X ≈X ? ? X ≈X ? X
Level-dependent phase ? ? ? ? ? X ≈X X ? ≈X
Two-tone suppression × X × ? X X ≈X X X X
Single-tone interactiona × X × × × × × × × ×
Filter-bank X ? X X X X X X X X
Phase-locking ? × X X ? X X X × X
Steady-state speech response ≈X × X ≈X × ? X X ? X
Response to HRTF sounds × × × × × × X × × X
Adaptation ? × × X ? ≈X X ≈X × X
Two-tone distortionb ? ≈X ? ? ? ≈X ≈X ≈X × ≈X
Level-independent chirpc × × × × × × ≈X X X ≈X

a Also known as single-tone interference or low frequency BM modulation
b Also known as distortion products or combination tones
c Also known as frequency glide or frequency modulation of BM
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4.2 Matlab Auditory Periphery (MAP) : The com-

posite auditory nerve model of Meddis and

colleagues

As mentioned in the opening paragraph of this chapter the Matlab Auditory Periph-

ery (MAP) aims to bridge the gap between physiology and psychophysics. Several

iterations of the model have been developed [47, 198, 203, 342, 343, 344, 219], with

its most recent form being published in 2012 [47]. It is a comprehensive model that

consists of five stages:

• Stage one (section 4.3) uses one or two linear band pass filters to simulate the

outer and middle ear effects.

• Stage two (section 4.4) simulates the vibration of a section on the basilar

membrane utilizing a dual resonance non-linear filter (DRNL).

• Stage three (section 4.5.2) simulates the inner hair cell mechanoelectrical trans-

duction based on a biophysical model [314] that was inspired from the fact

that the stereocilia follow basilar membrane velocity at low frequencies but

displacement at high frequencies [54].

• Stage four (see section 4.5.3) simulates the calcium concentration change in

response to intracellular voltage changes. Furthermore, it estimates the prob-

ability of release of a neurotransmitter to the synaptic cleft between the inner

hair cell and the auditory nerve fibre [342].

• Stage five (section 4.5.4) models the adaptation of the auditory synapse. The

cause of the adaptation is assumed to be caused from pre-synaptic neurotrans-

mitter depletion [200].

The remainder of this chapter will give some examples of MAP in operation in

modelling the physiological cascade shown in figure 4.11. Some examples are shown

for the model and more in depth discussion that is organized in four sections, ”MAP:
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Outer and Middle Ear”, ”MAP: Non-linear basilar membrane”, ”MAP: Inner Hair

Cell”, and last the ”MAP: Higher brain centres and efferent effects”. An audio

example is used to exemplify the response of the cascade of stages and it will be used

throughout the model description. The audio example is a logarithmic frequency

sweep from 50 Hz to 10 kHz that lasts for around 0.2 seconds and is at 70 dB SPL.

The MAP model accounts for the basilar membrane introduced non-linear char-

acteristics of the auditory nerve response to sound stimulus via the DRNL responses.

Furthermore it reproduces the rate-level functions for low, medium and high sponta-

neous rate auditory nerves [342], it simulates frequency and level-dependent phase-

locking effects [342], it simulates level-dependent adaptation effects for different

spontaneous rate auditory nerves [343]. Moreover a filterbank that simulates the

guinea pig auditory nerve responses [344] and a filterbank that simulates human

auditory nerve responses [202] were implemented. The model has been successfully

used for predicting the auditory nerve responses for complex spectra stimuli, such as

head related transfer functions [198], speech [140], harmonic complexes [111, 373],

amplitude modulated stimuli [223] and auditory nerve recovery to prior stimulation

[225].

The DRNL, and hence the auditory nerve response, does not account for the

different suppression growth rates of low- and high-side suppressors [200, 276]. If

perhaps a method of cross-channel suppression similar to Robert and Eriksson (see

section 4.1.6 was adopted could improve the suppressive behaviour of the DRNL

filter. However, the DRNL filter can model adequately two-tone suppression phe-

nomena without the need for channel cross talk. Furthermore, the calcium model in

the auditory synapse implementation is rather simple and does not include impor-

tant biochemical mechanisms such as calcium buffering [342]. This becomes evident

in the observation that calcium dynamics play a very limited role in the synapse

model [342]. Even though this might be a limitation in the particular calcium dy-

namics implementation the model as a whole can describe phase locking [342]. The

neutrotransmitter release is based on a cubic dependence on calcium concentra-
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tion, which fits data recorded from a squid [8], whereas in the mammalian auditory

synapse (mouse) a fifth-order dependence [16] was reported for calcium ion and their

role in vesicle exocytosis.

Figure 4.11: Block diagram of the physiological stages simulated by the composite
model of Meddis and colleagues.

4.3 MAP: Outer and Middle Ear

4.3.1 Outer Ear

The outer ear enables efficient transmission of acoustic pressure between 2-7 kHz in

humans [274]. This filtering action of the body shape - i.e. ear canal, pinnae, head

and torso - is commonly referred to as the head-related transfer function (HRTF),

and this filtering action is linear. It has a rather complex physical geometry making

it difficult to model as a system and therefore is computationally very expensive.
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An alternative method is to reproduce the HRTF by means of finite- (FIR) or

infinite-impulse-response (IIR) filters, which is a much more computationally effi-

cient method [175]. The coefficients for these filters can be obtained by the Fourier

transform of the impulse response, or an inverse Fourier transform of the HRTF

amplitude as is done in the MAP model [202]. The drawback of this method is that

it does not preserve the phase spectra of the impulse response that may be percep-

tually important. Furthermore the digital signal processing approach does not take

into account the physical origin of the HRTFs and therefore does not provide a link

with anatomical elements.

4.3.2 Middle Ear

The middle ear can be modelled as a linear system whose input is the time-varying

air-pressure in the auditory meatus and its output is the time-varying fluid-pressure

in the cochlea scalae. Its linearity is preserved for a wide range of sound level (<130

dB SPL) as evident from two observations: The peak pressure at the oval window,

the peak stapes velocity and the peak stapes displacement are all proportional to

the peak pressure at the eardrum [251, 125, 366]. Purely sinusoidal pressure at the

tympanic membrane produces an un-distorted sinusoidal pressure variation at the

oval window [251]. This means that its transfer function can be expressed as the

the decibel ratio of the two pressure signals as a function of frequency [2, 251].

In this model an FIR filter is used whose coefficients are obtained by the inverse

Fourier transform of the experimental stapes frequency response curve [202, 197].

This method is computationally efficient and the use of experimental stapes impulse

responses guarantees realistic amplitude and phase responses [287].

An example of the response from the outer and middle ear as a cascade is shown

in figure 4.13. The outer and middle ear combined transfer function used is shown

in figure 4.12.
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Figure 4.12: Stapes displacement in response to tympanic pressure as a function of
frequency in the MAP model.
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Figure 4.13: Outer and middle ear response to a frequency sweep, or chirp sound.
The frequency change is from 50 Hz to 10 kHz and lasts for around 0.2 seconds at
70 dB SPL loudness.

4.4 MAP: Non-linear basilar membrane

The model used in MAP to calculate the velocity of the basilar membrane in re-

sponse to sound stimulus is the dual resonance nonlinear filter (DRNL) shown in
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figure 4.14. It is inspired by Goldstein’s multiple bandpass nonlinear (MBPNL)

model, see section 4.1.2 for a discussion on it. The input signal to the filter, which

is the displacement of the stapes, is fed in two asymmetric bandpass filters arranged

in parallel (figure 4.14). One is linear, i.e. level independent, and has a broad band-

width, the other is non-linear, i.e. level-dependent, and has a narrow bandpass.

A gammatone filter in cascade with a low pass filter provides the desired asym-

metry that reflects the physiological basilar membrane discrete location frequency

response. The desired non-linearity is introduced with a compressive instantaneous

(i.e. memoryless) gain in the non-linear resonance path. This produces linear re-

sponses for low levels but compresses the response to moderate or loud levels. The

final output from the DRNL filter is the addition of the output signals from both

paths.

MOC
Attenuation

Figure 4.14: Diagram of dual resonance non-linear filter (DRNL). Note that the
linear pathway (top path) gammatone (GT) filters are tuned to frequency that is
different from the nonlinear pathway (bottom path). This is necessary to be able to
model the centre frequency shift with level. Figure is modified from [202]

The basilar membrane is modelled by using a filterbank of overlapping bandpass

filters, similar the depiction in figure 4.15, to simulate the tonotopicity of the basilar

membrane [122], by which a discrete location on the basilar membrane is identified

by its best frequency. Defining a location on the basilar membrane using a single

frequency is inherently erroneous because the centre frequency of the bandpass fil-

ter will shift as a function of the stimulus level. Hence the use of the term ‘best
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frequency’ which is defined as ‘the most responsive frequency near threshold’ [222].

In other words the best frequency is an emergent property of the model rather than

a parameter.

Figure 4.15: A six channel example exhibiting the tonotopic arrangement of over-
lapping filterbanks and how they model the individual basilar membrane section’s
impulse response. Note that the filters have an asymmetry that favours the low
frequency and that the (almost) logarithmic arrangement on the basilar membrane
causes the high frequency channels to be more compact, assuming the frequency
centres are linearly spaced.

The exact modelling of the basilar membrane motion in response to sound is

still a matter of ongoing research. The main limitation is the difficulty in obtaining
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Figure 4.16: Basilar membrane plot in response to a frequency sweep as generated
from the MAP model. Note that the two dimensional plot on the left shows an
unrolled cochlea as the y axis and passing time in the x axis. Blue is lowest oscillation
point and red is the highest, green indicates the mid-line. On the right side three
temporal measurement of single discrete basilar membrane sections are indicated in
response to the sound stimulus.

physiological data that accurately describe the full extent of the basilar membrane

non-linear response to sound.

4.5 MAP: Inner Hair Cell

The inner hair cells are responsible for the mechanoelectrical transduction of the

basilar membrane motion into electrical signals, which is the across the cellular

membrane electric voltage potential. This section aims to describe the methodology

implemented in MAP for describing the transformation of basilar membrane motion

to action potentials. It is divided into four sections: Basilar membrane to inner hair

cell (IHC)-stereocilia coupling, Receptor Potential, Calcium Dynamics, Auditory

Nerve Synapse.

4.5.1 Basilar membrane to inner hair cell (IHC)-stereocilia

coupling

The conceptual model used for the stereocilia motion is shown in figure 4.17, and

the dynamical relation that describes the viscous coupling of the basilar membrane

motion to the stereocilia deflection is shown by equation (4.1).

Chapter 4 Andreas N. Prokopiou 93



Biophysical Modelling of a Cochlear Implant System

Figure 4.17: Schematic model of the viscous coupling of basilar membrane motion
and cilia displacement, for the relation see equation (4.1). Q is the fluid velocity, ω
is the basilar membrane displacement and u is the cilia displacement

τc
∂u

∂t
+ u(t) = τcCcilia

∂ω

∂t
(4.1)

Where Ccilia is a scalar to convert basilar membrane displacement to stereocilia

motion and τc is a time constant that described the filtering properties of the sys-

tem. The equation is typical of a high pass filter and is derived after the following

assumptions [314, 342]:

• Fluid velocity (Q in figure 4.17) is linearly proportional to ∂ω
∂t

and the constant

of proportionality depends on the geometry of the space between the two

membranes.

• Since the sub-tectorial gap is small the Reynolds number is also small. There-

fore viscous forces are higher than inertial forces and thus force deflecting the

cilia is proportional to the fluid velocity (Q).

• Resisting the deflecting force is an elastic force proportional to cilia displace-

ment (u(t)) and a dissipative force proportional to ∂u
∂t

.

• The individual cilia behave as rigid rods and do not bend thus the elastic force

is caused by an effective torsional spring at the base of the cilia bundle. The

dissipation is caused by the material holding together the cilia and the cilia

themselves.

94 Chapter 4 Andreas N. Prokopiou



Biophysical Modelling of a Cochlear Implant System

Figure 4.18: Inner hair cell stereocilia displacement in response to a frequency sweep
as estimated by the MAP model. It is the stereocilia displacement response to the
basilar membrane displacement in figure 4.16. The y axis is the unrolled cochlea,
whereas the x axis is the stimulus time. Blue indicates the negative most displace-
ment whereas red indicates the positive most displacement.

4.5.2 Receptor Potential

The sterocilia displacement triggers opening of ion channel at the tip of the stere-

ocilia, see Section 3.3 for a more in depth discussion of the mechanisms involved.

This channel opening action is modelled as an apical conductance change using the

relation shown in equation (4.2). It is derived based on the assumption that stere-

ocilia displacement opens the ionic channels directly without the mediation of a

chemical trigger [147, 342].

GA(u(t)) = Gmax
cilia

[
1 + e

−u(t)−u0
s0

(
1 + e

−u(t)−u1
s1

)]−1

+Ga (4.2)

Ga = G0 −Gmax
cilia

[
1 + e

u0
s0

(
1 + e

u1
s1

)]−1

(4.3)

Where Gmax
cilia is the conductance with all channels open, and Ga is the passive

conductance in the membrane and is calculated using equation (4.3). The expression

in the square brackets multiplying Gmax
cilia is the estimate of the proportion of open

channels. It is a three-state energy barrier (Boltzmann) function [244, 342] where

s0,u0,s1 and u1 are constants determining the exact shape of the nonlinear function.

For the basic derivation of the Boltzmann function see Section 3.3.2.
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After the estimation of the apical conductance GA the calculation of the mem-

brane potential of the cell body can be calculated using the equation (4.4), [342]

which represents the derived relation of the passive electrical circuit analogue shown

in figure 4.19.

Figure 4.19: Electrical equivalent circuit for an inner hair cell. Et is the endocochlear
potential; Rt, Rp are the epithelium resistances. CA, CB are the capacitance of the
apical and basal portions of the cell’s membrane, respectively. gA is the conductance
of the apical portion of the cell’s membrane; it is assumed to be the sum of a
mechanically sensitive K+ conductance, gm(u), and a leakage conductance, gl (not
shown). gK,f , and gK,s are the fast and slow basolateral K+ conductances. EK,f and
EK,s are the reversal potentials of the fast and slow basolateral K+ conductances, u
is the stereocilia displacement, V is the inner hair cell intracellular potential. VOC
is the extracellular potential. VM is the membrane potential, defined as V − VOC .
Figure extracted from Poveda (2006) [201]

Cm
dV (t)

dt
+GA(u)(V (t)− Et) +Gk(V (t)− E ′k) = 0 (4.4)

Where Cm is the cell capacitance, Gk is the voltage-invariant basolateral mem-
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brane conductance, Et is the endocochlear potential. E
′

k is the reversal potential of

the basal current Ek and is corrected for the resistance of the supporting cells Rt

and Rp using the relation E
′

k = Ek + EtRp/(Rt +Rp).

Figure 4.20: Inner hair cell voltage in response to a frequency sweep as estimated
from the MAP model. It is the voltage response to the stereocilia displacement in
figure 4.18. The y axis is the length along the cochlea, whereas the x axis is the
stimulus time. Blue indicates the negative most voltage whereas red indicates the
positive most voltage.

4.5.3 Calcium Dynamics

The release of neurotransmitter into the synaptic cleft is mediated by calcium ions,

whose influx into the cell is regulated through the actions of voltage sensitive calcium

channels that are embedded in the cell membrane. MAP models calcium concen-

tration as a function of the membrane potential in a two part process, using the

equation set
[
4.5,4.6,4.7,4.8

]
First Part: Depolarization of the inner hair cell membrane leads to the

opening of calcium ion channels

The steady state value (mICa,∞) of the fraction of open calcium channels (mICa) is

modelled using a Boltzmann function shown in equation (4.8). This steady state

value is passed through a low-pass filter using equation (4.7) to estimate the fraction

of open calcium channels as a function of time. Finally the voltage dependent

calcium current (ICa) is estimated using equation (4.5), which is a third-order process
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[342].

Second Part: Calcium ions enter the cell, and accumulate briefly in the

vicinity of the synapse

The MAP model does not explicitly model buffering effects from the endogenous

calcium buffers. Instead it removes fast transient changes by using a low pass filter

on the calcium current as shown in equation (4.5)

d[Ca2+](t)

dt
= ICa(t)−

[Ca2+](t)

τ[Ca]

(4.5)

ICa(t) = Gmax
Ca m3

ICa
(t)
(
V (t)− ECa

)
(4.6)

mICa(t) = mICa,∞ − τm
dmICa(t)

dt
(4.7)

mICa,∞ =
[
1 + β−1

Ca e
−γCaV (t)

]−1

(4.8)

Where [Ca2+](t) is the pre-synaptic calcium concentration, τ[Ca] is the dwell time

of pre-synaptic calcium in the vicinity of the synapse, ICa(t) is the calcium current,

V (t) is the inner hair cell membrane potential, ECa is the reversal potential for

calcium, Gmax
Ca is the calcium conductance in the vicinity of the synapse with all

calcium channels open, mICa(t) is the fraction of calcium channels that are open,

mICa,∞ is the steady state value of the fraction of open channels, τm is the calcium

current time constant of the low pass filter and finally γCa and βCa are constants

chosen to reflect published observations of calcium currents. Note that τ[Ca] describes

the spontaneous rate of the synapse, see figure 4.23 for a visual comparison between

high and low spontaneous rate responses from a collection of neurons to a frequency

sweep stimulus.

4.5.4 Auditory Nerve Synapse

In the MAP model the action potential generation is performed in two parts.
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Part one: The probability of neurotransmitter release is proportional to

the cube of Ca2+ concentration

Calcium concentration ([Ca2+]) estimated as discussed in the previous section is

used to calculate the probability of neurotransmitter release as shown in equation

(4.9).

k(t) = z
(

[Ca2+]3(t)
)

(4.9)

Where k(t) is the probability of release of a single transmitter vesicle and z is a

scalar for converting calcium levels to release rate. The cubed function is derived

from data of Augustine (1985) [8].

Figure 4.21: Neurotransmitter vesicle release rate from a high spontaneous rate
synapse in response to a frequency sweep as estimated from the MAP model. It is
the vesicle release rate caused by the intracellular voltage in figure 4.20. The y axis
is the unrolled cochlea, whereas the x axis is the stimulus time. Blue indicates the
lowest release rate whereas red indicates the highest release rate.

Part two: Quantal and probabilistic release of neurotransmitter in a

model of synaptic adaptation

The neurotransmitter release rate (k(t)) is used to drive the model of synaptic adap-

tation shown in figure 4.22. The nature of the adaptation is assumed to be caused by

pre-synaptic transmitter depletion, and the scheme was originally proposed by Med-

dis (1986) [219]. The updated version of the model employs quantal and stochastic

release of neurotransmitters described by the set of equations
[
4.10, 4.11, 4.12

]
.
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Figure 4.22: Flow diagram for the synaptic adaptation showing transmitter vesicle
release and recovery. A physical interpretation of the system is that individual
vesicles are released from the immediate store into the cleft, at a rate k(t) that is
dependent on calcium concentration (see text). In the cleft the transmitter is lost
at a rate l, and the remaining transmitter is taken back into a reprocessing store at
a rate r. It is prepared for release and returned to the immediate store at a rate x.
In addition to this recycling of transmitter the immediate store is replenished at a
rate y[M − q(t)], where M represents the maximum number of transmitter quanta
that the immediate store can hold. The set of equations that describe this model
are

[
4.10, 4.11, 4.12

]
. Figure extracted from [222]

dq(t)

dt
= N(w(t), x) +N([M − q(t)], y)−N(q(t), k(t)) (4.10)

dc(t)

dt
= N(q(t), k(t))− lc(t)− rc(t) (4.11)

dw(t)

dt
= rc(t)−N(w(t), x) (4.12)

Where q(t) is the discrete neurotransmitter quanta in the immediate store, c(t) is

neurotransmitter quanta in the synaptic cleft, w(t) is the neurotransmitter quanta

that are present in the reprocessing store, l, r and x are the rate at which the

transmitter is lost, the rate at which transmitter is taken back in the cell and the rate

at which the transmitter is recycled respectively. The production rate is described

by y[M − q(t)] where y is a constant neurotransmitter production rate from an

infinite factory and M is the maximum amount of neurotransmitter vesicles that
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can be kept in the immediate store.

The stochastic transport of neurotransmitter is introduced by the functionN(n, ρ)

in which each of n discrete neurotransmitter vesicles has an equal probability of re-

lease which is equal to ρdt, per time frame of the simulation. Furthermore the

process is quantal, meaning that there is integer release of neurotransmitter from

each store.

The generation of action potentials is assumed to be a deterministic process in

the sense that a single neurotransmitter vesicle will always cause an action potential,

unless the auditory nerve is in refractory period [342]. This means that the stochastic

nature of the action potential generation is considered synaptic in origin. Refractory

effects of the postsynapse mechanism are modelled as an absolute refractory period

extended by a short exponential relative refractory period. For an example of a

sound stimulus representation at the auditory nerve level see figure 4.23, where a

chirp sound, with increasing sound frequency, is simulated and the response shows

the transition from phase locked response to place coding in the auditory nerve.

4.6 MAP: Higher brain centres and efferent ef-

fects

The efferent system is modelled as two individual systems: (1) the medial olivo-

cochlear system and (2) the acoustic reflex. The medial olivocochlear system was

introduced in the MAP model in 2007 [80] based on the observation that stimula-

tion of the olivocochlear bundle reduces basilar membrane displacement to acoustic

stimulation [80]. MAP introduces the inhibition effect of the efferent system as a

simple attenuation of the basilar membrane in a channel specific manner, hence

spectral selective attenuation. For an illustration of the layout see figure 4.24. The

acoustic reflex is caused by the stiffening of the stapedius muscle and the tensor

tympani in response to high pressure sounds (above 60-70 dBSPL). Both of these

efferent attenuation systems are driven by the activity of the higher brain centres,
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Figure 4.23: Low (top) and high (bottom) spontaneous rate neurons in response to
a frequency sweep as estimated using the MAP model. It is the end result of the
frequency sweep sound stimulus that was shown in figure 4.13. Each dot indicates
a generated action potential. Note the clear transition from phase locking at low
frequencies to a place coding at higher frequencies. Furthermore from the right side
of the plot the single neuron recordings that indicate action potentials seem to be
unrepresentative of the stimulus but the collective response of neurons represents
clearly the response to the stimulus.

specifically the cochlear nucleus (CN) and inferior colliculus (IC), see figure 4.25.

The exact implementation of the efferent systems is discussed in depth in the MAP

documentation [222], and some results are illustrated in figure 4.26 showing the

admittance changes as affected by the efferent system.

The model was evaluated against three animal studies [303, 126, 63] which re-

ported measurements at the auditory nerve [126], at the basilar membrane [303]

and compound action potential [63] to direct electrical stimulation of the medial

olivocochlear bundle. MAP was able to simulate the data both qualitatively and

quantitatively [80]. Practical applications of this efferent control was shown in aiding
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Figure 4.24: Block diagram illustrating the organization of the MAP model, specifi-
cally the attenuating feedback control from the auditory nerve to the nonlinear path
of the DRNL filter (see text). This is done so as to model the medial olivocochlear
efferent suppression system. Figure modified from [48]

speech perception in noise [25, 48].
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Figure 4.25: Cochlear nucleus (CN) and inferior colliculus (IC) responses to the
frequency sweep sound stimulus (figure 4.13) as estimated using the MAP model.
Each dot indicates a generated action potential.
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Figure 4.26: Efferent auditory systems. The top plot illustrates the admittance
change on the surface of the basilar membrane induced by the actions of the outer
hair cells as a result of the frequency sweep stimulus shown in figure 4.13. Note that
red indicates high admittance and blue indicates low admittance. The bottom plot
illustrates the admittance change of the middle ear energy transmission mechanism
as a result of the same stimulus.
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Chapter 5

The modern Cochlear Implant and

its Psychophysics

The cochlear implant was initially regarded as a device that would not work. The

early scientific literature of the cochlear implant research had stated that: ‘Direct

stimulation of the auditory nerve fibres with resultant perception of speech is not

feasible.’ [179]. Today the cochlear implant is accepted as a possible course of

deafness treatment, and has been a very active area of academic research, see figure

5.1, and it still an active area of research [289, 46, 51, 376, 33, 105, 44]. For a more

in depth discussion on the history of the cochlear implant see Section 1.2.1

Figure 5.1: Cochlear implant academic publications in the last decades. Data from
Scopus (http://www.scopus.com) using the search term ”cochlear AND im-
plant”. The red arrowhead indicates the release of the results of the first study
indicating the effectiveness of cochlear implants in all 13 implanted patients at the
time [19].
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5.1 General System Overview

Figure 5.2: A typical modern cochlear implant system implanted in a patient. (1)
External processor (behind the ear), (2) Battery case (behind the ear), (3) Radio
frequency (RF) antenna headpiece, (4) Internal RF receiver, (5) Internal processor,
(6) Electrode-processor connecting wires, (7) Electrode array, (8) Auditory nerve.
Figure extracted from (www.cochlear.com))

The architecture of a typical modern cochlear implant is similar for all commer-

cial devices (figure 5.2). It consists of an external and an internal device that are

connected via a wireless radio frequency (RF) link. The external piece contains the

battery, microphone, a power amplifier and the Digital Signal Processing (DSP) pro-

cessor that encodes the incoming sound signal. The internal piece does not have a

battery, which means that the RF link has the dual role of powering up the internal

unit and also transmitting the encoded sound signal. The internal piece contains

the RF receiver, a power management circuit, a decoder, a stimulator and - in most

cases today - a back telemetry circuit that transmits information from the internal

device to an external receiver. An illustration of a typical system layout showing

the interactions of the individual components is shown in figure 5.3. A component

that is not part of the cochlear implant as such, but is necessary, is a personal com-

puter system that contains the fitting algorithm that is used to set-up the external
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device’s DSP processor for custom fitting to the patient. For an in depth review of

the modern cochlear implant system design see [395].

Figure 5.3: A typical modern cochlear implant system layout. Layout of a transcu-
taneous system. Notice the skin barrier separating the external (left) to the internal
(right). The two pieces are kept aligned using magnets (not shown in the layout).
Internal processor layout modified from [394]

5.1.1 Electrically induced neuro-toxicity

One very important consideration is that the electrode surface material used should

not be changed electrolytically nor do they permit passive migration of metal ions

which would result in possible toxic effects to the tissue and electrode corrosion.

Electrical nerve stimulation is a consequence of electron migration in the electrode

and of ion migration in the tissue medium. At the electrode-tissue interface of

the implanted electrode the processes that takes place to support these migrations

changes the composition of the chemical species in the immediate vicinity. Useful

charge injection is limited to a few µC/cm2 before Faradaic reactions begin such

as electron transfer across the interface forming new chemical species [281]. For all

medical application these processes need to be reversible by having all new chemical

species formed (mainly H2 and O2 from water electrolysis, saline oxidation, metal

dissolution and organic molecules oxidation [281]) remain bound to the electrode

surface and then be removed by a voltage phase reversal that removes charge and

reverses these effects. If the voltage phase is not reversed, electrolysis will cause
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local pH changes that can cause blood flow changes, inflammation and alter tissue

proteins. Furthermore metal ions can be toxic to neural tissue. Following all these

considerations, charge balanced biphasic pulses are preferred with a delay between

the two phases to reduce the hyperpolarizing effect of the charge balancing pulse

and its action potential suppressing effect.

Spiral ganglion cells gradually degenerate following inner hair cell loss since inner

hair cells provide the neural activity and neurotrophic support for the spiral ganglion

cells. This fact creates the hypothesis that in the case that electrical stimulation

is applied to the spiral ganglion cells they will not suffer from attrition due to

atrophy, but instead their electrical stimulation should preserve them. A conflicting

opinion seems to exist around this hypothesis with a study reporting that chronic

stimulation preserved the spiral ganglion tissue in cats [180], whereas unfortunately

a study reported that the spiral ganglion cell counts made in human implanted ears

were significantly lower than counts made in unimplanted ears for subjects who

experienced either monopolar or bipolar stimulation [312]. There is no conclusive

evidence that indicates that the number of surviving spiral ganglion cells correlates

with speech recognition [165]. Furthermore central brain areas show signs of benefit

from cochlear implant use as cells in the cochlear nuclei shrink in response to a lack

of sensory input and then come back to normal size as a result of electric stimulation

[391].

5.1.2 Electrode array surgical insertion

One of the most crucial steps in the cochlear implantation process is the surgery, and

specifically the electrode array insertion. Three main tasks need to be accomplished

when inserting an electrode [395, 22]: (1) Deep insertion to be able to stimulate

the low frequency apical end. (2) Improve overall coupling efficiency between the

electrode and the nerve by placement of electrodes close to the modiolus to minimize

channel interaction and reduce electrical thresholds. (3) Reduce the incidence and

severity of insertion associated trauma and potential infection. These are difficult
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tasks to accomplish and mostly rely on the experience and skill of the surgeon

[395]. An anecdotal remark from a cochlear implant surgeon is that: ‘It is like

inserting cooked noodle in creme brulee’ [135]. Generally the experience of a surgeon

affects the outcome of the electrode placement [22], but no recorded study has

been produced that correlates the surgeons’ experience with electrode insertion to

the patient performance outcomes [395]. Unfortunately, as technologies advance,

training specialized surgeons becomes increasingly difficult [395].

The surgical insertion of the electrode often takes place after the cochlear bone

is perforated, creating a cochleostomy as shown in figure 5.4. Another way to insert

the electrode is via the round window which may offer several advantages over a

cochleostomy, and it seems to be a reliable, safe, and effective technique for cochlear

implantation with today’s cochlear implant electrodes [124].

Figure 5.4: Illustration showing the insertion of an electrode through a cochleostomy.
Abbreviations are: Oval Window (OW), Round Window (RW), Spiral Lamina (SL),
Cochleostomy (C), Electrode Array (EA). Image extracted from [354]

Some electrode design examples are shown in figure 5.5, where the length and

design serve a different purpose and affect the insertion technique. For example

shorter electrodes are used for electroacoustic stimulation [345], e.g. the Nucleus

Hybrid S12 in figure 5.5 . For deeper insertion of electrodes usually a stylus is used

to hold a pre-curved electrode straight, and as the stylus is removed the electrode

curves around the modiolus in what is termed as a modiolus hugging or perimodiolar

electrode, see figure 5.6 for an illustration of the technique.
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Figure 5.5: Electrode design examples. Image extracted from [354]

Figure 5.6: Illustration of the Advance Off-Stylet technique. (A) The electrode is
inserted until the marker “1” approximates the cochleostomy site. (B) The stylet is
held in place as (C) the array is slowly advanced off of the stylet, and (D) removed
from the field. Image extracted from [33]

Insertion Trauma

The great success of the cochlear implant has enabled it to be used in cases were

there is some residual hearing left in the patient but use of a hearing aid provides

limited benefit [354]. The preservation of the inner structure of the cochlea is ex-

tremely important for residual hearing preservation and benefit to the patient from
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electroacoustic stimulation [87, 135]. Furthermore future technologies, such as stem

cell or gene therapy, will require the best possible substrate to work with so atrau-

matic electrode insertion is extremely important, especially for children and toddlers

who will eventually have access to future technologies.

Insertion trauma can be caused by the electrode array pushing against the del-

icate inner structures of the cochlea causing damage that has been classified into

four grades[77] :

• (1) No observable macroscopic trauma.

• (2) Elevation of basilar membrane.

• (3) Dislocation of electrode to scala vestibuli.

• (4) Fracture of osseous spiral lamina or modiolus, or tear in tissues of stria

vascularis and spiral ligament complex.

Furthermore fibrous tissue forms a sheath around the electrode array which

causes further displacement of the cochlear tissue and possible inflammation. The

fibrous encapsulation of the electrode array is also observed as rising thresholds in

electrical current perception as time progresses with the use of a cochlear implant

[233]. Most of the cases of insertion trauma observed are for insertion deeper than

the first site of contact with the lateral wall of the scala tympani. In most cases this

injury continued for an an extent of the cochlea curving less than 90o. For deeper

insertion depths past the trauma site the electrode was located in either the scala

tympani or scala vestibuli with minimal associated trauma (figure 5.7).

To avoid surgical insertion trauma, surgical techniques and methods are being

developed such as ‘soft cochlear implantation’ [88, 70] which use the ‘Advance Off-

Stylet technique’ shown in figure 5.6 and have been shown to conserve residual

hearing and give a better overall cochlear implant performance [87]. Further tech-

niques attempt to reduce the angle contact of the electrode tip with the lateral wall,

such as changes in the shape and stiffness of the electrode tip and mechanical control
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Figure 5.7: Analysis of temporal bones with traumatic insertions of the Cochlear
Contour array. The dark bars show the regions of electrode insertion caused injury
and the outlined box between 180o and 270o indicates the region where the electrode
perforated the basilar partition. Abbreviations are: spiral ligament(SL), basilar
membrane (BM), osseous spiral lamina (OSL) Reissner’s membrane (RM). Insert:
Cochlear dissection illustrating an electrode insertion in which the array (arrow) has
torn the basilar membrane (BsM) away from its attachment to the spiral ligament
in the area enclosed by brackets. Image extracted from [395] and [235]

of the vertical and horizontal stiffness of the electrode to reduce upward bending

[395], and therefore guide the electrode along the scala tympani.

Although manufacturers intend that electrodes will be inserted only until initial

resistance is felt by the surgeon, data from temporal bone studies and surgeon

descriptions indicate that all electrodes are most often implanted to their full depth

[395]. Furthermore little resistance to insertion was reported by surgeons in certain

studies and they were confident that the electrodes were implanted with little or no

trauma, but after subsequent dimensional analysis and temporal bone evaluations

indicated that many, or most, of these insertions exceeded the depth at which the

electrode could be located without trauma [395].
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5.2 Design and evolution of sound processing tech-

niques

The sound processor is the part of the cochlear implant that transforms sound

picked up by the microphone into an electrical signal that controls the electrode

stimulation of the auditory nerve. Ideally it should be able to emulate the auditory

peripheral system and retain its characteristics, if the assumption is made that the

auditory processes of the brain are structured in a way that favour the spectro-

temporal pattern of action potentials generated by the auditory periphery. The

sound processor of the cochlear implant is a very active area of research. Given

the lack of a clear paradigm linking the auditory nerve electrical stimulation and

perception the progress of sound processor design is explicitly linked with progress

in the theoretical background of auditory nerve stimulation. In other words, sound

processor design is presently driven by empirically gained knowledge and a form of

natural evolution by patient selection of the better implant design.

There were several paradigm shifts in the design of the cochlear implant, but the

four main ones that defined the modern cochlear implant are: (1) Transcutaneous

radio frequency link is better than through skin plug for interfacing processor and

stimulation electrode. (2) Multiple electrodes are better than single electrode for

representing sound stimuli. (3) Non-simultaneous electrode stimulation is better

than simultaneous stimulation due to electric field overlap. (4) Implicit feature

extraction in the speech processor performs better than explicit feature extraction

[194, 395]. The last two paradigm shifts will be further discussed in this section.

Simultaneous stimulation was first attempted as a technique that would mimic

the physiology of the human auditory periphery [176]. The implementation consisted

of 10 channels that had similar frequency response characteristics to the cochlear

basilar membrane [134]. Furthermore it introduced the time delays required for each

frequency to reach its site of maximum vibration along the basilar membrane, and

it produced jitter in the stimuli that mirrored the stochastic responses of brain cells
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to sound. However, despite the close attention to the auditory periphery physiology,

the strategy failed to provide speech understanding because the electrical fields

at each stimulation electrode overlapped and produced unpredictable variation in

loudness [44]. This essentially lead to the use only of non-simultaneous stimulation

techniques [40] by understanding that separating the stimuli on each channel by a

short interval in time avoided the interaction of the electrical fields on each electrode,

but neural integration over time could still take place [44]. A few more simultaneous

stimulation techniques are discussed in the following text and a recent revisit to the

applicability of simultaneous stimulation [9] is considered in Section 5.2.1.

Explicit feature extraction was based on the early work of Graeme Clark in the

University of Melbourne Departments of Otolaryngology and Electrical Engineer-

ing [42, 39, 41]. The observation that the rate of stimulation is perceived as pure

pitch and the place of stimulation is perceived as timbre lead to the development

of formant based strategies. The basic design principle of these techniques is to

make assumptions to what is important in the input such as formants in speech

by extracting the spectral content of the incoming sound. The speech formants are

the overtones of the fundamental frequency of voiced speech and appear as spec-

tral peaks, which alter as different vowels are enunciated. Different combinations

of spectral peaks correspond to different vowels, the lowest frequency is the funda-

mental frequency (F0), followed by the first(F1) formant , then the second (F2) and

third (F3) formant. Further discussion on these techniques will follow in Section

5.2.2. Implicit feature extraction has as a basic design principle to represent all the

information that might be perceived by a patient using a cochlear implant rather

than making assumptions of what might be important in the input. The main tech-

nique that exemplified that implicit feature extraction is better than explicit was the

Continuous Interleaved Sampling, or CIS, [374] which by using a very sparse repre-

sentation of the temporal envelope of the incoming sound, and no pre-processing on

speech formants, outperformed the various explicit strategies [400, 374, 44]. Further

discussion on the CIS and other temporal envelope processing strategies is in Section
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5.2.3.

An overview of the different non-simultaneous stimulation strategies is shown in

figure 5.8 where a further distinction is made between coarse feature and fine feature

processing strategies. The fine features of sound are considered to be a fundamental

speech characteristic [296] and furthermore lead to music appreciation [6, 238, 191],

permit the user to identify overlapping auditory objects in adverse listening con-

ditions [395, 392, 238] and overall result in a high fidelity sound experience for a

cochlear implant user [44, 237]. It can be considered as the inception of a new

paradigm shift leading into a new generation of cochlear implant sound processors,

however no method exists today that bypasses all the constrains that still persist

[187].

Figure 5.8: Evolutionary roadmap of commercial stimulation strategies. Given the
initial aim of the cochlear implant to aid in speech understanding the auditory
nerve stimulation strategies are also referred to as speech processing strategies. The
coarse structure is related to speech intelligibility, whereas the fine structure relates
to auditory object identification and music appreciation. Figure extracted from [394]

5.2.1 Simultaneous (non-interleaved) electrode stimulation

The aim of the simultaneous electrode stimulation techniques is the band-specific,

amplitude-compressed analog waveforms to different electrode locations in the cochlea

[73]. Two techniques were reported to provide pitch perceptions but very poor

speech perception, considered to be caused by electrical field overlaps between ad-
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jacent stimulating electrodes. The first technique is the Compressed Analog (CA)

[72] and the second is the Simultaneous Analog Stimulation (SAS).

Even though both of those strategies were not performing as well as the con-

tinuous interleaved sampling (CIS) [400, 374] a rather recent study revisited the

hypothesis that ‘effects of simultaneous channel interaction can be compensated by

an algorithm such that no difference in hearing performance between simultane-

ous pulsatile stimulation and a strictly sequential reference strategy can be found.’

[9]. After applying a channel interaction compensation algorithm to correct stimu-

lation amplitudes they verified their hypothesis. Furthermore, rather surprisingly,

they reported better results with spatially closer electrodes than more spread out

electrodes that are meant to inherently compensate for channel interactions. An

important remark to be made though is that the technique they describe [9] used

synchronous monopolar pulses which is different from the CA and SAS techniques

current delivery method.

Compressed Analog (CA) [72]

An illustration of the CA technique is shown in figure 5.9. The first stage is an

automatic gain control (AGC) where the incoming sound gets attenuated or ampli-

fied accordingly. The sound is then divided into four frequency bands by bandpass

filters. Following the filter-bank each band-passed signal is compressed in ampli-

tude by gain control to be within the narrow electric dynamic range of around 10

dB [254, 216]. The compressed band-specific analog signals are converted to cur-

rents and finally delivered to different intro-cochlear electrodes with the most apical

electrode receiving the signal from the lowest frequency band and the most basal

electrode receiving the signal from the highest frequency band, where a current

source converts the compressed channels output into an electric current.

There are two main concerns with CA: (1) It is known that most patients can-

not perceive pitch differences with rates higher than roughly 300 Hz, so it can be

presumed that any fluctuation of current presented at each stimulation site can be
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partially perceived [374]. (2) The simultaneous presentation of electrical stimuli

causes significant interaction among channels which reduces the salience of individ-

ual channels [374].

Figure 5.9: Block diagram for the Compressed-Analog cochlear (AGC) implant
speech processor. Figure adapted from [73].

Simultaneous Analog Stimulation (SAS)

Simultaneous analog stimulation (SAS) was developed as an attempt to address the

limitations of CA. It uses eight instead of four channels and a different compression

method [382]. In CA, the front end AGC compression introduces spectral compo-

nents that are not present in the input. The severity of the distortion depends on

the time constants used for the attack and release of the AGC. In order to relax

the constrains on the front end AGC and use longer time constants a logarithmic

mapping function was used at the output of each bandpass channel to provide a

smoother, less distorted, channel specific compression [377]. Furthermore to reduce

channel cross talk a restrictive bipolar electrode configuration is used on a specially

designed electrode that is placed much closer to the spiral ganglion than on the

devices CA was implemented [377].

The SAS strategy may convey more temporal information than the CIS strategy,
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especially for low frequency channels and for patients who can perceive pitch changes

in wider ranges than others [377]. However several studies showed an overall patient

preference to CIS [377, 400].

5.2.2 Explicit feature extraction - Spectral envelope pro-

cessing

An interesting phenomenon that is further explained in Section 5.3.1 was observed in

the initial human stimulation using a cochlear implant. The place of stimulation, i.e.

a different electrode position, gave the experience of timbre of sound and the rate of

stimulation gave the perception of pitch [350, 46]. Furthermore it was observed that

the discrimination of stimulation rate variations within a temporal window decreases

dramatically as the temporal window becomes smaller, whereas the discrimination

of stimulation place variations remain the same regardless of the duration of the

temporal window [352]. This lead to conclusion that the fundamental frequency

of voiced sounds could be coded at rate of electrical stimulation and the place of

stimulation was best suited for encoding the frequency glides present in consonants

[45].

A sequence of speech processing strategies evolved from this comprehension,

first being the F0-F2 [39], followed by the F0-F1-F2 [20] and finally succeeded by

the MultiPEAK or MPEAK [267]. All three of these techniques have one major

limitation that is inherent in all explicit feature extraction techniques. The formant

extraction technique is very prone to error especially in situations where the speech

is present in adverse listening conditions. This limitation eventually caused the

decline of the feature extraction techniques.

F0-F2 [39]

The concept behind F0-F2 speech coding strategy was that speech can be broken

down to three parameters: (1) Fundamental frequency (F0) or the voicing of speech

representing the main mode of vibration of the vocal tract. (2) Sound pressure of the
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acoustic wave. (3) The second speech formant (F2) is considered the most critical

cue for consonants. Note that F0 and F2 are extracted from the speech signal using

zero crossing detectors. The zero crossing is filtered with a low pass filter tuned

at 270 Hz to extract F0 and a bandpass tuned between 1 kHz and 4 kHz. When

unvoiced signal exists F0 is replaced by a pseudo-random interval with a mean of

100 pps [196].

There is a direct relation between a speech parameter to an an electrical param-

eter and the elicited auditory percept. The fundamental frequency (F0) is encoded

as the stimulus pulse rate and it elicits a pitch percept. Sound pressure is encoded

as the current level and it elicits a loudness percept. The second formant is encoded

as the electrode place of stimulation and is perceived as the timbre of sound.

F0-F1-F2 [20]

In a similar fashion of operation as the F0-F2 strategy the F1 formant was included

giving the F0-F1-F2 strategy [20]. It is extracted from the zero cross estimator by

using a bandpass filter tuned between 280 Hz and 1kHz, thus giving a full spectrum

representation limited at 4 kHz.

An illustration of the processor is shown in figure 5.10. One of the five apical

most electrodes, which correspond to place frequency of 1 kHz and below, is selected

by the F1 frequency estimator. One of the remaining 15 electrodes is selected by

the F2 estimator and corresponds to 1 kHz and above. The delivered electric signal

consisted of biphasic pulses - 200 µs per phase - with a time spacing of 800 µs

between pulses to ensure no channel interactions. The amplitudes of the pulses

were proportional to the amplitudes of F1 and F2. The rate of stimulation in both

electrodes was set to be equal to F0 for voiced segments and a pseudo random rate

with a mean of 100 pps for unvoiced segments.
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Figure 5.10: Block diagram of F0-F1-F2 strategy. The fundamental (F0), the first
formant (F1) and the second formant (F2) are estimated using zero crossing detec-
tors. Note that two electrodes are selected for pulsatile stimulation, one correspond-
ing to F1 and the other corresponding to F2. Image extracted from [196]

MultiPEAK or MPEAK [267]

MultiPEAK or MPEAK is illustrated in figure 5.11. It is the refinement of F0-F1-F2

strategy with the main difference being the inclusion of high frequency information.

Three additional bandpass filters were added, see figure 5.11, to enhance the repre-

sentation of F2 and add high frequency information to aid in consonant recognition.

As in F0-F1-F2 the amount of stimulating electrodes are 20 in total, with the ex-

ception that in MPEAK electrodes 1, 4 and 7 are controlled directly from the three

bandpass filters and are activated based on the features of the incoming sound. Note

that electrode 1 is the closest to the base, hence the highest frequency all the way to

electrode 20 which is the apical-most, hence corresponding to low frequencies [196].

At any given time the MPEAK strategy activates - non-simultaneously - four

electrodes. If the incoming sound signal contains speech then electrode 1 is not

active since speech is not expected to have very high frequency content. The active

electrodes are the F1 and F2 controlled electrodes as in F0-F1-F2 with the addition

of electrode 4 and 7 which have amplitude proportional to the envelope of their

corresponding bandpass filter output. All four electrodes have a rate of stimulation
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that is equal to F0. If the incoming sound signal does not contain speech then the

electrode corresponding to F1 is inactive. The active electrodes are 1, 4, 7 and the

electrode corresponding to F2, and they all have a pseudo random stimulation rate

averaging at 250 pps [196].

Figure 5.11: Block diagram of the MPEAK strategy. It is quite similar to F0-F1-
F2, see figure 5.10, with the main difference the higher frequency extraction. Image
extracted from [196]

5.2.3 Implicit feature extraction - Temporal envelope pro-

cessing

The modern speech processing strategies can trace their origin to the vocoder speech

processing [194]. Vocoder centric techniques are implicit speech feature extraction,

since they do not attempt to extract specific features but instead process the tempo-

ral envelope of the sound signal and the energy fluctuations within a set of contiguous

bandpass filters. The shift from explicit to implicit feature extraction was partly

attributed to the great success of the Continuous Interleaved Sampling (CIS) [374]

technique. The relatively simple implementation and the sparse representation of
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sound provided adequate to provide a high percentage of speech understanding.

There are two main categories of stimulation strategies that can be considered

temporal processing techniques, the CIS-like strategies and the N-of-M strategies.

The main difference between the two is that in the N -of-M case there is a selection of

some of the electrodes that contain most of the energy of the spectral representation

of sound. For example if an electrode array has 20 stimulation sites, then M is equal

to 20 and if the 6 highest spectral peaks are selected per stimulation epoch then N

is equal to 6. This means that the full spectrum is not represented at the electrode

array at any given time instance.

The stimulation strategies that are stimulating all their electrodes at every stim-

ulation epoch are the: Continuous Interleaved Sampling (CIS)[374], Advanced Bion-

ics’ HiRes, Multiple pulsatile sampler (MPS) or Paired pulsatile stimulation (PPS)

and the Quadruple Pulsatile Sampler (QPS). A noteworthy remark is the existence

of a study [195] where a hybrid technique (HYB) is reported that uses a combination

of Simultaneous Analog Stimulation (SAS) in the apical channels and CIS in the

basal most channels. It reported a statistically better vowel representation but did

not perform better overall than the other CIS-like techniques [195].

The stimulation strategies that stimulate a selection of the most significant elec-

trodes per stimulation epoch, also known as N-of-M techniques are: Spectral Max-

ima Sound Processor (SMSP) [215], Spectral Peak speech strategy (SPEAK) [215],

Advanced Combination Encoder (ACE) [169]. A noteworthy remark is the existence

of a study investigating the possibility of a variable rate strategy called Differential

Rate Speech Processor (DRSP) [117], which is essentially a modified ACE strategy

that has variable stimulation rate across different electrodes. Consistent with all

other studies addressing stimulation rate, no statistical performance gain was re-

ported based on variations of the stimulation rate [117]. However it is consistent

with the observation that patients have certain preference to either high, low, or

varying stimulation rates [117].
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CIS, HiRes, MPS (or PPS), QPS

CIS is illustrated in figure 5.12. The CIS strategy uses a pre-emphasis filter to atten-

uate strong low-frequency components in speech that otherwise might mask impor-

tant high frequency components. Then five or six channels follow, each including

a bandpass filter, rectifier with a low-pass filter (envelope detection), logarithmic

compression and modulation with biphasic pulses. The pulses are interleaved in

time and the modulated envelope of each channel is presented as stimulation to the

electrodes.

Two different implementation of CIS are reported in a study [195], namely PPS

(or MPS) and QPS. PPS is different from CIS in the way that all the electrodes get

stimulated. Whereas in CIS a single electrode is stimulated at any given time in

PPS two electrodes are stimulated that are spatially located in such a manner that

maximize the distance between stimulation frames. Specifically for the 8 channel

implementation used in the study [195] the time frames of PPS would stimulate

channels 1-4, 2-5, 3-6, 4-8. QPS also has identical signal processing as the CIS but

instead stimulates four electrodes simultaneously, specifically for the implementation

reported [195] it consisted of two time frames with channels 1-3-5-7 and 2-4-6-8. This

effectively increases the stimulation rate from 833pps of CIS to 1445pps for PPS and

3300pps for QPS. The results of the study [195] showed some minor improvement

for PPS and QPS from CIS, but it was not consistent for all patients. Again the

observation that increasing stimulating rate benefits some patients but deteriorated

other patients’ performance is reported, similar to other studies [117].

Advanced Bionics’ Clarion system uses a CIS strategy, called HiRes, which differs

from the traditional CIS strategy in the way it estimates the envelope. It uses half-

wave rectification rather than full-wave rectification, and it does not use a low-pass

filter. Instead, after the half-wave rectification operation, it averages the rectified

amplitudes within each stimulation cycle. This averaging operation is in effect a

low-pass filtering operation. Furthermore high stimulation rates up to 90,000 pps

are used which are spread amongst 16 channels to provide rates per electrode that
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can be between 2800 to 5600 pps. The mean scores reported were significantly higher

with HiRes compared to CIS, PPS or SAS, especially for speech reception in noise

[171].

Figure 5.12: Block diagram of CIS. Notice the shift in time of the modulating pulses
to create an interleaving sparse pattern at the electrodes. Image extracted from
[374]

N-of-M, SMSP, SPEAK, ACE

As mentioned before the N-of-M -like techniques select a number of electrodes, N , to

be active for a certain stimulation epoch out of the total number of electrodes, M .

For example if N = M then the strategy essentially becomes CIS. The electrodes

that are selected to be active are chosen because the output of their corresponding

bandpass enveloped output has a higher amplitude than the rest. Note that higher

amplitude at the output of the bandpass filters does not necessarily correspond to

spectral maximal peaks since a single spectral peak can be significant enough to

stimulate all possible N channels and thus mask other smaller spectral peaks.

The evolution of N-of-M -like techniques was first tested as SMSP [215] that is

shown in figure 5.13, which was replaced with SPEAK [215] and was then followed

by ACE [169]. The main difference between SMSP and SPEAK is that SPEAK

has a filter-bank of 20 rather than 16 filters in SMSP. Furthermore the selected

electrodes are not fixed to be always six as in SMSP, but instead in SPEAK the
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number of maxima selected varies from 5 to 10 with an average of 6. The spectral

composition of the input signal sets the number of maxima to be selected.

For broadband spectra more maxima are selected thus causing the stimulation

rate per channel to slow down. For narrowband spectra fewer maxima are selected

thus increasing the stimulation rate to provide more temporal information. The

adaptive selection of the active electrodes, i.e. N , that is used in SPEAK is also

inherited in the ACE strategy. The main difference between SPEAK and ACE is

the stimulation rate. In SPEAK the rate is 200pps to 300pps whereas in ACE

stimulation rates can vary between 600pps to 1800pps.

It is noteworthy to mention that both techniques use a fast Fourier transform

(FFT) to analyse the spectral content of the incoming sound stimulus and therefore

do not use a filter-bank made of contiguous bandpass filters. The ACE strategy

usually dynamically selects 6 to 12 active electrodes from the available 20, which is

adequate for speech perception. It was shown before [89] that asymptotic speech

intelligibility performance for most CI users is reached when the number of effective

channels is 8.

5.2.4 Novel stimulation strategies

The stimulation strategies discussed in the previous text were at some point, or are

currently, commercially available. With the exception of Fine Structure Processing

(FSP) and HiRes120, this section will deal with strategies that have not been tested

on cochlear implants, or few indicative results exist to verify their performance.

The three temporal features that compromise speech are thought to be the enve-

lope, periodicity and fine-structure [296]. The fine-structure is the rapid fluctuations

of the acoustic signal and can be though of as a carrier of the more slow varying

signal, called the envelope. However, at the level of the auditory cortex the limit

of phase locking reduces at its best around 100-200Hz [367] which is inadequate

to synchronise with the much faster fine-structure fluctuations. This suggests that

place coding is what is important for characterising speech and this may explain
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Figure 5.13: Block diagram of SMSP. Note that SPEAK and ACE have similar
implementations except that the maxima selection stage varies dynamically as a
function of the spectral content of the input (see text). Image extracted from [196]

why increasing stimulation rate to improve temporal coding in cochlear implants

has not yielded significant benefits in terms of understanding speech in noise and

music appreciation [259, 187]. The importance of fine-structure for understanding

speech in complex fluctuating backgrounds still lacks conclusive evidence [259]. Ev-

idence indicates that both place and rate code need to be correct for salient sound

perception [38, 261, 259, 62].

Furthermore data from different stimulation strategies that attempt to provide

a better spectral and temporal information over short durations indicates the im-

portance of their joint representation to the auditory nerve [44]. The general aim

of the new stimulation strategies is to provide a better representation of the finer

details of sound and do so in a more biomimetic approach [379]. This section will

not give an in depth discussion in the detailed characteristics of each technique but

instead identify research trends and aims. The techniques discussed will be classified

based on what they are attempting to enhance, namely: (1) Spectral contrast, (2)
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Temporal cues and (3) Fine-structure (or phase information).

Enhancing Spectral contrast

The necessity of spectral contrast for sound representation in the cochlear implant

encoding is evident from two facts, (1) The tonotopic mapping of the basilar mem-

brane, see Section 3.2.1, or the place coding of the auditory nerve, see Section 3.4.5.

(2) Multichannel cochlear implants perform better than single channel implants. [1]

The highly conductive perilymph fluid that surrounds scala tympani inserted

electrodes is around 100 times more conductive than the bony partition between

electrode and neural tissue [115]. This creates a wide spread of excitation [18]

per electrode. This spatially wide recruitment of neurons per stimulating pulse at

each electrode deteriorates the spectral representation of sound, see Section 5.3.4

for a more in depth discussion. Furthermore evidence suggests that varying the

stimulation level of supra-threshold pulses does not affect the shape of the excitation

pattern [37].

These stimulation circumstances deteriorate spectral representation, which is

critical for speech understanding within complex fluctuating backgrounds [259]. In

order to better encode the spectral detail, more independent electrodes are needed.

Given the current electrode manufacturing technology, the difficulty of surgical

placement of these electrodes in the cochlea and their cross-talk leakage due to

the conductive perilymph it is difficult to increase the number of physical electrodes

[395]. There are three methods described to increase spectral contrast: (1) The

use of different configuration between the stimulating and the return electrode, see

figure 5.26 in Section 5.3.4. (2) The use of compression followed by expansion in

the filter-bank, the so called companding technique. (3) The use of virtual channels

by manipulating the cross-electrode electric fields with a technique called current-

steering, thus using the otherwise unwanted channel interactions. This section will

discuss the last two techniques, the effects of electrode configuration and polarity

are further discussed in Section 5.3.4.
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Compressing-and-expanding, i.e., companding, is a strategy that is aimed

for spectral enhancement. It is inspired by the operation of the auditory system by

simulating the two-tone suppression phenomena of the auditory system, see Section

3.4 for a more in depth discussion of the auditory system phenomena. Furthermore it

implements a soft local winner-take-all-like enhancement of the input spectrum [353].

This enhancement works by cascading two filters, a broad bandpass and a narrow

bandpass as shown in figure 5.14. The output of the broadband filter is compressed

in amplitude before it enters the narrowband filter, and their total output is then

expanded. This means that if higher acoustic pressure tones exist that are out of

the narrowband filter range, but fall within the broadband filter the compression

will be greater than the expansion, hence suppress the weaker tones that fall within

the narrow band region. If only a single tone exists then the compression will be

equal to the expansion, hence no net effect will happen.

Figure 5.14: Block diagram illustrating the companding strategy. Figure modified
from [353].

Studies testing the companding strategy for speech recognition against back-

ground noise have shown a small but consistent improvement [17, 262].

Virtual channels are caused by simultaneous or near-simultaneous activation

of adjacent cochlear implant electrodes producing pitch percepts in-between those

produced by each electrode separately. This essentially increases the number of

place-pitch steps available to cochlear implant listeners. A study investing the effect

reported that dual-electrode stimuli can produce 2–9 discriminable pitches between

the pitches of single electrodes [65], and that some subjects reported better place-
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pitch discrimination at higher stimulus levels.

Current steering (virtual channels) between two adjacent electrodes is being used

commercially in Advanced Bionics HiRes120 technique [171, 376] (figure 5.15), aim-

ing to increase the number of spectral channels across the electrode array. A study

[177] investigating the different possible combinations of electrode configurations,

see figure 5.16, determined that cochlear implant users experienced better spectral

resolution with a virtual channel configuration.

Figure 5.15: Block diagram illustrating the HiRes120 strategy. The microphone
signal passes through an automatic gain control (AGC) and then is separated to
different channels at a filterbank made of band-pass filters. Each channel’s envelope
is extracted using a Hilbert transform1 and is used to modulate the amplitude of the
current at each stimulation site on the electrode array (El-n). Each channel’s main
frequency component is estimated and used to frequency-modulate the pulse rate.
Furthermore the ‘Navigator’ estimates the neighbouring channel weight, α (figure
5.16), so as to steer the electric potential peak (figure 5.17) between the pair of
electrodes. Figure modified from [354].

The HiRes120 technique described earlier uses a combination of two channels to

create virtual channels. A technique using four channels is was suggested elsewhere

called Four-Electrode Current Steering Schemes (FECSS) [354]. This technique

has not been evaluated using cochlear implant users or a vocoder implementation.
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Figure 5.16: Different stimulation modes (see also figure 5.26). The value σ in PTP
controls the extent of polarity, e.g. if σ = 0 then stimulation is monopolar, if σ = 1
then stimulation is tripolar. The value α steers the current creating a virtual channel
between the paired electrodes, e.g if α = 1 then electrode 3 is selected alone, if α = 0
then electrode 2 is selected alone. Figure extracted from [177]

Instead computational simulations of the electric fields are shown in figure 5.16

which indicate even greater spatial control.

Figure 5.17: Evaluation of FECSS and the virtual channels generated as the value
α varies (see figure 5.16). The left plot shows virtual channels using two electrodes
as used in HiRes120. The right plot shows virtual channels using four electrodes
with FECSS. Figure modified from [354].

A noteworthy remark is that a study supports the hypothesis ”the effects of si-

multaneous channel interaction can be compensated by an algorithm such that no

difference in hearing performance between simultaneous pulsatile stimulation and a

strictly sequential reference strategy can be found.”[9]. Their method was to use
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an algorithm to estimate the contour of the interactions from the entire electrode

array [9] and compensate for interacting simultaneously activated electrodes. The

success of this technique encourages a possible across electrode array near instan-

taneous virtual spectrum estimation, were virtual channels are created using the

entire electrode array to represent accurately the spectral peaks.

Enhancing Temporal cues

Temporal cues can be separated to transients of a speech envelope (such as onset

cues) and periodicity of sound signals (i.e. F0). The strategies that have as a

primary aim the delivery of enhanced temporal cues operate by focusing on explic-

itly modulating the periodicity of speech, see the top panel of figure 5.18, or by

adding the transients of a speech envelope, see the bottom panel of figure 5.18, or a

combination of both.

Figure 5.18: Enhancing temporal cues through cross-channel envelope modifications.
Note that the signal shown at the top is a speech segment of a female utterance of the
syllable ”ma”. One category of strategies explicitly codes F0 by fully modulating the
envelope (top). The other category of strategies enhances the envelope by adding
the transients of a speech envelope (bottom).

The strategies that emphasise the periodicity of sound by some form of mod-
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ulation of the enveloped output of a spectral channel (figure 5.18 top) are: Saw-

tooth modulation [120], F0 synchronised ACE (F0sync) [361], Multi-channel En-

velope Modulation (MEM) [361], Modulation Depth Enhancement (MDE) [361],

F0 modulation (F0mod) [229, 178, 230], Enhanced-envelope-encoded tone (eTone)

[362], Harmonic single sideband encoder (HSSE) [184, 183], Modulation enhance-

ment strategy (MEnS) [85].

The strategies that enhance the transients of speech envelope by adding

onsets and other fast temporal elements on the electrode pulse envelope (figure 5.18

bottom) are: Transient emphasis spectral maxima (TESM) [360], enhanced envelope

CIS (EECIS) [106], Enhanced Envelope (EE) [173].

Note that all the aforementioned strategies are not identically implemented.

What they do all have in common though is the presentation of temporal cues on the

modulating envelope of the stimulating electric pulses on the assumption that ‘such

a “temporally sharpened” modulation envelope, with a rapid onset in each period,

would lead to more consistent inter-pulse intervals in the neural firing pattern, and

therefore to more salient temporal pitch cues [120]. The MEnS strategy temporally

synchronizes acoustic signal maxima with stimulation maxima as shown in figure

5.19 which then permits bimodal listeners to be tested for interaural time differ-

ence (ITDs) perception. The study [85] reports that the results were comparable to

healthy listener’s physiological ITD perception, providing evidence to support the

aforementioned quoted assumption.

Enhance fine structure cues (or Phase Information)

Encoding of the temporal fine structure cue is receiving much attention [395, 379,

121, 178, 324, 299, 191, 237, 187, 190]. One way to encode the fine structure is to

increase the electric stimulation carrier rate so that the temporal fine structure cue

can be represented in the waveform domain, e.g., Med-El’s fine structure processing

(FSP) processor [395, 136]. A second way is to extract the frequency modulation

from the temporal fine structure and then use it to vary the stimulation rate fre-
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Figure 5.19: Temporal detail of the MEnS strategy. Note that the signal shown at
the left is a speech segment of a female utterance of the syllable ”ma”. Notice how
the peak extraction synchronizes the modulation envelope, hence electrical pulses,
with the acoustic signal maxima.

quency in a way that indicates the sound frequency modulation[395, 255], such as the

processing technique termed ‘frequency amplitude modulation encoding’ (FAME),

shown in figure 5.22. A third way is to use multiple carriers to encode the fine

frequency structure [395, 348] such as the ‘multiple carrier frequency algorithm’

(MCFA) shown in figure 5.212. A fourth way is to preserve phase information via

asynchronous stimulation, such as the ‘spike-based temporal auditory representa-

tion’ (STAR) [118] or the ‘asynchronous interleaved stimulation’ (AIS) [324] which

is further discussed in section 6.1.3. A fifth way is to preserve the interaural time de-

lays and/or the interaural level differences such as in the peak derived timing (PDT)

[359] technique or the ‘modulation enhancement strategy’ (MEnS) [85] strategy il-

lustrated in figure 5.19. A sixth way is the addition of noise to create stochastic

resonance effects by using ‘desynchronizing pulse trains’ (PDTs) [188] which has

2A nice study comparing FAME and MCFA can be found in Ref. [348].

134 Chapter 5 Andreas N. Prokopiou



Biophysical Modelling of a Cochlear Implant System

been suggested to enhance perception of sound [299, 300, 188].

Further to fine structure preservation by using variations in the temporal pattern

of the stimulation pulses some other techniques use a different sound analysis method

in the filter-bank stage. One example is the Hilbert Huang Transform Stimulating

(HHTS) [190] shown in figure 5.20 which uses an empirical mode decomposition and

a Hilbert transform to analyse the incoming sound signal into what is termed ‘intrin-

sic modes’ and extract the instantaneous frequency instead of the more ‘traditional’

approach of a contiguous bandpass filter-bank or an FFT spectrum analysis.

Figure 5.20: Block diagram illustrating the Hilbert Huang Transform Stimulating
(HHTS). Abbreviations are: empirical mode decomposition (EMD), intrinsic mode
function (IMF), Hilbert transform (HT). After the HT the signal is split into two
streams, the fine structure (FS) and the amplitude modulation (AM) which are
used to frequency and amplitude modulate, respectively, the electric pulses at the
stimulation site. Figure modified from [190]

5.2.5 Sound preprocessing

Sound preprocessing is performed before the speech processor to provide a clearer

signal and give better hearing of speech, especially in noise. Three techniques dis-

cussed in this section are: (1) Automatic Gain and Sensitivity Control, (2) Adaptive

Dynamic Range Optimization and (3) Adaptive Beamformer.

Automatic gain control (AGC) refers to a non-linear operation which aims to

keep speech intensity variations within the dynamic range. This is accomplished by

Chapter 5 Andreas N. Prokopiou 135



Biophysical Modelling of a Cochlear Implant System

Figure 5.21: Block diagram illustrating the multiple carrier frequency algorithm
(MCFA), abbreviation is short-time Fourier transform (STFT). Figure modified from
[348]

Figure 5.22: Block diagram illustrating the frequency amplitude modulation encod-
ing (FAME) . Figure modified from [255]

amplifying faint sounds and compressing high pressure sounds using an automatic

process that does not require the patients intervention. A similar process is the

automatic sensitivity control (ASC), in which the gain is not set via the overall

sound level but specifically related to the noise level. If the background noise is above

a certain level, the ASC will reduce the gain and vice versa if the background noise

is too low.

Adaptive Dynamic Range Optimization (ADRO) is a mathematical trans-

formation that aims to fit the dynamic range for sound intensities in each frequency
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band into the dynamic range for each electrode [154]. It applies a set of four rules to

control the individual channel gain as shown in figure 5.23. (1) The audibility rule

specifies that the output level should be greater than a fixed level between threshold

and maximum comfort level at least 70 percent of the time. (2) The discomfort rule

specifies that the output level should be below maximum comfort level3 at least 90

percent of the time. (3) The background noise rule specifies that the output level

should be at most 40 percent of the time greater than the background target. (4)

The gain cannot exceed a predetermined maximum level. The percentages were

estimated using a recursive percentile estimator [257]. The purpose of ADRO is

to maintain the signal within a comfortable range for the cochlear implant listener

[268].

Figure 5.23: Block diagram illustrating the Adaptive Dynamic Range Optimization
(ADRO). Figure extracted from [154]

Adaptive Beamformer (ABF) Speech perception in noise can be improved

with the Griffiths/Jim adaptive beamformer [358, 336]. The operation of the ABF is

shown in figure 5.24 for the scenario in which speech arrives from the front and noise

from one side. The signals from the microphones at each ear are sent to an addition

and subtraction unit. The output from the addition unit contains speech plus added

noise (Noise 1), and the output from the subtraction unit has removed speech and

subtracted noise (Noise 2). In the next stage, the two signals are then subtracted

and an adaptive filter is used to adjust noise to approximately zero, with output

relatively free of noise. With this arrangement, the processor effectively uses the two

3This is estimated during the calibration of the implant by an audiologist at the moment of
first turning on of the device.
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microphones to form a beam directly in front of the subject and attempts to reject

sounds not falling within it. In general multi-microphone-based noise reduction

methods can bring substantial benefits to speech intelligibility in noise particularly

in situations where there is a single interferer present and there is no reverberation

[235]

Figure 5.24: Block diagram illustrating the Griffiths/Jim adaptive beamformer [358].
Figure extracted from [44]

5.3 Psychoacoustic phenomena in electrical hear-

ing

This section aims to describe the current understanding on the perceptual effects

of electrical stimulation. The first subsection entitled ‘Neuronal electric stimulation

and auditory percepts’ serves as a foreword to the first observations of auditory per-

ception elicited by electrical stimulation. The following subsection discusses loudness

encoding mechanisms in section 5.3.2, followed by temporal coding description in

section 5.3.3 by characterising electrically evoked percepts such as gap detection,

modulation detection, pulse rate discrimination, temporal integration and masking

effects. The last two sections discuss the spectral, or tonotopic, coding possible us-

ing electrical stimulation, in section 5.3.4, and finally section 5.3.5 discusses speech

recognition with the modern cochlear implant.
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5.3.1 Neuronal electric stimulation and auditory percepts

The first attempt to study the mechanisms involved behind the phenomenon of elec-

tric stimulation of the auditory periphery came from Harvard researcher S. Stevens

and his colleagues. Using alternating current (AC) they managed to identify three

mechanisms of “electrophonic perception” [341, 340, 161].

The first mechanism related to the tympanic membrane’s interaction with the

electric current. This mechanism results in a tonal perception of the pitch at a higher

harmonic of the AC frequency, specifically it equals the perception of the doubled

signal frequency. The second mechanism is caused by the electromechanical effect.

In this mechanism the inner hair cells vibrate synchronised with the stimulating

frequency, hence the perception of the stimulating frequency is similar to the acoustic

stimulation. The third mechanism is via direct electrical stimulation of the auditory

nerve. All cochlear implants operate on the principles of this mechanism, which

is very different from the previous two. Unlike the tympanic agitation and the

electromechanical effect, the reported perception was not a clear tonal perception,

but a ”noise-like sensation”, and the loudness growth was much steeper than the

other two mechanisms [161].

The first inspiration for cochlear implant signal processing came from the the-

oretical background of vocoders in telephone communication [82, 67] and from the

source-filter model in speech production [79]. This essentially focused the research

of cochlear implant signal processing towards speech processing, hence the external

sound encoder is sometimes still referred to as speech processor.

The prevalence of the multichannel cochlear implant versus the single channel

implant indicated that just using the temporal coding of frequency in electric stim-

ulation does not give good performance in speech perception. A combination of

temporal, i.e. stimulation rate, and place of coding, i.e. different electrode sites,

needs to be used for speech perception. One of the first accounts of attempting to

reinstate speech perception comes from the University of Melbourne Departments of

Otolaryngology and Electrical Engineering [41]. A series of tests on this prototype
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device lead to the discovery that the rate of stimulation was perceived as a true pitch

sensation between rates of 50pps and 200pps, but perceived pitch increased only up

to around 300 Hz and then reached a plateau. Furthermore for different places of

stimulation along the electrode array the patient perceived different pitch sensations

suggesting the presence of a ‘pitch perception processor’ in the brain for temporal

and place pitch [350]. As expected from physiology the sensation increased from low-

to high-frequency electrodes but the fact that a low pitch sensation was experienced

when a high frequency site was stimulated at a low rate suggests that the temporal

pitch and the place pitch are processed and perceived separately [44]. As a matter

of fact a change in timbre4 instead of the pitch was experienced as the electrode site

was varied [44]. Timbre varies in a way that an apical (low frequency) stimulating

electrode was perceived as ”dull” and a basal (high frequency) stimulating electrode

was perceived as ”sharp” [45]. This lead to the realisation that there was a complex

interaction between stimulation pattern and the surviving neural tissue leading to

sound perception. With the setup at the time speech understanding was almost

impossible, even though the physiology of the auditory system was taken into con-

sideration, because of the overlap of the electric fields around each electrode. This

directed research towards describing basic neural-response patterns crucial for un-

derstanding speech and the development of stimulations strategies capable of speech

processing.

A noteworthy remark is that when viewed in retrospect the inspiration from the

vocoders of telephone communication and the deconstruction of sound signals to

their basic neural responses would inevitably cause the sound processing techniques

of modern cochlear implants to stagnate when non-speech sound identification is

tested [187]. Furthermore there is a developing body of research identifying the

rapidly varying fine structure of sound to contribute to auditory object formation

[187, 328, 238, 392]. In both vocoder theory and source-filter model of speech produc-

tion, which were the primary sources of inspiration, the fine structure is considered

4Timbre is the sensation in which two sounds of the same loudness and pitch are different.
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as the unmodulated, or unfiltered, noise which is removed from the signal. This will

return an enveloped signal which is considered to allow speech intelligibility, but

only speech intelligibility [395].

5.3.2 Loudness Coding

Loudness can be encoded in the electric pulses delivered by the cochlear implant

electrode by increasing the current amplitude of the pulse or the duration of the

pulse. Modern implants use fixed duration pulses so the electric loudness is encoded

by changing the amplitude above the perceptual threshold.

The dynamic range of the electric hearing is defined as the range between the

minimum audible threshold and the maximum comfortable sound level. This dy-

namic range is typically around 10 dB for pulsatile stimulation, although great

inter-patient variation is reported [254, 216]. Furthermore there is great variation

between individual electrodes in the same patient. Given that the acoustic dynamic

range is 120 dB a compression mapping must exist in a cochlear implant that replaces

the compressive mechanical function of the cochlea, see Section 3.2. Unfortunately

modern cochlear implants cannot replace physiological compression since cochlear

implant users can differentiate between 20-40 steps of intensity [11], whereas in the

acoustic hearing more than 200 discriminable intensity steps have been reported for

humans [254]. Studies have shown though that 8 steps in loudness discrimination

are adequate for recognition of speech in quiet situations [193] but better loudness

resolution may help in difficult listening conditions.

A hypothesis that is commercially used to program the loudness mapping func-

tions of cochlear implants is the equal-charge to equal-loudness assumption [388].

In other words, if the current amplitude multiplied by pulse duration, i.e. charge

injected, is maintained constant then the loudness should remain constant for either

duration or amplitude variations. Studies of loudness in cochlear implants demon-

strate that loudness for an electric stimulus increases as an exponential function of

the stimulating current and disprove the equal-charge to equal-loudness assumption

Chapter 5 Andreas N. Prokopiou 141



Biophysical Modelling of a Cochlear Implant System

[390, 388] (see figure 5.25b). Instead a power function model A = kDα is shown

to describe loudness perception [388], where A is the current amplitude, D is the

electric pulse duration and k and α are experimentally determined constants. Fur-

thermore to predict the loudness balance between current amplitude and a fixed

duration pulse, or a fixed amplitude and varying duration pulse, equation (5.1) is

used, which has been shown to agree with experimental results [388].

L = kiD
αt
o

( Ao
ktDαt

) log( kmkt Dam−ato

)
log

(
km
kt

Dam−at
)

(5.1)

Where L is the loudness balance level, Do is the fixed-duration of the stimulus,

Ao is the fixed-amplitude of the stimulus, kt is the intercept of the threshold function

on the log-log plot, at is the slope of the threshold function on the log-log plot, km

and am have the equivalent meaning for the maximum function. The parameters

that are required for this model to permit analytical and unambiguous loudness

prediction can be estimated from only four measurements. Two estimating the slope

and intercept of the threshold function and two estimating that of the maximum

loudness function, see figure 5.25 for an example.

Another critical consideration in understanding how loudness is encoded is to

characterise dual-electrode excitation (figure 5.25). A study on loudness summation

for dual-electrode stimuli that varied both temporally and spatially was indicative

of a loudness perception model which has three main steps [216]. First the neural

excitation density function, E(x), is obtained by temporal integration of excitation

at each cochlear place, x, by using a window with equivalent rectangular duration

of approximately 7 ms. The second step is the conversion of this neural excitation

density to specific loudness, SL(x), via a non-linear relationship SL(x) = f · E(x)

(possibly the aforementioned power function model [388]). The function f is un-

known but it is assumed to be an increasing monotonic function, so that equal

excitation density, E(x), can be assumed to provide equal specific loudness, SL(x),

and increasing excitation density will be assumed to provide increasing specific loud-
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Figure 5.25: Acoustic and electric rate intensity function with loudness estimation.
(a) Pulses of 1000 per second where delivered for this particular example. Note the
steepness in the neural firing rate in response to the electric pulse and the lack of
spontaneous rate. Figure extracted from [274] data from [322](b) Strength–duration
functions or equal-loudness curves in electric stimulation of the auditory nerve. A
biphasic electric pulse train was used at 100 Hz. Green line indicates the just
audible threshold and the red line indicates the maximum loudness. The dashed
line represents the prediction of the equal-charge, equal-loudness hypothesis. The
five dotted lines represent hypothetical equal-loudness curves at 10%, 30%, 50%, 70%
and 90% dynamic range. Figure modified [388](c) The left panel shows a schematic
representation of the excitation density E(x) for dual-electrode stimulation. The
difference between the thick solid and dotted lines exhibits the hypothetical result
of a reduced spike probability per pulse in the region of overlapping excitation in the
dual-electrode stimulus caused by refractory effects. Figure extracted from [216].

ness. In the last step the place specific loudness is integrated over cochlear place

to obtain the loudness, L, as shown in equation (5.2) where I is the stimulating

electrical current. The two most important features which affect the loudness rela-

tionships in dual-electrode stimulation in this model are the shape of the excitation

density function and the amount by which the neural spike probability per pulse

is reduced in areas of overlapping excitation due to refractory effects. Furthermore

Chapter 5 Andreas N. Prokopiou 143



Biophysical Modelling of a Cochlear Implant System

it was shown that the separation distance of two electrodes has minimal effects on

loudness summation compared to rate and level of stimulation [216].

L(I) =

∫
f · E(x, I)dx (5.2)

A main drawback of this method of estimating multi-electrode loudness percepts

is that it requires many parameters estimated for each subject and each electrode.

This is both time-consuming and error-prone. A more practical method was sug-

gested [217] that makes the simplifying assumption that current pulses within a

temporal window of 7 ms contribute independently to the overall loudness percept

of the stimulus, and thus can be summed together. This assumption was shown to

be valid [217] and furthermore the updated practical model was shown to be able

to predict correctly the loudness percepts from six cochlear implant users [217].

A further drawback of this method is that it was designed with periodic stimuli

in mind so its used to predict the loudness of modulated stimuli within the duration

of the temporal window. An extension that permits it to be applied to time-varying

stimuli is described in a recent update [84] where it was combined with various

phenomenological models for estimating acoustic hearing loudness percept [110, 36]

The previous loudness models discussed were constructed using stimuli that

ranged between the just audible threshold and the maximum comfortable level re-

ported by the patients. Some other studies [141, 142] provided literature on sub-

threshold pulses and their conditioning effects. Patients were presented with a high-

rate (5000 pulses per second) pulse sequence with increasing current amplitude until

barely audible. After a few seconds, or minutes depending on subject, the perception

of sound disappears indicating an adaptation phenomenon. Following this desensiti-

sation to the conditioner pulse sinusoidal bursts of varying frequency were added to

the electric stimulus. With the presence of the high rate conditioning pulses patients

responded to lower thresholds, without any decrease in maximum comfortable level,

leading to an increased dynamic range to electrical stimulation. There was very

high cross electrode and cross patient variability which was presumed caused by
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individual neuron electro-physiology and electro-anatomical location relative to the

stimulating electrode. Furthermore they suggest that different conditioner pulses

might perform better for different electrode positions [141]. The inclusion of sub-

threshold, high frequency pulses in addition to the main stimulation signal might

provide benefit to cochlear implant users by providing a more gradual loudness

growth percept and therefore less compression induced distortion to the processed

sound signal [142].

5.3.3 Temporal Coding

Even though electrical stimulation produces an abnormal temporal response in the

auditory nerve, the temporal perceptual responses are near physiological. This could

possibly be accounted to the loss of compression and the limited dynamic range, and

thus the abnormal intensity processing that occurs in the cochlear implant users

permits them to perform better in certain temporal perceptual tasks [391, 318]

Identifying the temporal coding of the auditory system is not a straightforward

task. It is important to distinguish between different definitions, or ways to char-

acterise temporal coding. Temporal resolution (or acuity) refers to the ability to

detect changes in stimuli over time, i.e. to detect a brief gap between two stimuli or

to detect a sound that is modulated [240]. Furthermore there is distinction between

the rapid pressure fluctuations in the sound, the ”temporal fine structure” and the

slower overall changes in the amplitude of the those fluctuations, the ”envelope”.

Termporal resolution normally refers to the resolution of the envelope and not the

fine structure [363]. Temporal integration refers to the ability of the auditory sys-

tem to add up information over time to enhance the detection or discrimination of

stimuli and is closely connected to absolute thresholds and loudness [240].

Psychophysical measures of gap detection, forward masking, modulation detec-

tion, temporal integration, and pulse rate discrimination are used to describe the

temporal coding of the auditory system. Experimental measures show similar per-

formance in implants and acoustic hearing [321].
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Gap detection

To be able to measure the pure temporal resolution ability of the auditory system

changes in the magnitude spectrum must be kept as little as possible [240]. For

example a measurement of physiological detection of single click separation times

will result in sensitivities of a few tens of µs [181], but that remarkable resolution

reflects on the ability of the auditory system to detect spectral change rather than

temporal change. Detecting gaps in broadband noise provides a simple and conve-

nient measure of temporal resolution [240]. The gap detection threshold in normal

hearing subjects is typically 2-3 ms [272, 277]. This threshold increases at very low

sound levels as the sound level reaches the absolute threshold, but it does not change

with increasing sound levels [240]. Cochlear implant patients can typically detect

silent gaps of 1–3 ms [317].

Modulation Detection and Pulse rate discrimination

A metric used to estimate modulation detection is the so called temporal modulation

transfer function (TMTF). It is defined as the modulation depth required for the

detection of sinusoidal modulation of a carrier plotted as a function of modulation

frequency [240]. The detection of modulation depends on the modulation frequency,

not on the frequency content of the signal being modulated. The carrier stimulus

determines only the overall threshold level and does not affect the shape of the

TMTF curves [318].

Normal hearing TMTFs are typical low-pass functions, although when the car-

rier is gated some normal-hearing listeners show bandpass TMTFs [364], whereas

cochlear implant users display typical bandpass behaviour [318]. This result implies

that cochlear implant users cannot detect very-low frequency modulation as well.

This could also be attributed to the loudness decay discussed earlier, where a contin-

uous high frequency electrical stimulus will fade in loudness and become inaudible

in a few tens of seconds to minutes [142, 318, 141].

It was shown that TMTFs from cochlear implant patients generally have higher
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cut-off frequencies (between 100 and 200 Hz) than the typical acoustic TMTFs in

normal hearing subjects (around 68.8 Hz) [318]. This difference though could be

attributed to the fact that the same 3 dB cut-off might be perceived differently

between electric and acoustic hearing. Given the limitations of the electric hearing

dynamic range, the 3 dB cut-off might be a very large perceptual difference, thus un-

representative of reality and incomparable to acoustic hearing. In perceptual terms

a drop of 1 dB or less could be more comparable to the acoustic subjects auditory

experience [318]. A later study [86] indicated that this higher cut-off estimation was

erroneous (see later text).

Another difference between TMTFs of normal and electric hearing is that the

absolute sensitivity to modulation increases considerably with stimulus level in im-

planted listeners, while normal hearing TMTF is level independent [364, 318]. This

could also be attributed to the difference in dynamic range between normal and

electrical hearing [318].

A more recent study attempted to re-estimate the modulation detection of cochlear

implant users by taking care to compensate for the dynamic range difference be-

tween electric and normal hearing and the difference in loudness perception [86].

They conclude that modulation detection thresholds that are measured while limit-

ing the loudness cues, which if present can result in overestimating the modulation

detection thresholds [86], display four main characteristics: (1) TMTFs showed that

subjects on average were not able to detect modulations with frequencies of 300 Hz

and above. (2) Cochlear implant users’ TMTFs had shapes consistent with those

obtained for normal listeners with wideband noise carriers. Temporal resolution,

as defined by the cut-off frequency of the TMTF, was similar to that of normal-

hearing listeners, at least at the higher level. This contradicts the previous study

[318] confirming their speculation about the differences in loudness percept making

their results to be overestimate. (3) As shown in previous studies [318] modulation

detection efficiency increases considerably with stimulus level in implanted listen-

ers, while normal hearing TMTF is level independent. Furthermore they indicate
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that at lower levels there is great degradation in modulation detection. (4) Higher

carrier rates (greater than 1200 pps) were shown to degrade modulation detection

efficiency of frequencies around the speech fundamental (around 150Hz) by increas-

ing the perception threshold. Interestingly though modulation detection thresholds

for the lowest modulation rate (50 Hz) were not significantly different for different

carrier rates at either level.

One notable remark is that all studies [318, 86, 142, 141] reported high patient

variability in their results. What is a common intersection of these studies is the fact

that both modulation rate or pulse rate discrimination is limited at 300 Hz [318, 86,

351, 315, 137]. This is a major limitation in being able to present fine temporal detail

information to the brain using a cochlear implant. Currently the exact mechanism

that causes the perceptual inference of pulses to be limited at 300 Hz is not known,

therefore it cannot be deduced if the 300 Hz limit is a limitation of the stimulating

techniques currently used in cochlear implants or if it is a fundamental constraint

of electrical stimulation in general. What can be inferred from the results of a

study [138] that showed that removing information from frequencies above 1000 Hz

decreased speech recognition is that it is a more complex mechanism than just filter

cut-off after 300 Hz. One suggestion is that the high frequency stimuli presented to

the patients is detected via its envelope [318].

It is important to note that one study has shown a strong correlation between

individual differences in cochlear implant users ability to detect modulation and

speech recognition [97].

5.3.4 Spectral (Tonotopic) Coding

Spectral encoding is not well preserved in cochlear implants [321]. This can be

attributed to the poor spatial selectivity in electric stimulation. Furthermore electric

pulse stimulation causes highly synchronous action potential generation [168] which

is not physiological .

The healthy human cochlea has around 2800-4400 inner hair cells and around
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25,000-30,000 spiral ganglion cells [247]. Even though there is coupling along the

basilar membrane given that it is a continuous structure, therefore correlation should

exist across adjacent hair cells [321] the action potentials recorded are stochastically

independent in time and across location [157]. On the other hand electrical stimu-

lation activates all neurons synchronously within the electric field of the stimulated

electrode [356]. This highly deterministic pattern of activation for stimulation rates

below 1000pps that are clinically used deteriorates spectral representation in the

auditory nerve by limiting stochastic effects which have been shown to be beneficial

to temporal fine structure resolution [300]. Temporal fine structure is thought to

lead to better spectral comprehension of sound stimuli [260, 237]

The main limitation though that impedes cochlear implant from delivering phys-

iological resembling spectral information is the poor spatial selectivity the implant

electrodes have in exciting the neural tissue. A study recording from anaesthetised

guinea pig’s cortex [18] demonstrated that activation caused by a single cochlear

implant electrode was influenced by the presence of threshold or subthreshold ac-

tivity from a second electrode. The magnitude and direction of the cross-electrode

influence was mostly dependent on: (1) the electrode configuration (see figure 5.26).

(2) The spatial separation of the electrodes (3) The relative timing of the two stimuli

- a single subthreshold pulse could have appreciable influence on the response to a

pulse that trailed in time by up to 640 µs or more [18]. (4) The relative polarity of

the spatio-temporally proximal pulses. In the case of biphasic pulses if the adjacent

electrode pulses have the the same phase sequence, e.g. anodic followed by cathodic,

then they have the same relative polarity, if they have the opposite phase sequence

they have inverted relative polarity.

The configuration of the stimulating electrode and the return, or ground, elec-

trode partially determines the spatial extent of the electric field, see figure 5.26 for

some examples. Monopolar stimulation produces the broadest pattern of activation

[316, 355] and hence has the least spatial selectivity. Bipolar stimulation produces

a more restricted activation pattern than monopolar. Furthermore bipolar return

Chapter 5 Andreas N. Prokopiou 149



Biophysical Modelling of a Cochlear Implant System

electrodes can be more widely spread to produce intermediate activation patterns,

termed ”pseudo-bipolar” in figure 5.26. The most restrictive pattern of activation

is created by the tripolar (or quadrapolar) electrode configurations [330], where the

return electrodes flank the active electrode. One thing worth noting is that the

tripolar and bipolar stimulation arrangements requires higher currents to elicit au-

ditory percepts whereas monopolar requires much lower currents making it energy

efficient.

Figure 5.26: Different return-electrode arrangements exemplifying electrode polarity.
Solid lines indicate electric fields related with stimulating and return electrodes,
dashed lines indicate the neighbouring electrode electric field. Figure modified from
[44]

Contrary to the physiological studies that indicate clear differences in spatial

selectivity in neural excitation between electrode arrangements, perceptual measures

appear to be more similar across electrode configuration than physiological studies
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would suggest [321]. Furthermore loudness may be a relatively insensitive measure of

the degree of overlap of the excitation between two electrodes, given that it requires

considerable separation between two excitation patterns to produce a change in

loudness [320] and other aspects of electrode stimulation can permit the electrode

perceptual separation [321]. A possible explanation for the inconsistencies between

physiological measurements and perceptual reports is the electrode distance to the

neural tissue [321]. In most behavioural experiments with cochlear implantees the

electrode array most probably positioned at a greater distance from the nerves than

the physiological experiments where the electrodes are positioned next to the nerve.

A modest correlation was reported between psychophysical measures of electrode

separation and speech recognition [64]. This seems to suggest a distinction between

the number of electrodes and the number of channels. If two electrodes are totally

dependent then they are effectively a single channel, therefore the number of elec-

trodes is greater than the number of effective channels due to electrode interactions

[391].

5.3.5 Speech Recognition

Speech recognition improves as the number of spectral channels increases [95, 66].

As noted before spectral channels and number of electrodes, even though related are

not equivalent. This has been shown in a study where speech recognition in cochlear

implant users was reported as a function of the number of active electrodes. Speech

recognition performance increased as the number of electrodes increased only up to

four to seven electrodes [81]. Increasing active sited from seven to the maximum

available electrodes showed no significant improvement in speech recognition. A

follow-up study [89] showed the same result for speech recognition in quiet and for

speech recognition in noise.

An important factor that aids in speech understanding is the the absolute and

relative distribution of frequency information in the cochlea to be preserved as with

normal acoustic hearing. The brain is highly trained to understand patterns of
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excitation that match the normal tonotopic positions in a healthy cochlea [321]. If

the pattern of nerve activity produced by electrical stimulation is shifted, distorted

or warped relative to the normal acoustic tonotopic pattern then speech recognition

deteriorates [319, 94, 12, 14, 321, 13]. In some cases, presumably caused by the

brain’s plasticity, speech recognition can be learned even if the sensory pattern is

shifted in the cochlea or distorted from the normal acoustic pattern after rigorous,

daily training that could span months in duration [96, 99, 98].

Additional to spectral channel clarity and natural frequency presentation a study

has shown strong correlation between individual differences in cochlear implant users

ability to detect electric stimulus amplitude modulation and speech recognition [97].

A noteworthy point is that all the reports on excellent speech performance with

scores between 80% and 100% sentence and words recognition are all performed

in quiet conditions. In adverse noise conditions the cochlear implant performance

drops dramatically. In a study where they varied the spectral bands and added

different noise levels comparing normal hearing with cochlear implant hearing it

was concluded that the fine structure within each band needs to be encoded for

improving the performance in noise [391].
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Digital Cochlea Stimulation and

Evaluation Tool: DiCoStET

The cochlear implant (CI) has proven itself as a viable treatment for deafness [375].

However, the lack of a complete paradigm for the sound experience elicited via

electric stimulation of the auditory nerve, combined with the currently limited un-

derstanding of brain plasticity related to electrical stimulation, creates the situation

were both patient and audiologist go through a learning process as the CI is being

used. As more CI types and designs emerge, and with more inclusive implanting

criteria [52, 133] the cochlear implant team’s job is becoming more complex and

possibly more prone to deliver sub-optimal choice to the patient. This creates the

drive to develop closed-loop design and testing of the cochlear implant before patient

implantation. Much of the research effort now is towards the pre-implant planning

and cochlear implant design for the best post-implant outcomes [365]. Although the

newer generations of implant designs offer considerable optimism, the identification

of a need for research on variables that can predict implant outcome by the NIH

Consensus Development Conference (NIH, 1995) continues to hold [24].

The motivation for the development of the computational tool detailed in this

chapter is to be able to provide a platform for assessing the performance of a cochlear

implant in comparison with the model predicted action potentials of a healthy human
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auditory periphery. The computational tool is termed Digital Cochlea Stimulation

and Evaluation Tool (DiCoStET) and illustrated in figure 6.1. It can be divided

into four main classes: (1) the ‘Digital Patient’, (2) the ‘Auditory Nerve Activation’

, (3) the ‘Control Experiment’ and finally (4) the ‘CI Objective Performance As-

sessment’. The last two are further discussed in chapter ‘7’, whereas the first two,

the digital patient and the auditory nerve activation, are discussed in this chapter.

This chapter is divided into three sections: ‘Cochlear Implant model’, ‘The Digital

Patient: patient specific implanted cochlea geometry’ and ‘Spatial activation pat-

tern between the electrode and auditory nerve’. Throughout this chapter various

examples will be shown of the inputs and outputs of the various stages, all examples

have been generated using the sound snippets shown in figure 6.2.

Figure 6.1: A block diagram illustrating an overview of DiCoStET.

6.1 Cochlear Implant model

The cochlear implant is modelled as is illustrated in figure 6.3. It is a rather simpli-

fied approach in comparison to a full cochlear implant system, shown in figure 5.3

on page 108, but for all practical modelling purposes both systems perform the same

in terms of signal processing. The generic model developed consists of the essential
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Figure 6.2: Audio snippets used in the analysis. The left panel illustrates the female
utterance of the syllable ‘ma’, the right panel illustrates a frequency sweep from 20
Hz to 8 kHz. The bottom row illustrates the acoustic pressure of the sounds as an
instantaneous dB SPL conversion using equation (6.5), both signals are on average
70 dB SPL.

parts of a cochlear implant and its modularity enables the user to interchange differ-

ent ‘building blocks’ of a CI to test for the performance of existing or possible future

technologies. As is illustrated in figure 6.3 the constituents of the CI model, and the

parts of this section, are the ‘Filterbank’, the ‘Envelope extraction’, the ‘Stimulation

Strategy’ and finally the ‘Electric current mapping’. The temporal processing steps

of the model run at a sampling rate of 1 MHz to provide enough temporal samples

to accurately represent the stimulating pulses as the biphasic pulse in figure 6.8.

Figure 6.3: A block diagram of the cochlear implant model used.

6.1.1 Filterbank

The basilar membrane in the inner ear (section 3.2.1), performs the role of frequency

analyser. Due to its mechanical properties high frequencies are resonant at its base

and low frequencies are resonant at its apex. This tonotopical mapping is imitated

by the cochlear implant processor. Several methods exist to analyse sound into its
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constituent frequencies, the techniques adopted for cochlear implant design are :

(1) the use of a fast Fourier transform (FFT), (2) the use of a set of contiguous

band-pass filters termed filterbank and more recently (3) the use of Empirical Mode

Decomposition (EMD) is used to decompose sound into its intrinsic mode functions

(IMF) to serve as some form of frequency descriptors of sound [190].

The frequency analysis technique developed in this model is the filterbank method.

The reasons behind this choice are: (1) The FFT requires a digital architecture to

be realised, which is bigger in terms of chip size and more power hungry than the

analog filterbank realisation, and both attributes are undesirable for any implant.

(2) There is a great amount of literature around the topic of auditory filters [208]

specifically targeted to the representation of the basilar membrane motion as an

array of contiguous band-pass filters, see Chapter 4 for a more in depth discussion.

In contrast the use of EMD as a form of frequency descriptor is a new approach

where its explicit biological correlate in the auditory system (if one exists) has not

been identified yet.

A general filterbank architecture is an array of contiguous band-pass filters that

between the first and last band pass filter cover the range of frequencies of the

filterbank, see figure 6.4 for an example. In the DiCoStET model several filters

can be used interchangeably giving rise to different frequency behaviours. Namely

the filters are, Butterworth, All-Pole Gammatone Filter (APGF), Differentiated

All-Pole Gammatone Filter (DAPGF), One- Zero Gammatone Filter (OZGF) and

Gammatone Filter (GTF). For a more in depth discussion on the merits of the

Gammatone family of filters as auditory filters see section 4.1.5. In this study two

filters were chosen to be compared, the Butterworth filter and the OZGF. Their

corresponding spatial activation functions are shown in equations 6.1 and 6.2 where

ωc is the centre angular frequency of the bandpass filter, Q is the filter quality

factor and n is the filter order. The reason behind this choice is the fact that the

two bandpass filters differ in their low and high frequency symmetry. As is further

expanded in section 4.1.5, auditory filter shape has an asymptote in the attenuation
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of low frequencies creating an asymmetry in the band pass response, in which the

low frequency cut-off tail is not as steep as the high frequency cut-off tail. OZGF

filters are asymmetric and specifically favour the low-frequencies as it is preferred

for auditory filters, whereas Butterworth filters are symmetric. Their difference is

illustrated in figure 6.4.

A further difference between OZGF and Butterworth is that the former has a

narrower pass-band apex, which causes a more selective filtering and results in less

overlap between channels. This is exemplified in the filterbank outputs shown in

figure 6.5, especially the response to the frequency sweep (right panels figure 6.5).

Note that the change of the filter type can have a great effect on the output of each

channel.

Butterworth ≡ H(s) =
Gωnc∏n

k=1(s− ωc exp j(2k+n−1)π
2n

)
(6.1)

OZG ≡ H(s) =
ω2n−1
c (s+ ωzero)

[s2 + ωc
Q
s+ ω2

c ]
n

(6.2)

6.1.2 Envelope extraction

As shown in figure 6.3 the output of the filterbank is the input into an envelope

extractor. The use of the envelope extraction is inspired by the early work of the

vocoder implementation in telephone communication for implicit speech feature ex-

traction [194]. The envelope is extracted as a measure of the energy content of each

filterbank channel.

DiCoStET enables the user to choose between three different options for imple-

menting an envelope extraction, (1) Half wave rectification (HWR), (2) Full wave

rectification (FWR) and (3) The analytic representation of the signal using a Hilbert

transform. HWR is performed by removing the negative values of the signal by set-

ting them equal to zero and then passing the resulting waveform though a low-pass
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Figure 6.4: OZGF and Butterworth filter frequency responses. Both filter-banks are
of second order with a Q factor equal to four.

filter, a fourth order butterworth filter with a cut off frequency of 200 Hz 1. FWR

is similarly implemented but instead of setting the negative values of the waveform

equal to zero, the absolute value of the signal is used as an input to the low pass

filter. The estimation of the envelope using the Hilbert transform is performed in

MATLAB by taking the absolute value of the hilbert function. The envelope of

a signal and its fine structure can be estimated using the Hilbert transform (H) in

the following way: If we consider a real signal xr(t) then we can create the analytic

signal x(t) by using equation (6.3). The magnitude of the analytic signal represents

1200 Hz is commonly used in CI systems as the cut-off for the envelope extractor so as to include
speech formants in the passband.
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Figure 6.5: Filterbank responses to the audio snippets shown in figure 6.2.

the envelope of the signal and the phase of the signal represents the fine structure.

x(t) = xr(t) + jH[xr(t)] (6.3)

For the remainder of the examples and results shown in this Chapter and in

Chapter 7 the Hilbert transform is used to extract the envelope, as it performs

better as an envelope extractor than the other methods, see figure 6.6.

Figure 6.6: Example of a few channel detector methods on the output of a channel.
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6.1.3 Stimulation Strategy

The stimulation strategy of the cochlear implant aims to encode the analysed sound

signal so as to inform the brain, via auditory nerve stimulation, of the sound sig-

nal statistics. For an in depth discussion on the various techniques that exist for

encoding the filterbank output see Section 5.2. For the study presented here two

techniques were implemented, the Continuous Interleaved Sampling (CIS) [374] and

the Asynchronous Interleaved Sampling (AIS) [324].

CIS in this model is estimated by selecting a sequential discharge pattern, see

figure 6.7 insert A, which has a channel stimulation rate of 900 pulses per second.

After the discharge pattern is estimated the next step is the scaling of the stimulating

pulse based on the sound loudness, as discussed in the section 6.1.4. For a more in

depth discussion of the CIS see section 5.2.3.

The AIS strategy is estimated as a sequence of steps [324]:

• The ‘stimulation strategy’ block receives the enveloped outputs of the filter-

bank as the input.

• There is an ‘integrate-and-fire’ neuron associated with each channel. The input

begins to charge up a capacitor which represents the neuronal capacitance from

the ground state, thus beginning the ‘race to spike’.

• The first ‘neuron’ that reaches a fixed voltage threshold ‘wins’ the ‘race to

spike’ and fires an electric current pulse which is scaled based on the sound

pressure, as discussed in the section 6.1.4.

• The ‘win’ of a ‘neuron’ resets the all the charging capacitors of the ‘integrate-

and-fire’ neurons back to zero thus ensuring that one winner will exist at every

instance. This rule ensures interleaved stimulation so no channel interactions.

• Once a ‘neuron’ fires its input current is inhibited (i.e., weakened) for a pe-

riod determined by a relaxation time constant modelled by the Fermi-Dirac
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equation (6.4). This prevents a ‘neuron’ from firing repetitively and as such

models refractoriness.

• After a ‘neuron wins’ and the pulse is created and all the remaining ‘neurons’

get their capacitors discharged we go back to the second step and the ‘race to

spike’ begins again.

Iinh = Ainh ×
1

1 + ek(t−τinh)
(6.4)

Essentially this means that the AIS strategy is controlled, or characterised by four

parameters: (1) τinh = 0.8 ms, which is the time it takes for the inhibition current

to fall to half its maximum value, (2) k = 104, which is the steepness of the roll-off

of the Fermi-Dirac equation, (3) Ainh, which is the maximum inhibition current and

finally (4) Vthr = 35mV which is the pulse generation threshold, meaning that if the

integrating capacitors’ voltage reaches Vthr then a ‘win’ is reported for the specific

‘neuron’. Note that Ainh in this study was set to be equal to the maximum value of

the envelope output as the units of the filterbank output were non-specific. Similarly

the reported Ainh = −0.5µA was chosen as a value that is the highest input level to

ensure that no channel fires again until its inhibition current has almost returned to

baseline [324].

An example of both CIS and AIS strategies is shown in figure 6.7 where the firing

patterns are illustrated in the inserts of the figure. The main difference between CIS

and AIS stands out in the fact that CIS is ‘restricted’ in a fixed sequential firing

pattern whereas AIS has a sequence of pulses that is defined by the enveloped input.

6.1.4 Electric current mapping

After the temporal pattern of the stimulating pulses is determined based on the

stimulating strategy chosen (see previous text) the current and pulse waveform is

estimated per stimulation instance.

The stimulating pulse waveform chosen is a biphasic square pulse with an interval
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Figure 6.7: Examples of AIS and CIS stimulation patterns. The sound snippet
analysed is the utterance of the vowel ‘a’ from a female speaker. The patterns
shown in inserts A and B are the unscaled pulses illustrating the pure temporal
pattern of each stimulating strategy.

between the two phases, as is illustrated in figure 6.8. The purpose of the interval

is to prevent the cathodic pulse reversing the action of the anodic pulse and, by

introducing a time gap, presenting the cathodic pulse during the spiral ganglion’s

refractory period. The pulse waveform is scaled and time shifted by convolving the

waveform of figure 6.8, from now on termed as Wpulse, as is shown in equation (6.7).

Much research has focused on presenting a realistic frequency spectrum to the

patient’s auditory nerve with a cochlear implant and much less attention was given

to encode the sound level [143]. Perceptual cues, like the minimum audible and

uncomfortably loud levels, are used as subjective measures, which leads to intuitive
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Figure 6.8: The biphasic electric pulse waveform used to stimulate the spiral gan-
glion.

modifications by trial and error. The process of calibrating these parameters is called

‘fitting’ or ‘mapping’ and is performed by an audiologist. The main parameters

that can be calibrated are: (1) The electrodes can be selectively disabled in case

of unwanted side-effects such as stimulation of the facial nerve or hypersensitivity

to very low stimulation, or as specified by specific signal processing schemes. (2)

The mode of stimulation, bipolar or biphasic stimulation (see figure 5.26 in page

150 and further discussion in Section 5.3.4). (3) The threshold level, T-level, that

the smallest current pulse elicits an auditory percept. (4) The maximum level,

M-level2, is where the electric current elicits what the patient determines as the

loudest setting. Further parameters for tuning the cochlear implant vary according

to the manufacturer, the specific cochlear implant design and any available front

end processing such as noise reduction and automatic gain control. For example

Cochlear Corporation uses the so called Q-factor, see figure 6.9, as a parameter

to tune the non-linear mapping between envelope output and electrode current.

Advanced Bionics on the other hand use a linear relationship between T-Level and

M-Level followed by a compressed growth as shown in figure 6.9.

In this study the Advanced Bionics method of mapping audio acoustic pressure

in dB SPL to Clinical Units, see figure 6.9, was chosen as the units of the envelope

amplitude are non specified in the documentations found. Clinical Units are a

measure of how much current is injected from each stimulation site of the electrode.

The steps taken to estimate the electric current level for the pulses are illustrated

2M-Level is used by Advanced Bionics. Cochlear Corporation uses the so called C-Level, i.e.,
comfortably loud auditory sensation.
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Figure 6.9: (Left)Advanced Bionics mapping function. Abbreviations: Input dy-
namic range (IDR), Automatic Gain control (AGC) Clinical Units (CU). (Right)
Cochlear Corporation’s Q-factor affecting cochlear implant compression function.
Image extracted from [139].

in figure 6.10. Audio pressure is converted to loudness using equation (6.5), audio

pressure is converted to clinical units as is illustrated by the middle panel of figure

6.10 and finally clinical units are converted to electrical current, ICUs, using equation

(6.6) [83].

dBSPL =

√√√√(20× log10

(audio pressure

20× 10−6

))2

(6.5)

ICUs = 10e
CU×log(175)

255 (6.6)

The next step is to determine the voltage at the immediate vicinity of the elec-

trode and apply a voltage limiting rule. The voltage compliance limit was chosen to

be 6 V and in the case that the voltage exceeds the limit then the current input to

the electrode is restricted [349]. The voltage at the electrode surface is determined

by Velec = ICUs × Relec where Relec is equal to the input resistance of the electrode,

which ranged between 5 and 10 kΩ [349], ICUs is defined in equation (6.6). In the

case that Velec was greater than the limiting voltage the value of ICUs was set to

Vlimit/Relec.
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Figure 6.10: The sound to current conversion functions used for each electrode. The
parameters used are: T level = 20 CUs, M level = 200 CUs, Input Dynamic Range
= 65, Electrode resistance = 5 kΩ, Voltage compliance limit = 6 V.

Ielec = Wpulse ∗
(

Stimulation Pattern× ICUs ×
envelope output

max(envelope output)

)
(6.7)

The final calculation for estimating the electrode current is shown in equation

(6.7). The envelope output per channel is normalised to result in a unit-less quantity

which is scaled by the electric current, ICUs. The stimulation pattern of the stimula-

tion strategy chosen gives the temporal sequence of pulses to each channel. Finally

the signal is convolved with a waveform pulse, Wpulse to generate the final electrode

current time varying waveform per electrode. Some examples of the outputs are

shown in figure 6.7.

6.2 The Digital Patient: patient specific implanted

cochlea geometry

The human cochlea is a snail-looking spiralling bony shell. Every cochlea is differ-

ently shaped for each person; even in the same patient the left cochlea is shaped dif-

ferent from the right cochlea [75]. When a cochlear implant prescribed for a patient
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an electrode is inserted into the cochlea via a surgical opening, the cochleostomy,

or via the round window by a specialised surgeon. As the electrode is inserted it

coils inside the cochlea and wraps around the modiolus, which is the conical centre

of the spiralling cochlea. Within the modiolus is the spiral ganglion, which is an

electro-active tissue consisting of the somata of the neuron cells that make up the

auditory nerve. It was shown that nerve peripheral nerves degenerate in cases of

profound hearing loss, or deafness, and a part of the spiral ganglion is what remains

from the auditory nerve [323, 398, 332]. The hypothesis that intra-cochlear electrical

stimulation excites the modiolus, hence the spiral ganglion, is supported by direct

animal measurements from a previous study [234]. Therefore the spiral ganglion

can be considered as the main target for the cochlear implant stimulus, although

it should be kept in mind that stimulation of neurons is not a straightforward pro-

cess since many parameters affect the action potential generation site and activation

thresholds [285, 284].

6.2.1 Patient specific cochlea geometry

The first step is to calculate the geometry of the cochlea which is analytically de-

termined based on the diameter of the patient’s cochlea at the round window by

using dimensional ratios that are patient invariant [76, 337]. The diameter can be

estimated using a high resolution computed tomography(HRCT), see figure 6.11,

and from here onwards it will be referred to as Dow. Note that HRCT is a routinely

performed scan prior to cochlear implant surgery to identify cochlear malformations

[76].

The internal structures of the inner ear and their corresponding parameters that

are estimated as a function of the rotation angle, θ, are: (1) The outer wall radius,

row(θ), and height, how(θ), (2) The organ of Corti radius, roc(θ), and height, hoc(θ),

(3) The spiral ganglion radius, rsg(θ), and height, hsg(θ), (4) The modiolar wall

radius, rmw(θ), and height, hmw(θ). Note that the rotation angle, θ, is the varying

input to all the functions which — by computing the radius and the height as a
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Figure 6.11: HRCT of the cochlea of a patient. The round window is indicated by
the arrow and ‘Distance A’ is the single parameter, Dow, that drives the cochlear
shape model. Image modified from [76]

function of the rotation angle — completely define the spiralling shape of all the

inner ear structures, see equations (6.8)-(6.15), which is an original set of equations.

The spatial sampling for all examples shown in this study is set to be a 4θ = 0.1o

for all rotational increments and 4x = 1µm for all distance measurements.

The outer wall radius is estimated using equation (6.8) which is derived else-

where [76]. As mentioned before Dow is the diameter of the outer wall at the round

window, see figure 6.11, and is the only input to the model from the user. θc ≈ 4.1

is a constant that is derived from dimensional ratios that are patient invariant [76].

The spiral ganglion radius is estimated using a logarithmic spiral shown in equation

(6.9), where Lsg is the total length of the spiral ganglion and is determined using

an iterative algorithm (see following text). Asg = -99.3 and Bsg = 0.004 are experi-

mentally determined constants [337]. The radius of the organ of Corti is estimated
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as shown in equation (6.10), where Aoc = -110, Boc = 0.002 are experimentally mea-

sured constants [337] and θocmax is the maximum rotation of the cochlea given the

size of the diameter at the round window; for the relation see figure 6.13. Doc is the

diameter of the organ of Corti. This value is impossible to measure using a HRCT

so it is determined via an iterating fitting algorithm. There are three criteria for

the fit estimation: (1) At 20% along the length of the spiral from its base there

is a distance of 0.6 mm between the organ of Corti and the outer bone wall [337],

(2) at the same 20% from the basal end location the distance between the modiolar

wall and the spiral ganglion should be equal to 0.26 ±0.02mm [337] (3) The ratio

between the length of the spiral ganglion Lsg and the modiolar wall Lmw satisfy

a patient invariant fixed constant of 0.47 [337]. The iterative algorithm begins by

setting Doc = Dow and then gradually making Doc smaller and recalculating all the

structural changes affected until the criteria are met. Furthermore the parameter

λmw is a rotation depended factor that is also varied as the iterative algorithm run

to permit fitting of the criteria constrains. The modiolar wall radius is estimated

using equation (6.11). The height of the organ of Corti as a function of the rotation

angle is calculated using equation (6.12) where Hocmax is the maximum height of the

cochlea as a function of the diameter at the round window (Dow); for the relation see

figure 6.13. The height of the spiral ganglion (and the modiolar wall) is calculated

using equation (6.14) where Hsgmax is the height of the organ of Corti at 10.72%

from the apex and Hsgmin subtracted from the height of the organ of Corti at 2.35%

from the base [337]. The reason behind this choice of the particular percentages is

the report from a previous study [337] of the fact that the organ of Corti is bigger

than the spiral ganglion on both the apical and the basal end. The basal end of the

spiral ganglion begins at a point which is 2.35% from the base of the cochlea spiral

and the apical end of the spiral ganglion ends at a point which is 89.28% along the

organ of Corti as it spirals towards its apex [337].The height measurements from

the model at the different turns agree with previous measurements of the human

cochlea [75]. The spirals formed agree with a detailed study on the dimensions of
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Figure 6.12: Spiral models described here overlaid for comparison on top of the
drawing of a reconstructed spiral ganglion, organ of Corti and modiolar wall [337].
Abbreviations meaning: Organ of Corti (OC), spiral ganglion (SG), modiolar wall
(MW).

the cochlea [337]; see figure 6.12

row(θ) = Dow
θc(θc + π)

(2θc + π)(θ + θc)
(6.8)

rsg(θ) = −2AsgBsgLsg
π

exp(−Bsgθ) (6.9)

roc(θ) = min

{5.24
π
AocBocDoc ln(1 + θocmax

235
) exp(−Bocθ)

Doc
θc(θc+π)

(2θc+π)(θ+θc)

}
(6.10)

rmw(θ) =
(
λmw(θ)− 2AsgBsgLsg

π

)
exp(−Bsgθ) (6.11)

hoc(θ) = Hocmax(1− exp(−Bocθ)) (6.12)

how(θ) = hoc(θ) (6.13)

hsg(θ) = Hsgmax(1− exp(−Bsgθ)) +Hsgmin (6.14)

hmw(θ) = hsg(θ) (6.15)

6.2.2 Innervation trajectory in the human cochlea

The previous section has described the analytical estimation of the cylindrical co-

ordinates for a human organ of Corti, spiral ganglion, outer bony wall and the
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modiolus. Given that peripheral innervation degenerates in the deafened patients

[332] electrical stimulation from an electrode array will mostly excite the spiral gan-

glion. Studies that estimate the tonotopic frequency distribution of the inner ear are

concerned with the organ of Corti [122]. Therefore the trajectory of the peripheral

innervation from the organ of Corti towards the spiral ganglion must be estimated

so as to have a correct frequency map of the spiral ganglion. The main parameters

considered here are neuron density and the trajectory mapping from organ of Corti

towards spiral ganglion.

From a previous study on the human cochlea it has been shown that the inner

hair cell density along the organ of Corti is roughly constant [334]. On the other

hand the density of neural projections leaving from the base of the inner hair cells is

almost three times more dense in the middle than on either end [334]; see figure 6.13.

This essentially is an indication that in humans the afferent neurons corresponding

to mid-range frequencies form a much larger number of synaptic connections with

the inner hair cells. Taking this into account the neurites simulated are distributed

along the organ of Corti according to their density pattern; see figure 6.14.

The Type I afferent auditory neurons are bipolar neurons [305]. This means that

there is a direct connection from the peripheral neuron to the spiral ganglion somata.

The spiral ganglion length is significantly smaller than the organ of Corti, it was

mentioned in the previous section that the spiral ganglion finishes 10.72% before

the apical end of the organ of Corti [337]. Also the spiral ganglion has significantly

less turns than the organ of Corti which further increases apical mismatch [76, 337].

This apical mismatch between the organ of Corti and the spiral ganglion has been

reported in other studies as well [94], where they showed that peripheral axons

project increasingly oblique as the spiral ganglion extends towards the apex [5] and

this misalignment is important for the correct low frequency tuning of the apical

electrodes of a cochlear implant [94]. The neuron trajectory is calculated using the

relation from a previous study[337] shown in equation (6.16). For a visual inspection

of the neuronal trajectory of the model described here see figure 6.14.
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y(x) =
100

1 + (A100
x

+B x
100
− A−B)2

(6.16)

The neuron trajectory equation (6.16) relates y which is the percentage distance

from the base corresponding to the spiral ganglion, or modiolar wall location, to

x which is the percentage distance from the base corresponding to the organ of

Corti location. Parameters A and B are experimentally determined [337] and can

describe both the spiral ganglion and modiolar wall in relation to the organ of

Corti. If A = 0.22 and B = −0.93 equation (6.16) relates organ of Corti to the

spiral ganglion. If A = 0.23 and B = −0.99 equation (6.16) relates organ of Corti

to the modiolar wall.

Figure 6.13: (Left) Density of neuronal cells from base to apex of the basilar mem-
brane. In red stars the recorded results from a previous study on human cochleae is
shown [335]. The blue line shows a 7th order polynomial fit to the experimental data
used to estimate the spatial distribution of neurons. (Right) Cochlear height and
cochlear turns as a function of the diameter at round window. The results are from
3rd order polynomial fits to experimental data from previous studies [75, 76, 337].

Electrode design and insertion

In this study a ‘modiolar hugging’ type of electrode is assumed to be the stimulating

electrode, meaning that the electrode is assumed to be pre-strained and will follow a

spiral curve as it is inserted in the inner ear. Six parameters that define the electrode

design are: (1) The thickness of the electrode array. (2) The material softness, which

can be classified into two categories: ‘flexible’ or ‘rigid ’. If the material is said to

be rigid then the insertion will stop upon the first contact of the electrode to any of
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the structures within the inner ear. On the other hand if the material is said to be

flexible then the electrode will be assumed to curve without trauma upon contact

and follow the curvature of the inner ear and will only be limited by its thickness,

i.e., when then inner ear canal (scala tympani) is too narrow to fit the electrode

diameter. (3) The average space between the modiolar wall and the electrode array.

(4) The ‘required electrode’ insertion depth, the reason for calling it ‘required’ is

because the insertion algorithm will attempt to reach the insertion depth set by the

modeller but in the case that the electrode will cause trauma the insertion will be

limited to the maximum non-traumatic depth. Trauma is defined to be caused when

the electrode is rigid and makes first contact with any of the structures within the

scala tympani, or when the electrode is defined to be flexible and its thickness is

equal to the diameter of the scala tympani. (5) The channel pitch, which defines the

spacing of the stimulating sites on the electrode array. (6) The previous parameter

can be overridden by a required set of frequencies that the algorithm will then shift

the stimulation sites on the electrode array to the correct location so as to stimulate

the spiral ganglion site that corresponds to the requested frequency. If the frequency

requested is too low, hence more apical than the insertion depth of the electrode

then the apical most stimulation site frequency is used instead. In the case that

a desired set of frequencies is not requested by the user then the closest point of

the spiral ganglion to the stimulating site is used as a defining frequency for the

corresponding filterbank channel. An example of an inserted electrode in the inner

ear is shown in figure 6.14.

It has been reported that the modern cochlear implant insertion depth is decided

upon feeling resistance to the electrode, which has been shown to be a bad indicator

for non-traumatic insertion [395]. The maximum non-traumatic insertion depth

prediction that DiCoStET provides, can serve as a guide to the surgeon taking

into account the electrode design and unique patients’ cochlea to reduce traumatic

electrode insertion. For a more in depth discussion on the considerations behind

electrode design and insertion see Section 5.1.2.
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Figure 6.14: A reconstructed inner ear as generated by the model discussed here.
Plot A shows the neural connections between organ of Corti and spiral ganglion.
The neurons are placed in a way so as to reflect the density distribution of the human
cochlea. In B an expanded view is shown of the apical end of the spiral ganglion
with the innervation with the organ of Corti. Notice how the mismatch between
the spiral ganglion and the organ of Corti causes the apical end neurons to be more
oblique. The sparser distribution of neurons as we progress to the apex reflects the
fact that the density of the neurons decreases at the apex, following the distribution
shown in figure 6.13. C is the top view and D is the side view of a three dimensional
plot of the cochlea model with an electrode in place. For this example the insertion
depth of the electrode is 17 mm and the distance from the modiolar wall is 0.5 mm.

6.3 Spatial activation pattern between the elec-

trode and auditory nerve

The previous sections describe the generation of a patient specific three-dimensional

model of the inner ear, followed by the design and insertion of a generic electrode.

The next stage in DiCoStET is to estimate the spatiotemporal action potential

pattern caused by external voltage stimulation of the auditory nerve. This is ac-

complished in two separate steps, one being the calculation of the spatial activation

function between the electrode and spiral ganglion, followed by the estimation of
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the generation of action potentials as a response to cochlear implant stimulating

current. The main motivations for separating these two steps is computational effi-

ciency and greater insight on the stimulating actions of the specific electrode array

in a specific patient cochlea. For example insight can be gained explicitly from the

spatial activation function, see figure 6.19, on the extent of stimulating sites overlap,

spiral ganglion locations of over- or under-stimulation and the spatial extent of the

stimulation for each stimulation site.

6.3.1 Activating function

The spatial activation function between the electrode and the spiral ganglion is based

on the concept of the activating function developed by Frank Rattay [282, 281, 280].

This concept is an efficient quantitative approach for modelling the response of an

axon to extracellular stimulation [280].

The activating function is derived as follows: The first step is to consider the

neuronal fibre segmented into small cylinders with a length 4x, as shown in figure

6.15.

The relation describing the electrical network of in figure 6.15 is shown in equa-

tion (6.17), where Cm is the membrane capacitance, Vi,n and Ve,n are the internal

and external potentials of the nth segment, Ii,n is the ionic current of each segment

(e.g., Hodgkin Huxley equations), Ga is the axoplasmic conductance between two

segments and finally Ist,n is the stimulating current at each segment in the case of

patch clamping and direct intracellular electrical stimulation of the neuron.

Cm
d(Vi,n − Ve,n)

dt
+ Ii,n +Ga(Vi,n − Vi,n−1) +Ga(Vi,n − Vi,n+1) = Ist,n (6.17)

Equation (6.17) can be rearranged in the form of equation (6.19) if we take

into account that intracellular electrical stimulation is not the case with a cochlear

implant, so Ist,n = 0. Furthermore the axoplasmic conductance, Ga, can be restated
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Figure 6.15: An electrical network model of the neuronal axon, for myelinated and
unmyelinated axons. Figure modified from [281]

as described in equation (6.18) in terms of the specific resistance of axoplasm, ρi and

the diameter of the axon, d, see figure 6.15. Similarly membrane capacitance, Cm,

can be restated as described in equation (6.18) in terms of the capacity per cm2, cm

and the cylindrical surface area πdL.

Ga =
πd2

4ρi4x
and Cm = cmπdL (6.18)

d(Vi,n − Ve,n)

dt
=
(
− Ii,n +

d

4ρi4xL
(Vi,n−1 − 2Vi,n − Vi,n+1)

) 1

cm
(6.19)

Equation (6.19) can be rearranged in the form of equation (6.20) if we let the

across membrane voltage be described as: Vm = Vi,n − Ve,n − Vrest.

dVm
dt

=
(
−Ii,m+

d

4ρi4xL
(Vm−1−2Vm−Vm+1 +Ve,m−1−2Ve,m−Ve,m+1)

) 1

cm
(6.20)
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which is equivalent to:

dVm
dt

=

(
− Ii,m +

d4x
4ρiL

(Vm−1 − 2Vm − Vm+1

4x2
+
Ve,m−1 − 2Ve,m − Ve,m+1

4x2

)) 1

cm
(6.21)

which if we let 4x→ 0, we get

∂Vm
∂t

=

(
− Iionic +

(∂2Vm
∂x2

+
∂2Ve
∂x2

)) 1

cm
(6.22)

Equation (6.22) explicitly shows that the stimulating influence of the extracellu-

lar potential in an infinitesimally small segment of a neuronal fibre is determined by

the second spatial derivative of the extracellular voltage along the neuronal axon.

This leads to the definition of the activating function, which from now on will be

termed as A to be A = ∂2Ve
∂x2 [281].

The calculation of the activating function between an electrode array and the

spiral ganglion is broken down into two steps: (1) Geometric relation between the

electrode and spiral ganglion and (2) Estimate second spatial derivative of extracel-

lular voltage.

Geometric relation between the electrode and spiral ganglion

The geometric relation between the electrode and the spiral ganglion is estimated in

cylindrical coordinates, with a reference from a spiralling central axis. The central

axis is defined as the midpoint point between modiolar wall and outer wall and as

such is placed in the middle of the space defined as the perilymph filled canal of the

inner ear. The required dimensions for the computation of the activating function

are:

• re : the electrode offset, i.e., the distance from the central axis to the stimu-

lating site.

• rs : the denoting the radius of the scala tympani, i.e., the distance from the
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central axis to the modiolar wall.

• r : the spiral ganglion location, i.e., the distance from the central axis to the

spiral ganglion tissue.

• θ : the orientation angle between the stimulating site and spiral ganglion, i.e,

the directionality of the electric potential field as it relates from the stimulating

site to the spiral ganglion.

• z : the distance between stimulation site and spiral ganglion along the central

axis, i.e. the ‘rotational distance’ difference along the spiral between spiral

ganglion and stimulating site.

In order to calculate the required dimensions certain three dimensional vectors

of interest are defined:

• ~ST : Vector from the origin to the stimulating site on the electrode.

• ~SG : Vector from the origin to the spiral ganglion.

• ~CASG : Vector from the origin to the central axis point that is closest to the

spiral ganglion.

• ~MWSG : Vector from the origin to the modiolar wall point that is closest to

the spiral ganglion.

• ~CAST : Vector from the origin to the central axis point that is closest to the

stimulation site.

• ~MWelec : Vector from the origin to the modiolar wall point that is closest to

the electrode array.

Furthermore two additional scalars are defined : LSG which is the length of the

central axis at the point that is closest to the spiral ganglion and LST which is the

length of the central axis at the point that is closest to the stimulating site. Note

that the length of the central axis is considered zero at the base of the inner ear
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spiral and maximum at the apex of the inner ear spiral. For an illustrative example

of all the vectors and dimensions mentioned see figure 6.16.

Figure 6.16: The vectors required to calculate all geometric relations required (see
text for definitions). Note how all the vectors begin at the origin and terminate
on points of interest. The flowchart insert describes the algorithm by which the
spiral ganglion is ‘swept’ by the vectors and the effect of all the stimulation sites is
considered.

Since only local information is required for a first approach to spike initiation es-

timates [285], vectorial projections were used to estimate the exact local dimensions.

Two current flow paths were considered for the activation of the spiral ganglion by

each stimulation site. One is the path of least resistance, which is an indirect path

traversed via the perilymph and it is such that it minimizes the modiolar wall barrier

between spiral ganglion and perilymph. The other path is the path of least distance,

which is a direct path traversed in a straight line from the stimulation site to the

spiral ganglion. It has been shown previously that linear addition of the two stimu-

lating paths is possible [329]. The path of least resistance permits the modelling of
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channel cross talk as it models the current being conducted through the perilymph,

whereas the path of least distance models the direct stimulation of each stimulation

site.

The set of equations that describe the path of least resistance are given in

equations (6.23)-(6.27), and from now onwards will be referred to as [z, r, re, rs, θ]least resistance.

z = LSG − LST (6.23)

r = || ~CASG − ~SG|| (6.24)

re = || ~CAST − ~ST|| (6.25)

rs = max

{|| ~CASG − ~MWSG||
|| ~CAST − ~ST||

}
(6.26)

θ = atan2

{||( ~ST− ~CAST)× ( ~SG− ~CASG)||
( ~ST− ~CAST) · ( ~SG− ~CASG)

}
(6.27)

where ‘atan2’ is the four-quadrant inverse tangent defined in equation 6.33. It is

necessary to use this as the solution is defined in the range +π
2
> θ > −π

2
and can

be calculated for all angles due to the symmetry of the geometry [115].

The set of equations that describe the path of least distance are given in equa-

tions (6.28)-(6.32), and from now onwards will be referred to as [z, r, re, rs, θ]least distance.

z = 0 (6.28)

r = || ~CAST − ~SG|| (6.29)

re = || ~CAST − ~ST|| (6.30)

rs = || ~CAST − ~MWelec|| (6.31)

θ = atan2

{||( ~ST− ~CAST)× ( ~SG− ~CAST)||
( ~ST− ~CAST) · ( ~SG− ~CAST)

}
(6.32)

An example of the geometric relations used to calculate the activating function

are shown in figure 6.17.

Chapter 6 Andreas N. Prokopiou 179



Biophysical Modelling of a Cochlear Implant System

atan2

{
y

x

}
=



tan−1( y
x
) x > 0

tan−1( y
x
) + π y ≥ 0, x < 0

tan−1( y
x
)− π y < 0, x < 0

+π
2

y > 0, x = 0

−π
2

y < 0, x = 0

undefined y = 0, x = 0

(6.33)

Figure 6.17: An example of the required dimensions for the computation of the
activating function. In all plots the x-axis is the percentage along the spiral ganglion
and the y-axis is the electrode stimulating site (1 corresponds to the apical most
electrode whereas 14 corresponds to the basal most electrode). In this example
the patient’s cochlea had a diameter at the round window, Dow, equal to 9 mm.
The electrode had 14 equally spaced simulation sites with a pitch of 1.1 mm and
was inserted at a depth of 17 mm in the inner ear and the current injection was
monopolar. Parameters z, r, re and rs are measured in mm and the angle θ is
measured in radians. The colour of the plot indicates the value of the logarithm
base 10 of the value of the activating function, as defined in equation (6.41).

Estimate second spatial derivative of extracellular voltage

The exact analytical solution of the voltage distribution induced by a point current

source is possible for a two-layer domain, see equation (6.34) [115, 298, 273]. This can

be used to estimate the second spatial derivative of the electric potential [115, 189],

which needs to be in the direction of the peripheral processes [282]. To this end the

conversion of the cylindrical to Cartesian coordinates is performed using x = rcos(θ)
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Figure 6.18: An illustration showing the radius changes of the inner ear structures
as described with the equations 6.8, 6.9, 6.10, 6.11. For the example shown here
the insertion depth of the electrode is 17 mm and the patient’s cochlea diameter
at the round window is 9 mm. The y-axis shows the radius measured from the
inner ear central axis, and the x-axis is a measure of the angle of rotation from the
base of the cochlea towards the apex. Figure insert A shows the vectors considered
for calculating parameters for the estimation of the activating function; CA is the
central axis of the spiral, it can be considered as the z-axis of the cylinder, but it has
a vectorial direction that follows the cochlea spiral, vectors r, re and rs are defined
in the main text, angle θ is the angle between r and re (not shown). They trace the
direction and distance from every sampled point on the central axis, and the relation
between them is used to define the activating function. Figure insert B shows the
two paths that electrical current is assumed to take to traverse the distance between
stimulation site and the stimulated point on the spiral ganglion. The direct path
is the minimum distance between the two points. On the other hand the indirect
path is path of least resistance considered to travel through the perilymph until it
reaches the minimum distance between modiolar wall and spiral ganglion.

and y = rsin(θ). Then the second spatial derivative is estimated along the direction

of z axis at the coordinates that describe the location of spiral ganglion, sgxyz, using

equation (6.35).

1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2

∂2V

∂θ2
+
∂2V

∂z2
= −ρperiI

r
δ(r − re)δ(θ − θ0)δ(z − z0) (6.34)

Further to the estimated geometrical relations shown in the previous section, z,

r, re, rs and θ, the resistivity of perilymph, ρperi = 70 Ω cm, and the resistivity of

bone, ρbone = 6400 Ω cm, is taken into account.
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α(sgxyz) =
∞∑
m=0

ρperiγ

zπ2

∞∫
0

−m
2

r2
ψ(r, k) +

1

r

∂ψ

∂r
(r, k)dk (6.35)

where

γ =


1, if m = 0

2, otherwise

(6.36)

ψ =


cos(zk)Im(rk)

(
βm(rs)Im(rek) +Km(rek)

)
, if r ≤ re

cos(zk)Km(rk)Im(rek)
(
1 + βm(rs)

Im(rsk)
Km(rsk)

)
, if re < r < rs

cos(zk)Im(rek)
(
Km(rk) + βm(rs)Im(rk)

)
, if r ≥ rs

(6.37)

βm(rs) =
ε− 1

Im(rsk)
Km(rsk)

− ε I′m(rs)
K′m(rs)

(6.38)

ε =
ρbone
ρperi

(6.39)

I ′m(rs) =
Im−1(rs) + Im+1(rs)

2
and K ′m(rs) = −Im−1(rs) + Im+1(rs)

2
(6.40)

Note that In signifies an nth order modified Bessel function of the first kind, and

Kn signifies an nth order modified Bessel function of the second kind, m = 0, 1, 2, ...

and k are the spatial frequencies in the θ and z directions, respectively, arising

from the double cosine transform. A more in depth discussion on the derivation

of the analytical solution to the second spatial derivative can be found elsewhere

[115, 189, 273]. The activating function α(sgxyz) is calculated for every stimulation

site individually, to give the spatial activation function between the electrode array

and the spiral ganglion, A(sgxyz, i) where i = 1, 2, 3, ..., N where N is the total

number of stimulation sites on the electrode array. The polarity of the stimulation
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is modelled using equation 6.41 where σ is the fraction of current that is returned

through the adjacent electrodes, for example if σ = 1 then all the injected charge

will be returned through the electrodes and if σ = 0.5 half of the charge will be

returned through a distant, most often extra-cochlear, ground electrode.

A(sgxyz, i)σ =



A(sgxyz, i)− σ
2
(A(sgxyz, i− 1) + A(sgxyz, i+ 1)) if tripolar

A(sgxyz, i)− σA(sgxyz, i− 1) if bipolarbase

A(sgxyz, i)− σA(sgxyz, i+ 1) if bipolarapex

A(sgxyz, i) if monopolar

(6.41)

Some examples of different spatial activation function of different electrode inser-

tion lengths is shown in figure 6.19. The effect of changing stimulus mode is shown

in figure 6.20.

6.3.2 Spiral ganglion stimulation

Estimation of the generation of action potentials as the spiral ganglion is stimulated

from the cochlear implant electrode array can be broken into three steps. The

first step is to calculate the across spiral ganglion activation function in response

to current changes from the electrode array of the cochlear implant. The previous

section assumed a point current source of intensity 1 A for each electrode’s induced

electric potential in the partial differential equation (PDE) (6.34). Since the PDE

is linear the solution for any other current value can be obtained by multiplying by

a scaling factor. As such, the matrix multiplication shown in equation (6.42) can be

used to calculate the across spiral ganglion activation function, Aelec, in response to

the temporal variations of the electric current at the stimulating sites of the cochlear

implant electrode array. For the calculation of Ielec refer to Section, 6.1 specifically

equation (6.7).
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Figure 6.19: The base 10 logarithm of the spatial activation function of the electrode
is shown. In all the plots the x-axis indicates the stimulation sites and the y-axis the
percentage along the spiral ganglion length, with 100% being the apex and 0% the
base. In all three cases the patient’s cochlea has a diameter of 9 mm at the round
window. Full insertion was at 22 mm, deep insertion was at 17 mm and shallow
insertion was at 5 mm. For the studies shown here the full insertion model was used.
The indirect path is the path of least resistance through the perilymph. The direct
path is the path of least distance, i.e. a direct line between the stimulation site and
the spiral ganglion. The colour of the plot indicates the value of the logarithm base
10 of the value of the activating function, as defined in equation (6.41).

Aelec(sgx,y,z, t) = A(sgx,y,z, i) · Ielec(i, t) (6.42)

The second step is to calculate the probability, P (sgx,y,z), of an action potential

generation event which is calculated using equation (6.43). The same method was

used before [115, 189, 30, 21] and it relates the probability of action potential gener-

ation with the value of the activating function as is shown in figure 6.21. A(sgx,y,z)
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Figure 6.20: The base 10 logarithm of the spatial activation function at different
stimulus modes is shown. In all the plots the x-axis indicates the stimulation sites
and the y-axis the percentage along the spiral ganglion length, with 100% being the
apex and 0% the base. The patient’s cochlea has a diameter of 9 mm at the round
window and electrode insertion was at 17 mm. The colour of the plot indicates the
value of the logarithm base 10 of the value of the activating function, as defined in
equation (6.41).

is the activating function along the spiral ganglion, Athr is the value of A(sgx,y,z) at

which the probability of neuron firing is 0.5 and RS is the relative spread, which

gives a measure of the variability in neuron excitation from electric current. The

derivation of equation (6.43) is described elsewhere [27].

P (sgx,y,z, t) =
1

2

[
1 + erf

(
Aelec(sgx,y,z, t)− Athr√

2AthrRS

)]
(6.43)

where ‘erf’ signifies the error function as defined in equation (6.44).

Chapter 6 Andreas N. Prokopiou 185



Biophysical Modelling of a Cochlear Implant System

erf(x) =
2√
π

x∫
0

e−t
2

dt (6.44)

Figure 6.21: The relation between activating function and the probability for the
generation of an action potential, as described in equation (6.43)

Intrinsic properties of the spiral ganglion nerve cells determine Athr and RS.

These properties consist of distributions of ion channels, neural degeneration and

other patient specific measures. To simulate the entire spiral ganglion then different

Athr and RS values are required for each neuronal cluster [115, 189, 28]. For the

purposes of this study Athr = -31 dB with a standard deviation of 4.8 dB and RS

= 6.28% mean and standard deviation 4.4% [115, 234]. An important factor to

consider is that the values of parameters Athr and RS come from experiments where

researchers stimulated auditory nerve of a cat. The assumption made by using the

cat model to predict human excitation has been shown elsewhere [231, 232] to be

applicable. However there is evidence supporting temporal miss-matches between

cat and human neuronal excitation [284] due to different speed of action potential

propagation. Essentially the assumption that human data can be predicted from

animal models permits for only a first approach for spike initiation zones, which is

applicable for the purposes of this study. More quantitative results, such as calcu-

lation of threshold currents, require more complex models that include individual

ion channel gating processes in the membrane of an excitable target cell. Type

and density of sodium channels are important excitability parameters which vary

tonotopically across the basilar membrane neuronal projections [56] and need to be
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taken into account in future work, see Chapter 10.

The third and final step is to enforce an absolute refractory period of 0.75 ms,

with a relative refractory period of equal time duration. The relative refractory

period is estimated by using a random number between zero and the absolute re-

fractory period. The refractory period is modelled by removing all action potentials

within the refractory period (absolute plus relative) after an out-of-refractory state

action potential. This has been shown elsewhere as a way to model the refractory

effects [34, 224]
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DiCoStET examples and

Objective Performance Measures

Some previous work [90, 93, 115, 128, 210, 92, 284, 283] that has been directed to-

wards understanding cochlear implant (CI) operation through computational mod-

els, and has produced very important realisations on how the cochlear implant stim-

ulates the electro-active tissue in the cochlea. However, in none of these models is a

direct comparison with a healthy, patient specific, human model for auditory nerve

excitation patterns in response to sound stimulus shown.

The computational tool described in Chapter 6 utilises a generic cochlear implant

design and by using a ‘digital patient‘ concept, see Section 6.2, estimates the ac-

tion potentials generated in response to electrical stimulation. The spatio-temporal

pattern of action potentials generated at the spiral ganglion in response to sound

processing via a healthy auditory periphery is estimated using the MAP model. For

a more in depth discussion on the operation of the model see Chapter 4.

However, it must be emphasised that the modelled spatio-temporal neuronal

activity elicited by electric stimulation presented here is an estimate of the action

potential initiation zones on the spiral ganglion. Furthermore, the overall pattern of

activation of the auditory nerve is in the scale of a few hundreds of milliseconds to

seconds. As such it cannot describe accurately the individual neuron action potential
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generation, as it is based on a macroscopic view of the auditory nerve stimulation.

The combination of the two models permits a novel comparison between healthy

and CI-induced spatiotemporal patterns of auditory nerve activity in response to

sound stimuli. This comparison enables an intuitive grasp on the effects of cochlear

implant stimulation and to some extent an empirical understanding of the parame-

ters affecting action potential generation. As such it can directly inform the design

of sound processing strategies for cochlear implants. Furthermore novel objective

measures for assessing the cochlear implant performance were developed that run

a sequence of tests and assess their outputs. The assessment methods are based

on pre-existing techniques, such as vector strength analysis and average activation

of the auditory nerve. This chapter shows some examples of the direct comparison

between healthy auditory periphery and cochlear implant stimulation of neuron ac-

tivity and describes the methods used for objective error assessment. The chapter is

divided in two sections, ‘Direct Visual Comparison between healthy and stimulated

responses’ and ‘Objective Performance Measures’.

In all the following simulations the patient example used was of a patient whose

cochlea size (i.e. diameter at round window, see figure 6.11) was set to be at 9.2

mm. Furthermore a modiolar hugging type electrode was inserted in the cochlea

at a depth of 17 mm with a mean distance from the modiolar wall of 0.5 mm, and

the stimulation sites were 1.1 mm apart from each other resulting in 14 stimulation

sites. The surviving spiral ganglion tissue was assumed that had no dead regions,

i.e. regions of none, or very low, neuronal density.

The cochlear implant mapping settings were set as: the threshold level, T Level,

was set at 20 Clinical Units, the maximum level, M Level, was set at 200 Clinical

Units, the electrode input resistance was set at 5 kΩ and the voltage limit was set

at 6 V1. All 14 stimulating sites were set to be equal in these values on the basis

that these are the average values from various patient reports [349, 139], however,

it is quite unlikely that a certain patient will have exactly the same values for all

1The voltage limit works as a current limiter in the case that the injected current would cause
voltages that exceed the set limit.
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settings. In the absence of these experimental data the average values were chosen

to present an example of DiCoStET’s operation.

7.1 Direct Visual Comparison between healthy

and stimulated responses

The aim of the DiCoStET model is to compare the operation of the healthy auditory

periphery with the impaired plus cochlear implant auditory periphery. To this end,

the workings of the healthy human auditory periphery are simulated using existing

models, see chapter 4. The output of this model is the spatiotemporal pattern of

action potentials that are elicited in the auditory nerve in response to a particular

sound stimulus. That is the so called ‘healthy output’ in the sections to follow.

Along side the healthy model of the human auditory periphery exists a separate

novel model that estimates the action potentials that CI electrical stimulation elicits,

for a more in depth discussion on this model see Chapter 6. This CI stimulation

model is used to estimate the spatiotemporal pattern of action potentials generated

in the auditory nerve, as a response to the stimulation from a generic cochlear

implant which has the same sound stimulus as the one used before in the healthy

case. For a block diagram that overviews the whole process refer to figure 6.1.

Since both models have the same sound stimulus as a common input then a

fair comparison can take place between the two spatiotemporal patterns of action

potential generated. This section has some examples of a few different audio sig-

nals, specifically a frequency sweep, or chirp, in subsection 7.1.1, a Schroeder phase

harmonic stimuli in subsection 7.1.2.

7.1.1 Frequency Sweep

The frequency sweep, or chirp, is a signal whose frequency increases at time passes.

For a graphical illustration of a chirp signal see figure 6.2. For all frequency sweeps

presented here the start frequency is at 100 Hz and the end frequency is at 8 kHz, see
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Figure 7.1: Example of healthy versus CI stimulated auditory nerve responses to
the sound stimulus shown. Every dot represents a recorded action potential. Note
that the cochlear implant in this example uses a tripolar mode of stimulation.

figure 7.1. The audio duration is 100 ms and the audio pressure (in dB SPL) varies

as indicated on the figures. There is a 5 ms silence gap before and after the tone and

the tone ramps up to maximum and switches of in a duration of 10 ms. The reason

the ramping up of the sound was used is due to the fact that an abrupt change in

stimulus will cause a step change, which will introduce undesired harmonics in the

stimulus.

The generic cochlear implant model used has the parameter mapping described

in a previous paragraph. Two parameters are varied between the experimental runs

shown in this section. The first parameter varied is the stimulus mode of the stimu-

lation between monopolar and bipolar, which are the most commonly used types of

stimulation in commercial devices. For an example of the various forms of stimula-

tion polarity see figure 5.26. The second parameter varied is the stimulation strategy

used, specifically two different stimulation strategies are used, the Continuous In-
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terleaved Sampling (CIS) strategy (section 5.2.3) and the Asynchronous Interleaved

Sampling (AIS) strategy (section 6.1.3).

The following figures 7.2 — 7.6 show a visual comparison of the frequency sweep

sound snippet at different sound pressure levels, low sound pressure levels are at 50

dBSPL, medium sound pressure levels are at 70 dBSPL and high sound pressure

levels are at 90 dBSPL. The responses from high spontaneous rate (HSR) neuron

cells are shown next to the responses from low spontaneous rate (LSR) neuron cells,

both being on top the response from the cochlear implant stimulation. In all plots

the x-axis is time and the y-axis is the percentage along the length of the spiral

ganglion, where 0% is the base and 100% is the apex.

Figure 7.2: Chirp sound at different audio pressure levels. Abbreviations are: High
spontaneous rate (HSR), low spontaneous rate (LSR). The generic cochlear implant
is using a CIS processor in bipolar stimulation mode.
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Figure 7.3: Chirp sound at different audio pressure levels. Abbreviations are: High
spontaneous rate (HSR), low spontaneous rate (LSR). The generic cochlear implant
is using a AIS processor in bipolar stimulation mode.

Figure 7.4: Chirp sound at different audio pressure levels. Abbreviations are: High
spontaneous rate (HSR), low spontaneous rate (LSR). The generic cochlear implant
is using a AIS processor in bipolar stimulation mode with higher inhibition current.
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Figure 7.5: Chirp sound at different audio pressure levels. Abbreviations are: High
spontaneous rate (HSR), low spontaneous rate (LSR). The generic cochlear implant
is using a AIS processor in monopolar stimulation mode with higher inhibition cur-
rent.

Figure 7.6: Chirp sound at different audio pressure levels. Abbreviations are: High
spontaneous rate (HSR), low spontaneous rate (LSR). The generic cochlear implant
is using a CIS processor in monopolar stimulation mode.
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The chirp sound used in this experiments has a flat envelope and increasing

frequency, hence the main changing parameter in the audio signal is the rate of

change of its phase. This is considered to be part of the fine structure of sound

[237] and is not encoded very well with the modern cochlear implant [187, 376]. If

we make the assumption that direct visual comparison between the healthy spike

train and the cochlear implant stimulated spike train is a method of assessing the

performance of the cochlear implant, then the results shown here further support

the inability of the CIS or the experimental AIS strategy to encode fine structure of

sound.

The cochlear implant processors used in this computational model over stimulate

the auditory nerve for higher auditory pressure sounds and under-stimulate for lower

pressure sounds. The model outcomes support the need for designing compression

functions that enable more flexible and frequency specific current mapping functions,

which is also indicated elsewhere [143].

7.1.2 Schroeder Phase

Schroeder-phase (SP) harmonic stimuli were chosen as a test signal because the

positive– and the negative– phase complexes differ in their temporal fine structure,

with both signals exhibiting identical spectral content and minimal modulation, i.e.,

nearly flat envelope [311].

In the Schroeder-positive phase the high frequencies are advanced in time rela-

tive to low frequencies, which compensates for the delay of the travelling wave on

the basilar membrane. In contrast, for Schroeder-negative phase signals the high

frequency components are delayed relative to the low-frequency components, which

adds to the delay on the basilar membrane [240]. This property enables to test the

travelling wave related properties of audition by excluding effects caused by envelope

temporal changes, i.e. signal modulation, and changes in the spectral content of the

signal.

Schroeder phase signals can be computed using equation (7.1), where H is the
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total number of added harmonics and f is the frequency of the signal.

s(t) =


H∑
k=1

cos
(
2πkft+ πk(k−1)

H

)
, if phase = positive

H∑
k=1

cos
(
2πkft− πk(k−1)

H

)
, if phase = negative

(7.1)

In the following figures 7.7-7.12, unless otherwise stated, the frequency was set

to f = 100 Hz, the total number of harmonics was set to H = 50, the sound pressure

of the audio signal was set to 70 dBSPL and the duration 100 ms. The top plot is

the graphical representation of the sound stimulus, followed by the raster plot of the

response activity of the high spontaneous rate (HSR) neurons, the low spontaneous

rate (LSR) neurons and finally the cochlear implant stimulation response. In all

the raster plots the x-axis is time in seconds and y-axis is the percentage along the

spiral ganglion.

Figure 7.7: Positive and Negative Schroeder phase audio snippets. The generic
cochlear implant is using a CIS processor using monopolar stimulation.
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Figure 7.8: Positive and Negative Schroeder phase audio snippets. The generic
cochlear implant is using a AIS processor using monopolar stimulation.

Figure 7.9: Positive and Negative Schroeder phase audio snippets. The generic
cochlear implant is using a CIS processor using bipolar stimulation.
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Figure 7.10: Positive and Negative Schroeder phase audio snippets. The generic
cochlear implant is using a AIS processor using bipolar stimulation.

Figure 7.11: Positive and Negative Schroeder phase audio snippets. Number of
harmonics = 200. CIS processor using bipolar stimulation.
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Figure 7.12: Positive and Negative Schroeder phase audio snippets. Number of
harmonics = 200. AIS processor using bipolar stimulation.
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The frequency related phase shifting property of the Schroeder stimuli is used

to investigate the temporal sequencing of the pulses along the electrode array. It is

shown that CIS and AIS have similar stimulus patterns for the negative Schroeder

phase. In contrast, for the Schroeder positive phase there is an indication that the

AIS strategy performs better than the CIS based on the observation that there is

less phase locking to the electric stimulation sequence. This could be indicative

of suggesting that a better method to encode the fine structure of sound requires

the stimulation strategy to not have a continuous sequential electrode activation

pattern, like CIS.

7.2 Objective Performance Measures

A hypothesis conjectured in the development of objective performance measures

for this model is based on the observation that there are two main attributes that

can characterise a parallel action potential train. The first one is the amount of

activation, i.e. how does the individual neuron’s firing rate change in response to

a stimulus. The second one is the phase locking, i.e. how well does the collective

response of neurons synchronize with each other and with respect to the stimulus

temporal structure. For an example of the difference between a fully phase locked

signal and a completely place coded sound and their corresponding vector strength

and average activation estimates please refer to figure 7.13.

Based on this hypothesis two novel error measures were developed, the absolute

synchronisation error measure (ASEM) and the absolute relative activation error

measure (ARAEM). These two error measures will be used for assessing the mis-

match between the healthy ear response to a set of sound stimuli and the cochlear

implant stimulated ear response to the same set of sound stimuli and will be exam-

ined in the following text.

The total activation, or spike count, for the healthy case, SChealthy, is the average

spike count across a selection of neurons of the same cluster. A cluster is defined

as a spatial sample on the spiral ganglion (section 6.2), and each cluster has 10
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Figure 7.13: Illustrative example of phase lock and place code mechanisms of the
auditory nerve. Top figure shows the auditory nerve high spontaneous rate fibres
when 100 Hz tone at 80 dBSPL is simulated for one second. Bottom figure shows
the auditory nerve high spontaneous rate fibres when 8000 Hz tone at 60 dBSPL
is simulated for one second. Both examples where chosen for their characteristic
phase-locking (top) and place-coding (bottom) behaviour. Figure inset A shows the
spike count across all the fibres as an indication of the activation given the sound
stimulus. Figure inset B shows the vector strength estimation with the visual aid of
the circular histogram.

neurons. There are total 100 clusters for the simulations presented here, so in total

1000 neurons are simulated along the spiral ganglion. The measure of ARAEM

and ASEM is taken for the duration of the sound snippet excluding the silent time

before and after the stimulus. The average spike count is defined as the rate which is

halfway between a high spontaneous rate neuron (HSR) and a low spontaneous rate

neuron (LSR), see equation (7.2). The analogous activation, SCimplant, is estimated

for the cochlear implant stimulation for the same sound stimulus. Note that for the

cochlear implant stimulated auditory nerve there is no distinct separation between

high and low spontaneous rate neurons as the electrical response properties of the

spiral ganglion cells are assumed to be uniform.

Phase locking is estimated using the vector strength calculation as reported in

the original study of Goldberg (1969)[112]. The value of the vector strength ranges

between zero and one and is used to estimate the preferred phase of action potential
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generation. The vector strength for the healthy case, V Shealthy is taken as the

average vector strength for HSR and LSR neurons as shown in equation (7.3).

SChealthy =
HSRactivation − LSRactivation

2
+ LSRactivation (7.2)

V Shealthy =
HSRvector strength + LSRvector strength

2
(7.3)

The absolute synchronisation error measure (ASEM) in cochlear implant audi-

tory nerve synchronisation is estimated as shown in equation (7.4), where χ is the

length across the spiral ganglion as a percentage from cochlear base and f is the

sound stimulus frequency. The sound stimulus frequency is referring to a pure tone

test that is examined in section 7.2.1. ASEM is hypothesised to be a way to estimate

the phase locking mismatch in the timing of the stimulating pulse train.

ASEM(χ, f) =

√√√√[V Shealthy SChealthy
max(SChealthy)

− V Simplant
SCimplant

max(SCimplant)

]2

(7.4)

The absolute relative activation error measure (ARAEM) in cochlear implant

auditory nerve activation is estimated as shown in equation (7.5), where χ and f

have their previous meanings. As before the sound stimulus frequency is referring

to a pure tone test that is examined in section 7.2.1. ARAEM is hypothesised to be

a way to estimate the over- or under-stimulation of the auditory nerve by using an

implant compared to the natural hearing state.

ARAEM(χ, f) =

√√√√[SCimplant(χ, f)

SChealthy(χ, f)
− 1

]2

(7.5)

The measures were used to estimate the performance of two filterbank designs

by using a set of specific sound stimuli, as further discussed in the following section

7.2.1. The justification of constructing these measures is the assumption that the

temporal characteristics of the auditory nerve can be described by the neuron firing
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rate and the phase locking with the stimulus signal.

7.2.1 Filterbank comparison

A computational experiment was performed where a set of pure tone stimuli were

used to estimate the ARAEM and ASEM for two different cochlear implant sys-

tems. The only difference between the two systems was the filterbank architecture,

in both cases the generic cochlear implant system was used as described in the in-

troduction of this chapter using a CIS stimulation strategy. In one cochlear implant

a Butterworth filter was used as the contiguous bandpass filter design, and in the

other cochlear implant an one-zero-Gammatone filter was used as the contiguous

bandpass filter design. The sound snippet used for all the pure tone stimuli had a

duration of one second, and was a pure sinusoid ranging in frequency between 100

Hz and 8 kHz, and its sound pressure ranged from 40 dBSPL to 90 dBSPL.

The motivation behind the comparison of the two filterbanks is that the com-

monly used Butterworth filter in cochlear implant design [101] does not exhibit

biological characteristics of the auditory system, such as asymmetry in frequency

domain which favours the low frequencies and a high Q dependency that shapes

the bandwidth while maintaining a linear low-frequency tail [206]. Filters that have

these biological characteristics are the gammatones, which can be implemented using

ultra low power electronics with minimal fabrication surface area [163]. For a more

in depth discussion on the merits of Gammatone filters please refer to section 4.1.5.

It is of particular interest if these biologically inspired filters can provide better CI

performance.

As discussed in the previous section the assumption taken is that the attributes

of a firing pattern of a neuron bundle can be considered as the firing rate, or in this

text defined as activation, and the phase locking of the neural bundle response to a

stimulus.

The activation pattern which varies across the spiral ganglion — distance along

spiral ganglion is symbolised with χ and ranges between 1% to 100% — for different
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frequencies of the pure tone stimuli, f , are shown in figure 7.14. Note the differ-

ence between high spontaneous rate neurons activation, HSRactivation(χ, f), and low

spontaneous rate, LSRactivation(χ, f), as compared to the spike count of a cochlear

implant, SCimplant(χ, f).

Figure 7.14: The activation in response to various pure tone sounds, of duration
one second and between 100 to 8000 Hz. The colours indicate the firing rate of
the auditory nerve, red being higher rates and blue lower rates (consult the scaled
colour-bar next to each plot for the colour rate representation). In all the plots the
x-axis is the logarithm of the frequency and the y-axis is the percentage along the
spiral ganglion neuron clusters. The base is indicated by 0% and the apex by 100%.
Top row corresponds to HSRactivation(χ, f), second row to LSRactivation(χ, f) and
the third and fourth rows correspond to SCimplant(χ, f), each case using a different
filter indicated on the diagram.

As mentioned before the phase locking to the pure tones is estimated with the

vector strength measure. The resulting vector strength measure which varies across

the spiral ganglion — distance along spiral ganglion is symbolised with χ and ranges

between 1% to 100% — for different frequencies of the pure tone stimuli, f , are shown

in figure 7.15.

There is a notable difference between the healthy output and the cochlear implant

stimulated response. For healthy hearing there is consistent phase locking which

204 Chapter 7 Andreas N. Prokopiou



Biophysical Modelling of a Cochlear Implant System

deteriorates as the frequency becomes greater than 2-4 kHz. For cochlear implant

stimulation there are bands of phase locking at higher frequencies. This is not an

indication that the neurons fire at a faster rate, but instead that there is narrower

distribution of action potentials caused by the initiation of action potentials at a

particular phase angle of the stimulus [168]. Furthermore the high frequency phase

lock observation can be caused by the fact that there is constructive interference for

audio frequencies that are multiples, or harmonics, of the fixed stimulation frequency

per electrode (900 Hz in this case).

Figure 7.15: The vector strength in response to various pure tone sounds, of duration
one second and between 100 to 8000 Hz. The colours indicate the extend of phase
locking of the auditory nerve as a measure of the vector strength, red being higher
phase locking and blue lower phase locking. Note that when the vector strength is
equal to 1 it indicated complete synchrony of the action potentials with a particular
phase of the stimulus, if it is equal to 0 it indicates a random discharge pattern.
In all the plots the x-axis is the logarithm of the frequency and the y-axis is the
percentage along the spiral ganglion neuron clusters. The base is indicated by 0%
and the apex by 100%.

Both the activation, or spike count, and the vector strength are used in de-

termining ARAEM(χ, f) and ASEM(χ, f) as shown in equations (7.5) and (7.4)

respectively. As before the estimated measure varies across the spiral ganglion,

where the distance along spiral ganglion is symbolised with χ and ranges between
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1% to 100%. Furthermore the response at different pure tones which range between

100 Hz and 8 kHz is estimated at 100 Hz steps.

The model output of the comparison between the Butterworth filter and the one-

zero-Gammatone are shown in figure 7.16 for the ARAEM estimate and in figure

7.17 for the ASEM estimate. From the model output of the ARAEM estimate (figure

7.16) it can be observed that there is a greater error for the Butterworth filter (more

regions of red colour). This suggests that the Gammatone filter provides more

place-accurate stimulation than the Butterworth, but both cochlear implant designs

over-stimulate or under-stimulate the spiral ganglion. This can be attributed to

the lack of spontaneous rate representation from the cochlear implant design and

also from the very steep activation function, see figure 5.25. This suggests the need

for a more flexible, possibly dynamic, sound loudness to current conversion. The

ASEM estimate indicates that for frequencies up to around 300-400 Hz the cochlear

implant designs have similar phase locking patterns as the healthy case, especially

for high acoustic pressure sounds. However, at higher frequencies the patterns no

longer match, especially for the Butterworth design at high acoustic pressure sounds.

This is caused by the fixed stimulation rate of the CIS strategy and the fact that

electrical stimulation causes a nearly synchronous volley of actions potentials to

be generated [168]. The fixed stimulation rate will inevitably cause phase-locked

patterns of activity that are not in phase with the sound stimulus oscillation, unless

the pure tone frequency matches the stimulation rate of CIS.
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Figure 7.16: The ARAEM for repeated simulations of pure tone stimuli at different
acoustic pressures, one second duration and ranging from 100 Hz to 8 kHz. In all the
plots the x-axis is the logarithm of the frequency and the y-axis is the percentage
along the spiral ganglion neuron clusters. The base is indicated by 0% and the
apex by 100%. The colours indicate the extend of over- or under-stimulation of
the auditory nerve from the cochlear implant. Red colour indicates greater over- or
under-stimulation, and blue colour indicates stimulation that induces a physiological
rate of neuron firing.

Figure 7.17: The ASEM for repeated simulations of pure tone stimuli at different
acoustic pressures, one second duration and ranging from 100 Hz to 8 kHz. In all the
plots the x-axis is the logarithm of the frequency and the y-axis is the percentage
along the spiral ganglion neuron clusters. The base is indicated by 0% and the apex
by 100%. The colours indicate the extend of synchronicity of the auditory nerve
from the cochlear implant stimulation. Red colour indicates unphysiological extend
of phase locking, either too high or too low, and blue colour indicates stimulation
that induces a physiological extend of phase locking.

Chapter 7 Andreas N. Prokopiou 207



Chapter 8

Auditory synapse model

The motivation behind the study of the auditory synapse is the fact that it is the

place where a continuous signal drives discrete actions, such as ion channel open close

events and neurotransmitter vesicle releases. The conversion of the continuous signal

to discrete events is a form of sound encoding that can inspire the design of a novel

cochlear implant. Furthermore it is critical to the achievement of a comprehensive

peripheral auditory model, and as described in Chapter 10 it can be used to make

a more advanced biophysical model of the cochlear implant system.

The electromechanical conversion of inner hair cell motion to the internal voltage

of the inner hair cell is mediated through opening and closing of ion channels, see

section 3.3 for a more in depth discussion. The internal voltage within the inner

hair cell drives the release of neurotransmitter vesicles in the synaptic cleft that is

formed between the inner hair cell and peripheral neuron projections of the spiral

ganglion. For details on the innervation patterns between inner hair cell and spiral

ganglion please refer to section 2.5. The mediating neurotransmitter is thought to

be glutamate and its action is to open AMPA1 channels on the peripheral neuron

membrane. Those AMPA channels permit the flux of sodium and potassium ions

through the cell membrane — i.e., opening of channels increases conductance of

the neuron’s membrane — and hence induce the generation of action potentials,

see figure 8.1. The action potentials then travel via saltatory conduction along the

1α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
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peripheral neuron, eventually reaching the spiral ganglion. The soma in the spiral

ganglion is bigger than the peripheral neuron and requires more charge to change

its resting potential [286]. This essentially acts in a similar fashion as a current

sink and blocks some of the incoming action potentials. When the spiral ganglion is

stimulated enough to generate an action potential, it will transmit it via the auditory

nerve into the higher brain centres.

Figure 8.1: Waveforms of inner hair cell and spiral ganglion cell responses to a 95
dB SPL 525-Hz tone. The negative deflection near the beginning of each panel is a
5-mV calibration pulse [385]. Figure extracted from [302]

The synapse consists of a specialised organelle, the synaptic ribbon, that is found

in the hair cell. The space between the pre-synaptic hair cell membrane and the

post-synaptic neuron membrane is termed as the synaptic cleft. The synaptic ribbon

is the subject of the study presented here. It plays an important role in the synchro-

nisation of sound stimuli and action potential generation as it is thought to mediate

the release of the neurotransmitter glutamate. This has been shown through stud-

ies where the lack of synapse-anchored ribbons in mutant mice causes reduction in

exocytosis and degrades precise action potential onset-timing in the auditory nerve

[166]. Furthermore the maturation of the ribbon structure, from a dense bundle to

an ellipsoid structure, and its anchoring on the cell membrane marks the onset of

hearing in altricial rodents that are born deaf [306].

Synaptic ribbons are not present only in the auditory system. It appears in all
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sensory cell types that respond with graded receptor potentials [326], such as the

bipolar photoreceptor cells in the visual system, the vestibular system and others

[306]. Graded receptor potentials are essential in characterising physical quantities

over a varying dynamic range. The auditory system is impressive in its performance

by having an input dynamic range of around 120 dBSPL. During maturation of the

auditory synapse, and transition between pre-hearing and post-hearing stage, the

transfer function defining the calcium ion influx and vesicle release switches from

an exponential relation to a linear one. [306, 158, 387]. The linear dependence is

also preserved in the post synaptic current with minimal distortion [116, 164]. This

suggests a significant effort in the auditory synapse system to preserve a dynamic

range representation by maintaining the graded response instead of a binary on-off

response. Furthermore it has been shown that the presence of the synaptic ribbon

enhances the statistical representation of graded responses [58].

The synaptic ribbon appears to be a multifunctional organelle, and there is not

a clear understanding of the exact details of its operation [306]. The main suggested

function of the synaptic ribbon is its aiding in high rate and sustained neurotrans-

mitter release when excited by long-duration stimulations [264, 123]. It performs

this function by tethering neurotransmitter vesicles on its surface thus creating a

local store. It is not clear if the synaptic ribbon speeds up or slows down vesicle

release, but it is certain that it acts as a mediator to the release of neurotransmitter

[153]. Furthermore it is also clear that the morphology of the ribbon synapse defines

different populations, or pools, of neurotransmitter vesicles [119, 116]. The vesicles

that are located next to the cellular membrane under the ribbon are contributing

to the ‘ready for release’ pool, and the vesicles that are tethered onto the synaptic

ribbon but not adjacent the cellular membrane are contributing to the ‘reserve pool’.

There is consensus on the fact that the synaptic ribbon aids the neurotransmitter

release by co-localizing vesicles and calcium channels [396, 306, 164]. Furthermore

it has been suggested that the calcium sensor of the synaptic vesicle is extremely

sensitive to calcium channel location, especially for weak stimulation with up to a
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three fold change in release probability for a spatial movement of a calcium channel

of just 5 nm [313]. The spatial co-localization importance is also evidenced by the

observation that upon maturity and hearing onset of mice, the calcium influx is

reduced but the vesicle release increases, whilst the calcium channels migrate in the

vicinity of the synaptic ribbon [387]. This spatial reorganization of the synaptic

machinery aids in better statistical independence between single, voltage sensitive,

calcium channel opening events and therefore contributes to a higher sensitivity of

graded changes of intracellular voltage.

Even though there have been significant developments in high resolution imaging

and electro-physiological approaches, several of the elementary characteristics of the

ribbon synapse remain uncharacterised. Genetic and chemical approaches to identify

key molecules in the vesicular mechanism seem to be hindered by the functional

redundancy of the vesicle tethering and release complexes [306]. Furthermore much

of what is known so far is based on induced depolarization of the inner hair cells

and not via the graded response of the stereocilia residing on the top of the cell.

Synaptic ribbon morphology variations [159, 226, 56] indicates that the electrical

behaviour of the afferent auditory neurons is shaped by both pre and post synaptic

elements. Furthermore, it has been shown the adaptation of the neuron response

to stimulation to be mainly determined by the vesicle release machinery [116]. The

synaptic elements that shape the electrical behaviour of the auditory synapse have

not yet been integrated in an explicit model [306]. The work presented here inte-

grates previous studies in a model that reproduces experimentally observed phenom-

ena and presents some novel simulation data on vesicle release patterns in response

to sound stimuli.

Despite the great significance of the auditory synapse there is an incomplete

picture of the real-world synaptic activity in the mammalian auditory periphery

[306, 265]. This chapter will present a new model developed, which is an original

contribution that brings together much of the available data on the auditory synapse.

The model simulates stochastic neurotransmitter vesicle release events resulting from
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acoustic waves arriving at the tympanic membrane and hence estimate the post-

synaptic conductance change of the auditory nerve-fibre. The chapter is divided

into sections: Model description, Model outcomes, Discussion on model results and

Conclusion.

8.1 Model description

The model used to estimate the vesicle release is a novel realisation of the ribbon

synapse, amalgamated with an existing model of the auditory periphery, see figure

8.2. The pre-existing model of the auditory periphery that is used for the calculation

of the internal voltage change of the inner hair cell in response to a sound wave, is

termed M.A.P. (Matlab Auditory Periphery) [221].

Figure 8.2: Flowchart of the top level organisation and the modular structure of each
‘sub-model’ as the union of pre-existing models and the new model developed and
presented here. The overall cascade of models represents the physiological paradigm
of action potential generation in the auditory synapse.
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The new model of the auditory synapse consists of two different sections: (1) the

morphological setup of the ribbon synapse geometry, discussed in section Morphol-

ogy and (2) the temporal evolution of the virtual organelles and their interactions,

discussed in section Chronology.

8.1.1 Morphology

The active zone and the synaptic ribbon spatial topology is calculated as the ana-

lytical solution to certain geometric constraints. This section is divided into three

subsections that deal with the details of the model implementation. The first subsec-

tion, termed ‘Topology of an active zone’ describes the population of the pre-synaptic

cell membrane with voltage sensitive calcium channels. The next subsection, termed

‘Morphology of a ribbon synapse’, reports the geometric parameters that the model

uses to place a synaptic ribbon in a three dimensional volume floating above the pre-

synaptic cell membrane. The third and last subsection, termed ‘Neurotransmitter

vesicle space population’, describes how the model populates the three dimensional

volume above the pre-synaptic cell membrane with neurotransmitter filled vesicles.

Topology of an active zone

The active zone consists of the two-dimensional distribution of calcium channels on

the pre-synaptic area and a thicker, bow-shaped, post-synaptic density [306]. In

this model only the pre-synaptic active zone is considered. Parameters used in the

estimation of the active zone include: (1) its radius, (2) a mean calcium channel

number, (3) normal or uniform spatial distribution of the channels from a central

axis and (4) a conjectured calcium channel diameter.

The calcium channels are randomly placed within a circle defined by the radius

of the active zone (Figure 8.3). If the placement of the calcium channels is assumed

to vary with a uniform distribution, then the calcium channels are evenly spread

out within the active zone circle. This reflects the immature pre-hearing state of the

active zone [387]. If the placement of the calcium channels is assumed to vary with
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a normal distribution, the mean of the distribution is aligned with the centre of the

pre-synaptic membrane. This results in a higher density of calcium channels under

the ribbon synapse and this co-localization of voltage sensitive calcium channels

and synaptic ribbon is thought to be part of the maturing process of the auditory

synapse [306, 387]. The dimensions used for the simulations presented here are given

in the Table 8.1.

Figure 8.3: (A) and (B) show a top view of the active zone which has roughly 90
calcium channels. The synaptic ribbon extent is outlined by the green line as an
ellipse, the filled circles represent calcium channels and the open circles represent
synaptic vesicles (red signify ribbon tethered vesicles, whereas blue signify freely
floating vesicles). The line r indicates the radius of the active zone. (A) Illustrates
an immature synapse characterised by the uniform distribution spread of calcium
channels shown in (C). (B) Illustrates a mature synapse characterised by the normal
distribution of calcium channels with the peak of distribution being the centre of
the synapse shown in (D). (C) and (D) show the probability distribution of channel
placement along the active zone diameter. (C) is a uniform distribution limited to
the extend of the active zone diameter. (D) is a normal distribution with a standard
deviation (SD) equal to one fourth of the radius, i.e., r

4
. Note that the selection of

SD= r
4

is a conjecture based on visual inspection and descriptions of the maturation
of the synapse [306, 387, 386]
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Morphology of a ribbon synapse

The synaptic ribbon for the mammalian auditory synapse is reported to mature from

an electron dense bundle to an enlarged oval shape and attach to the active zone via

a single link [306]. The parameters used in the estimation of the three dimensional

synaptic ribbon are the three axes of the ellipsoid representing its height, its width

and its depth (Figure 8.4). The model is implemented by placing the synaptic

ribbon in the centre of the simulated volume, at a pre-set distance, δ, from the

cellular membrane and occupying the space defined by the ellipsoid, as shown in

figure 8.4. Note that the origin of the active zone and the main axis of the ellipsoid

are aligned, which places the synaptic ribbon above the centre of the active zone.

The dimensions used for the simulations presented here are given in the Table 8.1.

Neurotransmitter vesicle space population

The vesicles are considered, via random Brownian motion, to refill certain reposito-

ries: the ‘ready for release’ pool, the ‘ribbon associated’ pool and the ‘free floating’

pool. This is modelled by placing the vesicles in the simulation volume by choosing

a set of three dimensional coordinates from a uniform random distribution. If the

placement of a vesicle overlaps with the physical space occupied by another vesicle

or the synaptic ribbon then the coordinate set is discarded. Furthermore the space

surrounding the synaptic ribbon is completely filled with vesicles until no other

vesicle can fit without overlapping with an existing one. The synaptic vesicles are

characterised by their diameter, which is set at a mean diameter of 35 nm and a

standard deviation of 10 nm.

The neurotransmitter vesicle occupancies that are immediately adjacent to the

synaptic ribbon are considered to populate the tethered, or ‘ribbon associated’ pool.

Vesicle occupancies that have a distance from their outer wall to the cellular mem-

brane that is less than 15 nm are considered to populate the ‘ready for release’ pool.

This range of distances, up to 15 nm, are considered to be the limit for the adhesion

event that creates the fusion between the vesicle and the pre-synaptic membrane
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Figure 8.4: Top and side cross-sectional views of a ellipsoid ribbon synapse. The
parameters that describe the shape are: α = x axis radius, β = y axis radius, γ = z
axis radius and δ is the separation distance from the pre-synaptic membrane. The
circles indicate neurotransmitter vesicles; the green vesicles are considered tethered
to the ribbon synapse and make the ‘ribbon associated’ pool, the red vesicles close to
the pre-synaptic membrane make the ‘ready for release’ pool, and the blue vesicles
that are haphazardly spread in the surrounding volume make the ‘free floating’ pool.

that can lead to exocytosis [236]. For an example of the population of vesicles

within the simulated volume see figure 8.4.

8.1.2 Chronology

The temporal events involved in inner hair cell processing are separated into six

different sections and the driving parameter for all sections is the internal voltage

of the inner hair cell: (1) The electrochemical calcium current is calculated, (2) the

calcium channels ‘open’/‘close’ states are computed, (3) calcium spatio-temporal

buffering is estimated, (4) the calcium concentration change for the duration of
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Table 8.1: Synapse Morphology Values

Dimensions of the Ribbon Synapse Value
Active zone radiusa 300 nm [23, 226]
Number of calcium channels 90 ±b 10 [23, 293, 243]
Calcium channels diameter 5 nm
Calcium channels spreadc Gaussian or Uniform
Ribbon (disk), [α, β, γ]d [40 nm, 166 nm, 127 nm ]
Ribbon (ellipsoid), [α, β, γ]d [100 nm, 166 nm, 127 nm ]
Ribbon (sphere), [α, β, γ]d [200 nm, 200 nm, 200 nm ]
Membrane-ribbon distance, δ 35 nm
Vesicles diameter 35 nm with a S.D. of 10 nm [387]
Membrane-vesicles bond distance 15 nm [236]
Free vesicle density 3000 vesicles µm−3

aThe radius describes the maximum distance possible for a calcium channel to exist
from the centre of the simulation volume.
bThe variation in channel number is drawn from a uniform distribution.
cThis parameter controls the distribution pattern of the random allocation of channels
from the centre of the synaptic ribbon as shown in figure 8.3.
dThese dimensions describe an ellipsoid as shown in figure 8.4. The first set describes
disk shape ellipsoids found in photoreceptors [308]. The second set corresponds to
the dimensions of an 8-week mouse [256] and the last set to a sphere shaped ellipsoid
of an amphibian papilla [256].

the stimulation is calculated for the ‘ready for release’ vesicle occupancies, (5) the

compound vesicle release pattern is calculated and finally (6) the excitatory post

synaptic conductance is calculated. The sampling rate of all the signals processed

is at 44.1 kHz and an up-sampling at 10 MHz was performed for Monte Carlo runs.

The up-sampling is to ensure that the sampling rate in the Monte Carlo process (see

later text), which is notorious for being sensitive to sampling time periods, did not

alter the estimated dynamics. During the development stage of the model the Monte

Carlo sampling rate was determined by an iterative process by which the input was

up-sampled until the computed output was undistinguishable between the chosen

sampling rate and higher sampling rates.

The only model elements that are assumed to be moving during the simulation

period are the free neurotransmitter vesicles. Contrary the synaptic ribbon, the cal-

cium channels and the tethered neurotransmitter vesicles are assumed to be static.

The free movement of neurotransmitter vesicles is simulated by randomly filling the

volume with all possible occupancies of neurotransmitter vesicles. At any time a

fraction of those locations is considered populated. This percentage is calculated
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so as to relate to the vesicle density to correspond to a realistic amount of neuro-

transmitter vesicles. At the next time instant a different set of predefined locations

become populated thus simulating the random motion of the vesicles within the sim-

ulation volume. This becomes particularly important for untethered vesicles floating

next to the cellular membrane. At that specific location the vesicle’s travel time will

define whether the vesicle will bind to the membrane and release its content to the

synaptic cleft or not. Vesicles that are next to the membrane and are not tethered

to the synaptic ribbon were allocated their occupancy for 12 ms. Such a value was

chosen because it is the calculated travel time for the maximum distance the vesicle

can fuse with the cellular membrane [236, 304].

The remaining section is divided into seven subsections: (1) Electrochemical

calcium current flux, (2) Ca channel dynamics, (3) Calcium chemical buffering, (4)

Calcium concentration estimation, (5) Vesicle release mechanism, (6) Compound

fusion vesicle release, (7) Excitatory post-synaptic conductance estimation.

Electrochemical calcium current flux

When a calcium channel opens there is an influx of calcium ions in the cell, altering

the local calcium ion concentration at the base of the inner hair cell. This flux

is driven both by an electric and a chemical gradient. In this model the chemical

concentration of the bulk is assumed to remain unchanged by a calcium channel

opening event. Therefore a constant baseline calcium ion, chemical-gradient driven

flux of -0.2 pA [387] is maintained in the case of a channel opening. The electrical

drive is modelled by replacing the calcium channel by a resistor with a conductance

value of 14.7 pS [387, 386].

Ca channel dynamics

Estimating the calcium channel ‘open’/‘close’ dynamics takes place in two separate

steps. First the kinetic rates are calculated. The next step is to use the kinetic

rates to calculate the probability of state (’open’ or ‘close’) transition by means of a

218 Chapter 8 Andreas N. Prokopiou



Biophysical Modelling of a Cochlear Implant System

Monte Carlo model. The Gilespie algorithm was attempted for faster computation

but was found to be good only at estimating the steady state solution.

The kinetic rates k+(t) and k−(t) are calculated from the average open (τo(V ))

and the average ‘close’ (τc(V )) time respectively, as shown in equation (8.1); note

that V (t) denotes the intracellular voltage. The voltage dependence of the ‘open’

and the ‘closed’ times are calculated using a fourth-order polynomial fit that was

used to extrapolate recorded results, see figure 8.5.

C0

2k+(t)
GGGGGGGGGGBF GGGGGGGGGG

k−(t)
C1

k+(t)
GGGGGGGGGBF GGGGGGGGG

2k−(t)
Open , k+(t) =

1

τo(V (t))
, k−(t) =

1

τc(V (t))
(8.1)

The second step, after the kinetic rate estimation, is to calculate the probabilities

of state transitions [327]. A three state model is used to model channel opening

events by using two ‘closed’ states and one ‘open’ state, as shown in equation (8.1).

A two state and a four state model were also studied, but the two-state model caused

excessive vesicle release — much faster than the reported 1.4 vesicles/ms/ribbon

[123] and the four-state model exhibited very slow rise times to step voltage stimuli

for calcium channel opening — much slower than the reported 1.4 ms [387]. For

these reasons this study employs the three state model in equation (8.1).

Calcium channel state transitions were calculated by means of a time-dependent

matrix Q, see equation (8.3). The probability of state change is calculated as shown

in equation (8.2).

~P (t+ n4t) = Q(t)n ~P (t) (8.2)

Where ~P denotes a vector signifying the state of the calcium channel, 4t denotes

the sampling time of the simulation and n denotes how many samples ahead we

simulate (for this study every time sample was simulated, therefore n = 1) . Since

we employ the three state model of equation (8.1), ~P = [1, 0, 0] signifies that the

channel is at state C0 and ~P = [0, 1, 0] signifies state C1, thus the channel is closed
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for both. When ~P = [0, 0, 1] the channel state corresponds to ‘open’. Note that only

one state is possible at any given time.

Q(t) =


1− 2k+(t)4t k−(t)4t 0

2k+(t)4t 1− k−(t)4t− k+(t)4t 2k−(t)4t

0 k+(t)4t 1− 2k−(t)4t

 (8.3)

For an ensemble of a few hundred calcium channels both the average rise time and

the average number of open channels are confirmed with published results [387, 386]

(see figure 8.5).

Figure 8.5: Calcium channel dynamics: (a) The average ‘close’ time, τc and (b) the
average ‘open’ time, τo, of a single calcium channel with respect to cell membrane
voltage. A fourth-order polynomial fit was used to extrapolate recorded results
(shown in red stars) from previous studies [386, 387]. Plot (c) shows the rate of
Ca2+ channels opening given a certain voltage. Plot (d) shows many repetitions of
the response of a collection of calcium channels given a step increase in intracellular
voltage from -65 mV to -20 mV lasting 100 ms and starting at 5 ms. The rise time
of this ensemble was found to be between 2 ms (red line) and 1 ms (green line). This
is comparable to a previously reported rise time of 1.4 ms[387] which is represented
by the yellow line.

Calcium chemical buffering

The extent to which the free calcium ions reach in the intracellular space is very

limited [310, 252, 74]. Modelling studies have shown that a calcium ion concentration
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capable of releasing vesicles exists in the vicinity of 10-100 nm [250, 212] around the

mouth of the calcium channel when it opens. Furthermore the endogenous buffering

environment ensures the quick absorption of free calcium ions so that a residual

build up of local calcium concentration is not created [214].

The calcium buffers EGTA, ATP and BAPTA have different length-constants,

which means that calcium ions will travel different distances from the mouth of the

channel depending on the combinations of buffers. For model verification purposes

the effect of various combinations of EGTA, ATP and BAPTA and endogenous

buffers was modelled. The buffering calculation is performed using a modelling

tool for simulating intracellular calcium diffusion and buffering termed ‘Calcium

Calculator’ (CalC) [213]; see figure 8.6. The chemical constants that characterise

each buffer species used in this model is shown in table 8.2.

Table 8.2: Calcium buffer parameters and values

Buffera Valuesb[250]
KD[µM] kon[M−1s−1] D[µm2s−1] Conc.[µM]

Endogenous 50 1×108 15 0.5
EGTA 0.18 2.5×106 220 2
BAPTA 0.22 4×108 220 2
ATP 2300 5×108 220 2
a The buffered ion species is Ca2+ which is assumed to have a diffusion coefficient of
220 µm2s−1 and an external concentration of 1.3 mM [368]
b KD = dissociation constant, kon = forward reaction rate (calcium ion — buffer
fusion rate), D = diffusion coefficient, Conc. = total buffer concentration (bound
and unbound)

Chapter 8 Andreas N. Prokopiou 221



Biophysical Modelling of a Cochlear Implant System

Figure 8.6: Spatiotemporal calcium evolution as calcium channels open. The colour
of the plot shows the base 10 logarithm of the intracellular calcium-ion concentration
as it varies with distance around the mouth of the channel and as time passes. Red
indicates a higher calcium ion concentration
Note that the calcium-ion spread inside the hair cell depends strongly on three
factors: (1) on the buffering environment — (a),(b),(e),(f) correspond to BAPTA,
while (c),(d),(g),(h) to endogenous buffers — (2) the voltage across the channel —
(a),(b),(c),(d) correspond to -70 mV across the cell membrane while (e),(f),(g),(h)
to -20 mV across — (3) the time the channel remains open — the channel in
(a),(c),(e),(g) stays open for 1ms while in (b),(d),(f),(h) stays open for 5ms. For
the buffering chemical constants see Table 8.2.

The spatio-temporal buffer calculation for each calcium channel opening on the

pre-synaptic membrane is very computationally intensive, and makes the imple-

mentation of the model practically unrealisable. A buffering ‘environment’, was

therefore created which is based on the sampling rate of the input signal, 44.1 kHz

in all model outputs shown here. The ‘environment’ is a look-up table that contains

precomputed values of the possible voltage levels attainable within the inner hair

cell, ranging between -70 mV and -17 mV [387], and possible open times of the

calcium channels with a maximum limit of 10 ms of continuous open time. Pos-

sible combinations of open time and across membrane voltage are shown in figure

8.6. The look-up table has entries in which time increments in steps equal to one

over the sampling rate hence every calcium channel opening event can be exactly

accommodated by this table without the need to round up or down to a pre-set of
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selected values. The modelled increment of calcium ion current is in steps of 0.1

pA. This value was selected based on the observation during the development of

the model that any change smaller than 0.1 pA creates a negligible change in the

internal calcium concentration surrounding the mouth of the channel.

Calcium concentration estimation

Following the generation of the buffering ‘environment’, the calculation for the cal-

cium ion influx surrounding the channel mouth is performed separately for each

channel, but the overall internal calcium ion concentration contribution at each

vesicle sensor is derived from a linear summation of calcium channels ion influx

(Figure 8.7). The linear summation of the calcium channels is possible under the

assumption that there is no coupling between calcium channels. This assumption

is justified on the basis of the nanodomain coupling that is thought to exist be-

tween the calcium channels and the hypothetical ‘vesicular sensors’ in the auditory

synapse [74, 119]. Calcium channel coupling occurs for other behaviours such as

a microdomain, or an oscillation behaviour by utilizing calcium induced calcium

release mechanisms which do not exist in nanodomain synapse situations [15]. In

other words, since nanodomain coupling between sensor and calcium channels exists

linear summation of each channels ion influx is possible [250].

For every ‘ready for release’ vesicle occupancy, the opening of neighbouring cal-

cium channels increases the internal calcium ion concentration picked up by its

‘calcium sensor’, which varies as a function of time, [Ca2+](t). The parameters that

affect the internal calcium ion concentration estimation at the vesicle are: the dis-

tance from calcium channels, the channel ‘open’ time, the current flow (i.e., the

internal voltage), the buffering environment and the external calcium ion concen-

tration. For every individual neurotransmitter vesicle a characteristic [Ca2+](t) is

calculated in response to an intracellular voltage change, V (t).
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Figure 8.7: Calcium ion concentration built up from the calcium channels opening
and signifying a practically concurrent opening of four calcium channels. Inserts
show top view cross-sections at different z-axis distances exemplifying the short
spatial extent of calcium ion reach around the channels mouth. The inserts show
the base 10 logarithm of the internal calcium ion concentration as indicated by the
colourbar in the diagram.

Vesicle release mechanism

The neurotransmitter vesicle fusion with the cellular membrane followed by the

release of glutamate, is considered to rely on the cooperativity of five calcium ions

[253, 16], and is modelled by means of equation (8.4). Note that for presentation

purposes [Ca2+](t) is written as [Ca].

B0

[Ca]5kon
GGGGGGGGGGGGGBF GGGGGGGGGGGGG

koff

B1

[Ca]4kon
GGGGGGGGGGGGGBF GGGGGGGGGGGGG

2koffb
B2

[Ca]3kon
GGGGGGGGGGGGGBF GGGGGGGGGGGGG

3koffb
2

B3

[Ca]2kon
GGGGGGGGGGGGGBF GGGGGGGGGGGGG

4koffb
3

B4

[Ca]kon
GGGGGGGGGGGGBF GGGGGGGGGGGG

5koffb
4

B5
γ−→ fused

(8.4)

The postulated ‘calcium sensor’ of the neurotransmitter vesicle is symbolized in

equation (8.4) with Bn where n indicates the bound calcium ions on the sensor. The

dynamics of the equation were determined in [16] and have as follows: b = 0.4, kon =

27.6 µMs−1, koff= 2150 s−1, γ = 1695 s−1. The vesicle release system is solved using

a five state Monte Carlo with a last deterministic step. The state transition vector
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~PB is calculated using equation (8.5). The vesicle’s ‘calcium sensor’ probability for

state transitions was calculated by means of a calcium-depended matrix H shown

in equation (8.6). Note that 4t is equal to the sampling time of the simulation and

the set of equations shown in (8.7)-(8.12) are the values of the diagonal of matrix

H as shown in equation (8.6).

The vector ~PB is a six element array where all values are zero, except one which

symbolizes the current state of each vesicle occupancy in the ‘ready for release’

pool. For example in the case where no calcium ions are bound then ~PB is at its

lowest state, i.e., ~PB = [1, 0, 0, 0, 0, 0]. The binding of a single calcium ion to the

‘calcium sensor’ will cause the ground state to be evacuated and the next state to

be occupied, i.e., ~PB = [0, 1, 0, 0, 0, 0]. Note that only one state is possible at any

given time. The last deterministic step models the delay in the conformation change

of the proteins forming the membrane fusing complex. Having all five calcium ions

bound on the sensor does not guarantee vesicle release, since when a calcium ion

detaches from the sensing mechanism before completion of fusion, the complex goes

back to the not-fused state, an example of this is illustrated in the insert of figure

8.10c. The delay of the protein conformation is modelled by characterising a vesicle

release event if the binding of five calcium ions (e.g., state ~PB = [0, 0, 0, 0, 0, 1]) is

maintained for a period of time τγ = 1/γ.

~PB(t+4t) = H(t) ~PB(t) (8.5)

H(t) =



D0 koff(t)4t 0 0 0 0

5kon[Ca]4t D1 2koffb4t 0 0 0

0 4kon[Ca]4t D2 3koffb
24t 0 0

0 0 3kon[Ca]4t D3 4koffb
34t 0

0 0 0 2kon[Ca]4t D4 5koffb
44t

0 0 0 0 kon[Ca]4t D5


(8.6)
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D0 = 1− 5kon[Ca2+](t)4t (8.7)

D1 = 1− koff(t)4t− 4kon[Ca2+](t)4t (8.8)

D2 = 1− 2koffb4t− 3kon[Ca2+](t)4t (8.9)

D3 = 1− 3koffb
24t− 2kon[Ca2+](t)4t (8.10)

D4 = 1− 4koffb
34t− kon[Ca2+](t)4t (8.11)

D5 = 1− 5koffb
44t (8.12)

It has been reported that vesicles reappear on the synaptic ribbon almost as

rapidly as they are released [100] so no reduction in the number of vesicles is assumed.

For some exemplar results of vesicle ‘calcium sensor’ state transitions because of

calcium channels’ opening and closing dynamics see figure 8.10.

Compound fusion vesicle release

Compound fusion is the process by which synaptic vesicles fuse to form a larger

vesicle that is held in place with the synaptic ribbon tethers. This process is mod-

elled by using the hypothesis that the longer the next-to-membrane vesicle remains

unreleased the more compound fusion events with adjacent vesicles happen that in-

crease its size. This means that when the vesicle does release its contents the entire

fused collection of vesicles gets released.

The process is modelled by the first order Boltzmann function shown in equa-

tion (8.13) and in figure 8.8 where IV T is the inter vesicle release time, which is

a measure of how long the synaptic vesicle remains next to the cell membrane but

is not released, IV Thalf =30-50 ms is the inter vesicle release time at which half

of the maximum possible vesicles fuse, S = 0.005 ms−1 is the sensitivity of fu-

sion events to inter vesicle release time and finally FVmax is the maximum possible

fused vesicles. Note that FVmax is calculated based on the morphometric properties

of the ribbon synapse, specifically FVmax = ribbon associated vesicles
ready for release vesicles

. Furthermore the
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compound fusion dynamics are illustrated in figure 8.8 where a minimum value of

one vesicle signifies no compound fusion events take place before release and the

asymptotic maximum value signifies the maximum compound fusion possible as it

is constrained by the ribbon shape. Note that the values chosen for IV Thalf and S

are conjectures based on the visual inspection of the onset shown in figure 8.9.

Fused Vesicles =
FVmax − 1

1 + exp
( IV Thalf−IV T

S

) (8.13)

Figure 8.8: The relation between inter-vesicle release time and compound fusion.

Figure 8.9: Examples of the strong onset response elicited by compound fusion. The
results show the averaged post-synaptic conductance change following 100 iterations
of a step change in the intracellular voltage from -70 mV to -20 mV. Taking away
the compound fusion mechanism no onset response is observed. Forward masking
is examined by introducing gaps in stimulation to observe recovery of response.
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Excitatory post-synaptic conductance estimation

After the fusion of the neurotransmitter vesicle with the cellular membrane, glu-

tamate is released in the synaptic cleft. This will activate AMPA receptors on the

post-synaptic neuron membrane and open ionic channels, thus changing the neuron’s

membrane conductance. This causes an influx of ions (sodium and potassium) in the

neuron dendrite and when a threshold is exceeded an action potential is generated.

The parameters that affect the post-synaptic conductance value G(t) are the

number of vesicles released, their respective volume, how many AMPA channels an

average synaptic vesicle opens and the average ‘open’ time of an AMPA channel.

This is modelled using equation (8.14), which represents the convolution of the

AMPA channel alpha function with the open channels for every given time instant,

scaled by the conductance value per AMPA channel.

G(t) = ε

[
t

τα
e−

t
τα ∗

M(t)∑
i=1

(Dves(i, t)

Davg

)3

β

]
(8.14)

The quantity ε = 20 pS denotes the conductance change of the post-synaptic

membrane per AMPA channel opening [182], τα = 0.59 ms is the time constant

of the AMPA channel [182], β = 30 is the average receptors opening following an

exocytosed vesicle [182], M(t) is the total vesicle release events per time instant, Dves

is the individual channel diameter (see figure 8.11) and Davg = 35 nm corresponds

to the average synaptic vesicle diameter [182]. For some exemplar results of post-

synaptic conductance change because of neurotransmitter vesicle release see figure

8.10.

As shown in figure 8.2, the morphology estimations and the chemical buffering is

assumed to be unaffected by the airborne pressure fluctuations. In the ‘Morphology’

section and in the ‘Calcium chemical buffering’ section all the parameters used to

define the models, specifically Tables 8.1 and 8.2, are time invariant. An example

that summarises the dynamic signals of the model is shown in figure 8.10

228 Chapter 8 Andreas N. Prokopiou



Biophysical Modelling of a Cochlear Implant System

Figure 8.10: The temporal response of the voltage dependent structures of the
synapse resulting in a change in the post-synaptic conductance. The stimulating
signal used is a 100 ms depolarising pulse of -30 mV (left column) and -50 mV
(right column). (a) An illustration is shown of the superimposed opening and closing
responses of a selection of a few calcium channels that are within a 50 nm radius
around a randomly selected position just under the synaptic ribbon. The distance
of 50 nm was chosen for clarity of the figure. Note that the most active channel
is shown in red. (b) The free calcium ion concentration at the postulated ‘calcium
sensor’ of some of the synaptic vesicles that are ready for release. In blue the
vesicle whose pattern of release is shown in the next panel. In green a selection of
a few of its neighbouring vesicles, thus showing the differences of spatial allocation
in calcium sensing. (c) The vesicle release mechanism discrete steps are shown
with a red ‘x’ marking the release events. (Insert) Note that having five Ca2+

bound onto the exocytotic mechanism does not always guarantee release. (d) The
aggregated response from the release of the synaptic vesicles is changing the post-
synaptic conductance in response to the internal cell being depolarised.

8.2 Model outcomes

The synaptic activity encodes low frequency sounds by maintaining a phase syn-

chronous vesicle release pattern, i.e., phase locking. For high-frequency sounds the

frequency of the vesicle release increases. The increase in vesicle release rate com-

bined with the spatial location of excitation, due to the basilar membrane mechanical

properties, are referred to as place coding. The phase locking response of the neu-

rons is used to compute the inter-aural time difference [288] with a stunning sensory

limen of a few microseconds where the onset time of the neuronal response has a
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prominent role [61].

The study presented here addresses two main questions: First, what is the role

of the synaptic ribbon and how does its action and morphology affect the output of

the sensory cell? Second, how does the synapse itself contribute to phase locking?

8.2.1 Synaptic ribbon shape and resulting dynamics

The role of the synaptic ribbon as a mediator to vesicle release is exemplified in figure

8.11a were it is explicitly shown that it creates an almost linear response to changing

intracellular voltage and vesicle release events. The behaviour is practically absent

for the freely floating vesicles. As a consequence of the almost linear dependence of

the vesicle release on intracellular voltage the almost linear behaviour of the post-

synaptic conductance is observed in 8.11c, following the pre-synaptic calcium ion

influx.

Figure 8.11: Pre-synaptic calcium and post-synaptic conductance voltage depen-
dence. (a) Average rate of vesicle release (vesicles per millisecond) when presented
with a 100 ms depolarising voltage pulse of varying strength. Note that the blue
lines represent ribbon tethered-vesicles while the red lines represent free floating
vesicles being released. The presence of the synaptic ribbon facilitates an almost
linear release of vesicles and thus the ability to separate different voltage levels.
(b) A histogram of all released vesicles’ diameters during this analysis. The model
randomises the diameter of a released vesicle by fitting a normal distribution with
a mean diameter of 35 nm and a SD of 10 nm. [182, 192]. (c) The superimposed
result of a number of simulation runs (between 30-40 repetitions) where 100 ms
depolarising voltage pulses of varying strength were used. The red line shows the
normalised pre-synaptic calcium current, while the blue line shows the normalised
post-synaptic conductance change. Both agree with published results [23, 164, 69].

230 Chapter 8 Andreas N. Prokopiou



Biophysical Modelling of a Cochlear Implant System

Another main factor in vesicle release is the variance of the ribbon morphology.

A novel comparison has therefore been made where the shape of the ribbon varies

from a flat disk, more common in retinal photoreceptor [308], to an ellipsoid, more

common in mammalian inner hair ribbon synapses [243] and to a sphere of increased

radius found in the amphibian papilla [339] (see figure 8.12). For all three ribbon

morphologies, the pre-synaptic calcium current was the same, on average, since the

calcium channel number was not changed. Even though the calcium current was

the same it was observed that the average post-synaptic conductance increases with

increasing volume of the synaptic ribbon, see figure 8.12. The increased surface area

above the active zone harbours more neurotransmitter vesicles, therefore permits

a bigger volley of neurotransmitter vesicles to be released. This indicates a more

potent vesicle release mechanism, which is more responsive to graded intracellular

voltage fluctuations.

As the intracellular voltage increases, the calcium ion concentration increases via

a more frequent opening and closing of calcium channels. As is shown in figure 8.5

the ‘open’ time of the calcium channels is practically constant as voltage changes,

and on the contrary the ‘close’ time decreases. Essentially this means as the intracel-

lular voltage increases, the frequency of calcium channels opening increases but their

open duration remains unchanged. This higher calcium channels opening frequency

is indicated as a more potent release of vesicles and furthermore as a higher rate of

release. Analysis results shown in figure 8.13 explicitly show that the shape of the

ribbon does not affect the rate of release, but instead the increasing intracellular

voltage makes the rate of vesicle release faster. As is shown in figure 8.13 the peak

value of inter-vesicle release time intervals, which indicates the vesicle release most

frequent interval is becoming smaller as intracellular voltage becomes bigger.

8.2.2 Place coding and phase locking

The model developed has amalgamated human auditory periphery with a mam-

malian model of the auditory synapse due to the lack of electro-physiological mea-
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Figure 8.12: Effects of ribbon morphology on synaptic vesicle release. Row [a] il-
lustrates the results from a disk shaped synaptic ribbon resembling a mammalian
photoreceptor synapse, row [b] shows the simulations from an ellipsoid shaped synap-
tic ribbon resembling a mammalian auditory synapse while the third row [c] depicts
the results from a sphere shaped ribbon with dimensions taken from those obtained
from an amphibian papilla. For a list of numerical parameters see Table 1. The
first column displays the locations of all synaptic neurotransmitter vesicles in the
model; blue marks the freely floating vesicles, green marks the ribbon tethered vesi-
cles while red marks the vesicles that are free for release given their proximity to
the membrane; the calcium channels are indicated with black dots. The second col-
umn plots together the pre-synaptic calcium-ion influx (red) and the corresponding
post-synaptic conductance of the opposite auditory nerve neurite (blue). The x-axis
indicates the variation in intensity of the 100 ms voltage pulses used to excite the
synapse. The third column is a histogram of the inter-vesicle release time intervals
(IVT) of all the vesicle releases. All histograms exhibit a peak at roughly 2.3 ms. In
other words, when the synapse is fully driven by a step change in the intracellular
voltage, a neurotransmitter filled vesicle will tend to be released at around 430 Hz.

surements of the human auditory synapse. A collection of results describing the

temporal behaviour of the neurotransmitter vesicle release for a given spatial loca-

tion on the basilar membrane is shown in figures 8.15-8.17. The analysis performed

aimed to provide insight into the phase locking or place coding nature of vesicle

release and assess their effects at the synapse level.

The main trends observed are: (1) A reduction in vesicle release rate as frequency

increases from 50 Hz to 400Hz-600Hz, followed by an increase in vesicle release rate as
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Figure 8.13: A line histogram of inter-vesicle release time intervals (IVT) at two
different voltage levels for all three ribbon shapes shown in figure 8.12. The blue
line indicates the disk shape in figure 8.12a, the red line indicates the ellipsoid in
figure 8.12b and the green line the sphere shape in figure 8.12c. Note that as the
intracellular voltage increases the direction of the normalised histogram shifts as
indicated by the arrow. Furthermore the peak rate of release shifts from an IVT
equal to 5 ms, i.e., 200Hz, to an IVT equal to 2.2 ms, i.e., roughly 460Hz, as the
intracellular voltage increases from -35 mV to -20 mV.

the frequency continues to increase to 8kHz, see figure 8.16. (2) An increase in vesicle

release phase locking abilities as frequency increases from 50 Hz to 400Hz-600Hz,

followed by a decrease in vesicle release phase locking as the frequency continues

to increase to 8kHz, see figure 8.17 (3) As the sound frequency increases above 400

Hz, both the post-synaptic conductance and the pre-synaptic current become more

linearly responsive to increasing sound levels. For the lower frequencies the response

is relatively flat with an exponential rise for sounds above 100 dBSPL, see figure

8.18.

8.3 Discussion on model results

The model responses to sound stimuli indicate that there is no specific limit of

determining where place coding starts but instead (Figure 8.17), as the temporal

phase locking of the vesicle release deteriorates for an increasing value of the input

frequency, a sigmoid-like post-synaptic conductance is observed (Figure 8.18). An-

other interesting observation in the release of synaptic vesicles is that sub-harmonics
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Figure 8.14: Illustration of the method used to estimate the across repetition inter-
vesicle release time intervals. Each vesicle release event is taken individually, as the
example event shown in red with an asterisk, and the time intervals from the given
event to all the forward events are recorded, as exemplified by the arrows. Note the
top raster plot shows the vesicle release events for auditory stimulation with a pure
tone of 100 Hz, at 80 dBSPL as recorded from the inner hair cell residing at the
basilar membrane point with a best frequency of 103 Hz. The method is reported
elsewhere as a shuffled autocorrelogram [162, 204].

seem to be emphasised for lower frequencies. This result suggests that the synaptic

mechanism when encoding a phase-locked sound frequency will release a distribu-

tion of vesicles with a time gap around the time period of the resonant frequency,

but will also release vesicle distributions with twice, three times the period and so

forth. This may be caused by vesicles that have already a few calcium ions bound

to them but do not release on the current signal peak, which makes them very prone

to release on the next signal peak in a much more synchronised manner.

The highest frequency where there is evidence of phase locking in the release of

neurotransmitter vesicles is up to 300-400 Hz ,see figure 8.17. For higher frequen-

cies it was observed that no discernible pattern could be extracted from the release

of neurotransmitter vesicles but instead a linear relation was observed between the

change of post-synaptic conductance of the auditory neurite and the increasing sound

levels in dB SPL. This finding supports place coding for higher frequencies as it re-
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Figure 8.15: The resulting inner hair cell voltages from the MAP model following
auditory stimulation with pure tone sounds at 80 dBSPL as recorded from the inner
hair cell residing at the basilar membrane point with a best frequency corresponding
to the stimulating pure tone. Note that only the first 100 ms are shown for clarity.

veals a biological mechanism to estimate the spectral energy content of the incoming

sound, through the graded response of the intracellular voltage. In other words the

linearised response of the post-synaptic conductance, for high frequencies, permits

the estimation of the frequency specific loudness.

A highly tunable model of the auditory periphery has been presented. The

attempt to maintain correspondence between model and physiology has resulted

into a large number of parameters. Such a feature is usually undesired in a model

since it makes it too complex to analyse and understand its behaviour. In the

presented model though all the parameters have been measured and reported by

independent studies. Modelling both the immature and the mature active zone

was necessary since much of the information stemming from various studies and

experiments considers the maturity and transition of the synaptic ribbon from a pre-

hearing to a hearing state. It was considered necessary during the development of

the model to verify whether the transition between the immature and mature mode

of operation of the model, see figure 8.3, could also replicate the experimentally

observed behaviour.
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Figure 8.16: Across repetition inter-vesicle release time intervals for various pure
tone sounds. The stimulating voltages that caused then are shown in figure 8.15.
The method used to generate the histograms is shown in figure 8.14

The new synapse model is designed with the knowledge that it will be used as a

module in a more general computational tool, which will be able to have its param-

eters and functionality upgraded modularly and conveniently as more experimental

data is generated by new studies. The synaptic ribbon used in modelling the vari-

ous responses shown in this paper corresponds to the morphology and the reported

dynamics of a mammalian synapse, notably studies performed on mice and some

morphological studies on human inner hair cells [295, 247, 246]. There is a lack of

detailed experimental studies conducted by modern methods on human cells, a nec-

essary condition to accurately tune our synapse model to a human auditory synapse.

However, the generic use of the same biological mechanism through various species

permits the assumption that the human ribbon synapse will not differ radically from

other mammals.

The assumptions the model makes is that AMPA channels do not saturate and
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Figure 8.17: Inter-vesicle release time intervals (IVT) for vesicle release for various
pure tone sounds. The stimulating voltages that caused then are shown in figure
8.15. The asterisk on the plot indicates the IVT that corresponds to the frequency of
the stimulating pure tone; note that the frequency of release is equal to the reciprocal
of the IVT.

that no losses of glutamate exist in the synaptic cleft [182]. The nanodomain cou-

pling that is presumed to exist between the calcium channels and the vesicular

sensors in the auditory synapse [74, 119] excludes local calcium induced calcium

release mechanisms (like the ones found in muscles) and the possibility of coupled

oscillation of calcium channels (i.e., no propagating waves exist)[15]. Therefore, a

further assumption made in the spatial integration of the overall action of calcium

channels is that there is no cooperation between calcium channels. This permits

linear summation of the individual channel contributions when calculating the in-
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Figure 8.18: The effects of varying intensity (in dB SPL) of an input acoustic wave
are investigated. Sound snippets, 200 ms in duration, were generated. Their fre-
quencies varied: 100 Hz, 200 Hz, 300 Hz, 400 Hz, 1 kHz and 8 kHz, all recorded at
the corresponding best frequency position on the basilar membrane. The intensity
of each sound snippet was increased in gradual steps of 10 dB SPL from 0 dB SPL
to 140 dB SPL. Note that a ‘best fit’ line is drawn for the 8 kHz plot because of the
great variance in the model outputs.

tracellular calcium ion concentration level [250].

Since the stochastic nature of vesicle release is important in formulating a sta-

tistical representation of the stimulus, every non-deterministic stage of the vesicle

release paradigm was modelled by means of Monte Carlo stochastic models whose

probabilities of state transitions were calculated based on kinetic schemes of macro-

scale measurements. Since the Monte Carlo simulation technique is notorious for its
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failing accuracy if the sampling rate is too low, all the signals processed with Monte

Carlo techniques have been re-sampled to confirm the accurate estimation of state

transitions [327].

The change of the synapse shape as a function of the circumference of the baso-

lateral area of the inner hair cell, and the tonotopic tuning of the auditory synapse

has not been taken into account when modelling the responses in figures 8.15-8.17.

It is not the scope of the presented model to tune synapses within a single inner

hair cell to differentiate between high spontaneous and low spontaneous rate which

can be elicited by the change of the synaptic ribbon [130]. This will be considered

in future investigations.

Given the unclear mechanisms of the vesicular tethering and trafficking [264] the

model based a compound fusion mechanism on the conjecture that the larger the

fused vesicle becomes, the easier it will be to fuse even more vesicles onto it. This is

attributed to the fact that because its surface area will become greater more vesicles

will be in contact together, until a limit is reached where the compound vesicle is

large enough to occupy its maximum supported surface area on the synaptic ribbon.

The fact that it captures the onset response and shows evidence of recovery of

response after adaptation in forward masking tests, see figure 8.9, gives indications

that it might be a valid conjecture. None the less for the sake of brevity this

mechanism will be further tested and scrutinised in a future study.

The increasing size of the synaptic ribbon makes the release of vesicles more

potent as is indicated in figure 8.12 which follows from the fact that many more

vesicles are held close to the pre-synaptic membrane therefore increasing the ‘ready

for release’ pool of vesicles. A hypothesis raised by the results, see figure 8.13,

is that the rate that vesicles are released seems to be unaffected by the synaptic

ribbon shape given that the calcium channel density is optimal for the given shape

to ensure adequate co-localization between ‘ready for release’ pool of vesicles and

calcium channels. However there is not enough evidence in this study to adequately

describe what is an optimal calcium channel density for each ribbon morphology.
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Figure 8.12a reports the structure of a mammalian photoreceptor and the virtual

organelles use dynamics identical to the rest of the auditory relevant morphologies.

Even though both auditory and photoreceptor calcium channels are of the L-type,

the inner hair cell contains Ca2+
V 1.3 whereas the photoreceptor cell contains Ca2+

V

1.4 calcium channels [35].

8.4 Conclusion

This effort aims at closing the gap between isolated studies on the auditory synapse

and models that describe the actions of the auditory periphery. Such progress allows

for novel investigations with regards to the behaviour of the auditory synapse at

various positions on the basilar membrane under physiologically relevant stimuli,

e.g., audio waveforms of varying intensity. The results presented shed some light

on two aspects of sound encoding at the level of the inner hair cell synapse. First,

the effect of changing the morphology of the synaptic ribbon was assessed and it

was found that the dynamics of the system was affected by the ribbon shape, by

increasing the rate of vesicle release. Second, the relative contributions of phase

locking or place coding as a means to encode frequency and intensity of the acoustic

waves have been examined. It was found that there is a continuous transition from

phase locking at low frequencies to place coding for higher frequencies. Furthermore

for low intensity sound, phase locking of synaptic vesicle release seems to happen at

the subharmonics of the fundamental.

Each inner hair cell is innervated by 10 to 30 auditory afferent neurons which

although individually limited in their maximum spiking frequency, together display

patterns phase-locked with the sound for up to a few kHz. The subharmonic prefer-

ence of vesicle release shown in the results presented here, see figure 8.17, can aid in

explaining this effect. As observed from the state transitions of the bound calcium

ions to the sensor mechanism of the synapse, see figure 8.10, fast fluctuations of

voltage, a characteristic of higher frequencies, causes an incomplete filling of the

five possible binding sites shown in equation (8.4). Subsequently the dissociation
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of the calcium ions is slow enough that when the next peak of the voltage arrives

the release of the vesicle is greatly facilitated by the already associated ions. This

essentially forms a leaky integration mechanism similar to action potential genera-

tion, but in this case the triggered event is the release of a vesicle. In other words

when the stimulating signal period is too short, i.e., high frequency oscillations, the

following periods will provide enough calcium ions to release the vesicle, assuming

the stimulating duration is long enough to contain multiple periods.

This mechanism of release may explain the phase locking observed at the col-

lection of auditory nerve fibres at frequencies higher than the maximum frequency

allowable by the refractory period of the auditory nerve [263]. If the stimulating fre-

quency is higher than the inverse of the auditory nerve’s refractory period the action

potentials elicited will miss some peaks of the stimulus. The sub-harmonic vesicle

release observed (figure 8.17) agrees with this effect, and furthermore the appearance

of discrete peaks of sub-harmonic vesicle release suggests quantal and discrete phase

shifts of the vesicle release events, which when their effects are summed across the

entire cochlear nerve will provide phase locking effects as shown in previous studies

[127].

A function for the synaptic ribbon that is suggested by the model outputs, see

figure 8.9, is that the purpose of tethering vesicles onto the ribbons surface is not to

convey them to the pre-synaptic membrane, but instead to keep the vesicles close

enough so they can fuse. This permits multi-vesicular release from the compound-

fused vesicles and can be suggested as a way for the ribbon to encode signal onsets

in a calcium-ion independent way, as there is no evidence that calcium ions aid in

fusing of vesicles.
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Conclusion

The conclusion chapter is split into two sections, the first section discusses the

possible future designs that new generations of cochlear implants might adopt given

some indications from today’s research. The second section discusses the thesis

contributions and the future work this project will go into.

9.1 Future cochlear implant designs

Given the almost exponential growth of modern technology any attempted predic-

tion for future events in practically any field is bound to miss the mark. However,

it is important to consider the advancing technologies that have a potential impli-

cation in affecting future cochlear implant designs. It is the author’s opinion that

an ideal cochlear implant should be able to perform a set of functions:

• Take advantage of the miniaturisation that analogue electronics can provide

and eventually become a fully implantable solution, possibly using piezoelectric

microphones detecting ossicular movements. An example of an existing design

that utilises such technology is the Otologics Middle Ear Transducer (MET)

Carina device [31]. Furthermore a system-on-chip (SoC) fully implantable

cochlear implant has been designed recently with low power requirements[383].

• The sound processor should be able to perform auditory scene analysis and
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auditory object segregation. For example if the cochlear implant detects speech

it should enable the user to focus on the speech information and suppress other

sound input regarding it as noise. It should also be able to enable the user

to utilize inter-aural time delays and loudness levels, and coupled with some

form of directionally varying spectral modulation of the incoming sound to

enable the patient to use head movements to aim at sounds of interest. A few

examples of low power speech recognisers [278, 129] have been shown already,

and for a discussion on beamforming techniques see section 5.2.5.

• The cochlear implant should be able to detect damage to the cochlear nerve

and thus utilise complex stimulating patterns with appropriate phase shifts to

‘reach’ into the more damaged parts of the cochlea without over stimulating

healthier areas. In other words use simultaneous stimulation from neighbour-

ing electrodes to tailor a stimulating wavefront that will mirror the neuronal

damage and complement the loss. A study where an algorithm was used to

provide compensation of the simultaneous stimulation of neighbouring sites

and permit a summation potential form a cooperative stimulation from ad-

jacent sites showed promising results [9]. Furthermore the use of a genetic

algorithm for predicting an energy-optimal waveform shape for neural stimu-

lation [381] can be used as a method to address the complex problem of patient

variability.

• The use of novel electrode material, design and implantation methods — most

probably an automated robotic process — can promote neural growth and

possible fusion of the electrode to the neuron with minimal insertion trauma.

Some research towards novel materials, such as soft hydrogel electrodes [307],

and novel techniques [105, 346] shows hope in restoring hearing loss, or revers-

ing hearing degeneration. Some methods include gene therapy techniques, such

as close field electroporation gene delivery methods, which use the cochlear

implant electrode to generate local electric fields [275]. Furthermore with the

advent of additive manufacturing, or 3D printing, it is conceivable to custom
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design every electrode based on the particular cochlea shape that it would be

implanted in.

• Accept efferent brain neuronal input that will permit change to the quality

factors and centre frequencies of filters in the filter bank. This assumes that

the patient will learn to operate the implant and choose the focus by tuning the

filters. This is analogous to the efferent activity on the outer hair cells chang-

ing the mechanical properties of the tectorial - basilar membrane interface.

The advent of auditory brainstem implant (ABI) and the auditory midbrain

implant (AMI) has shown little progress in stimulating the brainstem in ways

that can be considered as effective as a cochlear implant, predominantly be-

cause of the complete redesign required of the stimulating strategy [228, 218].

However, given the possibility of central auditory system recording of neu-

ronal activity, research in a design of a cochlear implant processor which could

accept neuronal activation cues from the central auditory system and dynam-

ically alter the sound processing based on those cues could provide some novel

technologies permitting efferent brain control of a cochlear implant.

• The advent of novel stimulation strategies that could possibly enable bet-

ter encoding of sound can include different modes of stimulation, other than

electrical. Research towards optical stimulation of the auditory nerve reveals

that is it possible by using nanosecond pulses [291], however, the stimulation

mechanism is unclear.

• Utilize energy harvesting methods to prolong battery life, and combined with

ultra low power electronics become self-sustained therefore abolish the need

of charging. Some proposals for energy harvesting consider energy extraction

from the potential difference that exists between the perilymph and endolymph

in the inner ear [227].
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9.2 Thesis Contributions

As discussed in this thesis the cochlear implant has established itself as a viable ap-

proach for treating deafness and the main focus of research now is on the pre-implant

planning for the best post-implant outcomes. Currently the patient performance is

variable and benefits from the implant deteriorate rapidly in adverse listening con-

ditions, such as competing speech or background noise.

The pre-implant prediction of post-implant outcomes is at the moment heavily

dependent on statistical estimates from an ensemble of patients which does not aim

at assessing the individual patient’s performance, but instead act as a guideline for

the consulting audiologist treating the patient. The computational tool presented

here, namely ‘Digital Cochlea Stimulation and Evaluation Tool’ (DiCoStET), aims

to reduce the error margin on the prediction of the post-implant outcomes. This is

attempted by creating a ‘digital patient’ where the anatomical cochlea in the tool

has the same geometry as the patient’s cochlea. Then the electrode is inserted as

it would be in a hypothetical surgery therefore providing feedback to the surgeon

of what would be the best course of action during the surgery. Given the unique

cochlea and electrode relation various cochlear implant designs can be tested for

their individual performance estimates permitting the audiologist to choose the one

that works best with the particular patient and their specific aetiology of deafness.

As is mentioned previously, a complete paradigm that describes the sensory per-

ception of electrical stimulation does not exist today, nor does an understanding of

how the brain adapts to the electrical stimulation. It was therefore chosen to ask the

question ‘how well does the cochlear implant replace the operation of the auditory

periphery?’ for assessing the cochlear implant performance. To this end a model of

the auditory periphery that is calibrated to the patient’s cochlea dimensions, but

working as a healthy cochlea, serves as the control experiment. This permits the di-

rect comparison of the spatio-temporal patterns of action potentials for the healthy

case and the electrically stimulates case to arrive to a conclusion for the cochlear im-

plant’s performance. As such, the existence of such a computational tool permits the
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closed-loop design and testing of the cochlear implant before patient implantation.

Any attempt to model biophysical phenomena has the problem of across scale

modelling, whereby scale refers to temporal, spatial and organizational scales. The

complex interacting pathways of biological systems generate computational loads

that are very impractical. As such, all biophysical models need to ‘draw the line’

by making various assumptions, which reflect the most up to date knowledge of the

system that is being modelled. As such, it needs to be clear about what kind of

questions the model can and cannot answer. For example, DiCoStET as presented

in chapter 6 can be a good estimate of the action potential initiation zones and the

overall pattern of activation of the auditory nerve in the scale of a few hundreds

of milliseconds to seconds. It cannot, however, describe accurately the individual

action potential generation, as it is based on a macroscopic view of the auditory

nerve stimulation.

Bearing the previous limitation in mind, a novel model of the auditory synapse

was developed and presented in chapter 8. This new computational model aims

at broadening the understanding of the synaptic vesicle release into the cleft of

the inner hair cell and auditory nerve fibre, which is a stage of signal transduction

that is critical to comprehensive models of the peripheral auditory system. This

enables the study of the mechanisms involved in generating discrete events driven

from the intracellular voltage variations of the auditory receptor cell. A hypothesis

proposed stemming from the results of the study presented in chapter 8 suggests

that a possible function of the synaptic machinery of the auditory synapse is to

enable the auditory synapse to encode temporal sequence and intensity of auditory

stimuli separately.
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Future directions

The purpose of DiCoStET is to serve as computational tool for collaborative work

between engineering fields and biology oriented fields. As such, it must remain flexi-

ble, and adaptable, to different scales, so as to be able to capture various biophysical

phenomena.

The current action potential generation model used in DiCoStET assumes that

all the neurons along the spiral ganglion are homogeneous in their firing properties,

which is unlikely to be valid. There is evidence that suggests that the spiral gan-

glion nerves have different action potential generation properties along the organ

under normal hearing conditions [56]. More specifically the type and density of

sodium channels, which are important excitability parameters, were shown to vary

tonotopically across the basilar membrane neuronal projections [56]. Furthermore

the auditory synapse has been shown to vary in a tonotopic manner [160]. How-

ever, the lack of any experimental evidence that suggests that electrical stimulation

has different effects along the spiral ganglion lead to the previous assumption made.

Furthermore, gathering in-vivo experimental data for human subjects is not possible

due to the intrusive nature of the actual experiment. Gross evoked potentials can

be recorded as electrically evoked compound action potential (eCAP), which can

give a good estimate of whether the stimulating electrode is affecting electroactive

tissue, but the method is not accurate enough to observe single neuron excitations

to mark any possible differences across the spiral ganglion.
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Another important factor to consider is that the parameters used in the audi-

tory nerve stimulation model come from experiments where researchers stimulated

the auditory nerve of a cat [234]. The assumption made by using the cat model

to predict human excitation has elsewhere been shown to be applicable [231, 232].

However, there is evidence supporting temporal miss-matches between cat and hu-

man neuronal excitation [284] due to different speed of action potential propagation.

Essentially the assumption that human data can be predicted from animal models

permits for only a first approach for spike initiation zones. More quantitative results,

such as calculation of threshold currents, require more complex models that include

individual ion channel gating processes in the membrane of an excitable target cell.

In light of these two considerations, a future development of the model will

take into account the possible variability along the spiral ganglion. This will be

accomplished by a location specific, i.e., along the spiral ganglion, model of the

auditory synapse joined with a cable model of the auditory nerve. The model of

the auditory synapse is discussed in chapter 8, whereas the cable model of the

auditory nerve is not presented in this thesis as the results are too preliminary. The

neuron cable model should have a morphology and ion channel densities that match

the human auditory nerve [91, 128, 283, 284, 32], however, further investigation is

necessary to assess the dynamic behaviour of the model and how well it matches the

literature reports that describe the auditory nerve fibre dynamics.

The modelling of the entire spiral ganglion down to the ionic channel gating

dynamics would be very computationally intensive, to the point that the model

becomes impractical to use. The solution to this problem is to develop the spiral

ganglion synapse-neuron model which will take into account ionic channel gating

dynamics, but only as a way to train, or tune, the already existing auditory nerve

stimulation model discussed in section 6.3.2. This concept of hierarchical modelling

is aimed to enable the user to model across different spatiotemporal scales, for ex-

ample if the detailed spike initiation time is investigated then the model used would

be the single neuron, or a small local cluster. If the comparison of sound snippets
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is under investigation then the DiCoStET model would be used as presented here,

but with a pre-calibrated auditory nerve stimulation model that has the potential

to be patient specific to the level of individual neuronal morphology and ion channel

density.

In addition to the patient specific and across spiral ganglion tunable model a fur-

ther investigation that will be undertaken is the direct comparison of the electrically

evoked spike trains with the psychoacoustic model and estimates shown in Section

5.3. This investigation will aim to indicate the fit of the model to patient-derived

work and experimental results.
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