11 research outputs found

    Discriminating DDoS flows from flash crowds using information distance

    Full text link
    Discriminating DDoS flooding attacks from flash crowds poses a tough challenge for the network security community. Because of the vulnerability of the original design of the Internet, attackers can easily mimic the patterns of legitimate network traffic to fly under the radar. The existing fingerprint or feature based algorithms are incapable to detect new attack strategies. In this paper, we aim to differentiate DDoS attack flows from flash crowds. We are motivated by the following fact: the attack flows are generated by the same prebuilt program (attack tools), however, flash crowds come from randomly distributed users all over the Internet. Therefore, the flow similarity among DDoS attack flows is much stronger than that among flash crowds. We employ abstract distance metrics, the Jeffrey distance, the Sibson distance, and the Hellinger distance to measure the similarity among flows to achieve our goal. We compared the three metrics and found that the Sibson distance is the most suitable one for our purpose. We apply our algorithm to the real datasets and the results indicate that the proposed algorithm can differentiate them with an accuracy around 65%.<br /

    A SERVICE FRAMEWORK FOR REDUCING THE ATTACKS IN THE CLOUD ENVIRONMENT

    Get PDF
    We initiate a process for organize the sorts of stealthy attack, that display progressively rising intensity trend considered to cause finest financial cost to cloud customer, while enhancing job size in addition to service arrival rate that's forced while using techniques of recognition. Providers of cloud system give you services to buy the capacity of storage, offering the idea of indefinite resource convenience. Inside the technology of cloud furthermore degradation of partial service due to anxiety attack has effect on the cost and services information, and also on convenience that's perceived by user. The system will goal at utilizing cloud flexibility, forcing application to consume extra sources, affecting client more details on economic aspects compared to service convenience. Recommended attack pattern concentrates at exploiting cloud elasticity, forcing services to improve and consume additional sources, affecting customer on financial features compared to service openness. The qualities available by cloud provider, to make certain service level contracts negotiated by customer is maliciously utilized by means of recommended stealthy attack, that progressively exhausts sources that are provided by cloud provider. The procedure will execute stealthy attack designs that display progressively growing polymorphic conduct that avoid, otherwise delay techniques of earlier recommended

    CLOUD COMPUTING STRATEGY FOR OVERFLOW OF DENIED DATA

    Get PDF
    The success of the cloud computing paradigm is due to its on-demand, self-service, and pay-by-use nature. According to this paradigm, the effects of Denial of Service (DoS) attacks involve not only the quality of the delivered service, but also the service maintenance costs in terms of resource consumption. Specifically, the longer the detection delay is, the higher the costs to be incurred. Therefore, a particular attention has to be paid for stealthy DoS attacks. They aim at minimizing their visibility, and at the same time, they can be as harmful as the brute-force attacks. They are sophisticated attacks tailored to leverage the worst-case performance of the target system through specific periodic, pulsing, and low-rate traffic patterns. In this paper, we propose a strategy to orchestrate stealthy attack patterns, which exhibit a slowly-increasing-intensity trend designed to inflict the maximum financial cost to the cloud customer, while respecting the job size and the service arrival rate imposed by the detection mechanisms. We describe both how to apply the proposed strategy, and its effects on the target system deployed in the cloud

    DoS and DDoS Attacks: Defense, Detection and Traceback Mechanisms - A Survey

    Get PDF
    Denial of Service (DoS) or Distributed Denial of Service (DDoS) attacks are typically explicit attempts to exhaust victim2019;s bandwidth or disrupt legitimate users2019; access to services. Traditional architecture of internet is vulnerable to DDoS attacks and it provides an opportunity to an attacker to gain access to a large number of compromised computers by exploiting their vulnerabilities to set up attack networks or Botnets. Once attack network or Botnet has been set up, an attacker invokes a large-scale, coordinated attack against one or more targets. Asa result of the continuous evolution of new attacks and ever-increasing range of vulnerable hosts on the internet, many DDoS attack Detection, Prevention and Traceback mechanisms have been proposed, In this paper, we tend to surveyed different types of attacks and techniques of DDoS attacks and their countermeasures. The significance of this paper is that the coverage of many aspects of countering DDoS attacks including detection, defence and mitigation, traceback approaches, open issues and research challenges

    A model to study cyber attack mechanics and denial-of-service exploits over the internet\u27s router infrastructure using colored petri nets

    Get PDF
    The Internet‟s router infrastructure, a scale-free computer network, is vulnerable to targeted denial-of-service (DoS) attacks. Protecting this infrastructure‟s stability is a vital national interest because of the dependence of economic and national security transactions on the Internet. Current defensive countermeasures that rely on monitoring specific router traffic have been shown to be costly, inefficient, impractical, and reactive rather than anticipatory. To address these issues, this research investigation considers a new paradigm that relies on the systemic changes that occur during a cyber attack, rather than individual router traffic anomalies. It has been hypothesized in the literature that systemic knowledge of cyber attack mechanics can be used to infer the existence of an exploit in its formative stages, before severe network degradation occurs. The study described here targeted DoS attacks against large-scale computer networks. To determine whether this new paradigm can be expressed though the study of subtle changes in the physical characteristics of the Internet‟s connectivity environment, this research developed a first of its kind Colored Petri Net (CPN) model of the United States AT&T router connectivity topology. By simulating the systemic affects of a DoS attack over this infrastructure, the objectives of this research were to (1) determine whether it is possible to detect small subtle changes in the connectivity environment of the Internet‟s router connectivity infrastructure that occur during a cyber attack; and (2) if the first premise is valid, to ascertain the feasibility of using these changes as a means for (a) early infrastructure attack detection and (b) router infrastructure protection strategy development against these attacks. Using CPN simulations, this study determined that systemic network changes can be detected in the early stages of a cyber attack. Specifically, this research has provided evidence that using knowledge of the Internet‟s connectivity topology and its physical characteristics to protect the router infrastructure from targeted DoS attacks is feasible. In addition, it is plausible to use these techniques to detect targeted DoS attacks and may lead to new network security tools

    Robust and efficient detection of DDoS attacks for large-scale internet

    No full text
    Abstract — In recent years, distributed denial of service (DDoS) attacks have become a major security threat to Internet services. How to detect and defend against DDoS attacks is currently a hot topic in both industry and academia. In this paper, we propose a novel framework to robustly and efficiently detect DDoS attacks and identify attack packets. The key idea of our framework is to exploit spatial and temporal correlation of DDoS attack traffic. In this framework, we design a perimeter-based anti-DDoS system, in which traffic is analyzed only at the edge routers of an internet service provider (ISP) network. The novelties of our framework are 1) temporal-correlation based feature extraction and 2) spatial-correlation based detection. With these techniques, our scheme can accurately detect DDoS attacks and identify attack packets without modifying existing IP forwarding mechanisms at routers. Our simulation results show that the proposed framework can detect DDoS attacks even if the volume of attack traffic on each link is extremely small. Especially, for the same false alarm probability, our scheme has a detection probability of 0.97, while the existing scheme has a detection probability of 0.17, which demonstrates the superior performance of our scheme. I

    Towards Coordinated, Network-Wide Traffic Monitoring for Early Detection of DDoS Flooding Attacks

    Get PDF
    DDoS flooding attacks are one of the biggest concerns for security professionals and they are typically explicit attempts to disrupt legitimate users' access to services. Developing a comprehensive defense mechanism against such attacks requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various such attacks. In this thesis, we dig into the problem of DDoS flooding attacks from four directions: (1) We study the origin of these attacks, their variations, and various existing defense mechanisms against them. Our literature review gives insight into a list of key required features for the next generation of DDoS flooding defense mechanisms. The most important requirement on this list is to see more distributed DDoS flooding defense mechanisms in near future, (2) In such systems, the success in detecting DDoS flooding attacks earlier and in a distributed fashion is highly dependent on the quality and quantity of the traffic flows that are covered by the employed traffic monitoring mechanisms. This motivates us to study and understand the challenges of existing traffic monitoring mechanisms, (3) We propose a novel distributed, coordinated, network-wide traffic monitoring (DiCoTraM) approach that addresses the key challenges of current traffic monitoring mechanisms. DiCoTraM enhances flow coverage to enable effective, early detection of DDoS flooding attacks. We compare and evaluate the performance of DiCoTraM with various other traffic monitoring mechanisms in terms of their total flow coverage and DDoS flooding attack flow coverage, and (4) We evaluate the effectiveness of DiCoTraM with cSamp, an existing traffic monitoring mechanism that outperforms most of other traffic monitoring mechanisms, with regards to supporting early detection of DDoS flooding attacks (i.e., at the intermediate network) by employing two existing DDoS flooding detection mechanisms over them. We then compare the effectiveness of DiCoTraM with that of cSamp by comparing the detection rates and false positive rates achieved when the selected detection mechanisms are employed over DiCoTraM and cSamp. The results show that DiCoTraM outperforms other traffic monitoring mechanisms in terms of DDoS flooding attack flow coverage

    Improvement of DDoS attack detection and web access anonymity

    Full text link
    The thesis has covered a range of algorithms that help to improve the security of web services. The research focused on the problems of DDoS attack and traffic analysis attack against service availability and information privacy respectively. Finally, this research significantly advantaged DDoS attack detection and web access anonymity.<br /
    corecore