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ABSTRACT 

 

The Internet‟s router infrastructure, a scale-free computer network, is vulnerable to 

targeted denial-of-service (DoS) attacks. Protecting this infrastructure‟s stability is a vital 

national interest because of the dependence of economic and national security transactions on 

the Internet.  Current defensive countermeasures that rely on monitoring specific router traffic 

have been shown to be costly, inefficient, impractical, and reactive rather than anticipatory. 

To address these issues, this research investigation considers a new paradigm that relies 

on the systemic changes that occur during a cyber attack, rather than individual router traffic 

anomalies.  It has been hypothesized in the literature that systemic knowledge of cyber attack 

mechanics can be used to infer the existence of an exploit in its formative stages, before severe 

network degradation occurs.  The study described here targeted DoS attacks against large-scale 

computer networks.  To determine whether this new paradigm can be expressed though the 

study of subtle changes in the physical characteristics of the Internet‟s connectivity 

environment, this research developed a first of its kind Colored Petri Net (CPN) model of the 

United States AT&T router connectivity topology.   

By simulating the systemic affects of a DoS attack over this infrastructure,  the 

objectives of this research were to (1) determine whether it is possible to detect small subtle 

changes in the connectivity environment of the Internet‟s router connectivity infrastructure that 

occur during a cyber attack; and (2) if the first premise is valid, to ascertain the feasibility of 

using these changes as a means for (a) early infrastructure attack detection and (b) router 

infrastructure protection strategy development against these attacks.   

Using CPN simulations, this study determined that systemic network changes can be 

detected in the early stages of a cyber attack.  Specifically, this research has provided evidence 
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that using knowledge of the Internet‟s connectivity topology and its physical characteristics to 

protect the router infrastructure from targeted DoS attacks is feasible.  In addition, it is 

plausible to use these techniques to detect targeted DoS attacks and may lead to new network 

security tools. 
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 I.  INTRODUCTION 

For the first time, Colored Petri Net (CPN) modeling and simulation techniques have 

been used to simulate targeted denial-of-service attacks over the Internet‟s router 

infrastructure.  Cyber attacks were simulated against historic datasets collected over a 

specific time period using actual Internet router connectivity.  The simulation was used to 

study changes in the Internet‟s connectivity state during a targeted denial-of-service (DoS) 

attack. Using scale-free network theory, this research sought to determine whether there is 

strong evidence that underlying network-wide attack markers exist.  During the formative 

stages of a targeted denial-of-service exploit against a large-scale computer network these 

attack markers might be used to study cyber attack mechanics.  Attack markers, as will be 

discussed, are subtle changes in Internet‟s connectivity during an attack.  

Large-scale cyber attacks against the Internet‟s router infrastructure could lead to 

significant disruptions in global commerce as well as impede national security objectives.   

The Internet‟s router infrastructure is responsible for facilitating all communications over the 

Internet.   A router is a special purpose computer on a network that is responsible for passing 

information between computers or other routers.  Using routers, information is passed along 

a path from the original source computer to its ultimate destination computer.  The Internet‟s 

router infrastructure is composed of thousands of connected routers that pass information 

around the world.  The actual number of routers is dynamic because during normal Internet 

operations, routers are added and removed to adjust for changes in user demand, normal 

router failures, and maintenance periods.  

Malicious attacks that impede robust and reliable Internet communications are 

becoming an ever-increasing problem. Over the last five years, computer vulnerabilities and 
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exploits have grown significantly and do not show any sign of slowing down.  A 2008 FBI 

computer crime survey (Richardson 2008) reported that from 2004 to 2008, 45% to 55% of 

the organizations surveyed reported at least one occurrence of  an unauthorized use of their 

computer systems.  In addition, they found that over that same period, 25% of all security 

incidents were classified as denial-of-service attacks. 

A denial-of-service attack generates large volumes of Internet messages over a short 

period of time.  This traffic flood is aimed at one or many target destinations over a network.   

As a result of this onslaught of Internet traffic, the target(s) becomes overloaded and suffers 

severe service degradation.  During a DoS attack, authorized users are denied access to 

computer systems (Douligeris and Mitrokotsa 2004; Olalekan 2008; Peng, Leckie, and 

Ramamohanarao 2007a).  Denial-of-service attacks are a common tool used by Internet 

attackers to achieve malicious objectives (Cheol-Joo et al. 2007; Douligeris and Mitrokotsa 

2004; Mirkovic and Reiher 2004; Olalekan 2008; Peng, Leckie, and Ramamohanarao 2007b; 

Richardson 2008) .   

Two types of targets have been exploited by this mode of attack: enterprise and 

infrastructure.  At the enterprise level, the target is usually specific commercial enterprise 

networks such as Microsoft.  The primary objective is to severely disrupt communications 

within a few specific web sites on that network.  At the infrastructure level, where the 

primary objective is service degradation over an entire large-scale network connecting many 

networks and web sites, the attacker seeks to disrupt normal information flow between the 

routers that facilitate network-wide communication.  Prior to 2002, enterprise level networks 

were the primary targets for DOS attacks.  Since 2002, the targets have also included the 

Internet‟s global router infrastructure (Cheung 2006; Dirk et al. 2004; Mizrak et al. 2006; 
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Olalekan 2008; Peng, Leckie, and Ramamohanarao 2007b).  This shift signals a possible 

change in attacker motivations with potentially more far-reaching and dangerous impacts 

(Borchgrave et al. 2001; Mizrak et al. 2006).    

Distinguishing between normal and malicious activity over the Internet is very 

difficult (Casey 2002; Casey 2004; Rattray 2001b).  Denial-of-service attacks often involve 

multiple targets spread over a large-scale network.  In its formative stages, a denial-of-

service attack may appear in the network‟s system logs as normal but heavy Internet traffic.  

The DoS attack may not emerge as a threat to a network‟s availability until it has caused 

significant damage.  One key reason for this detection latency is that cyber attack detection is 

a reactive process.  It relies on the time-consuming and tedious examination of individual 

network router communication packets. This assessment is performed locally on a small 

portion of the network without a complete understanding of the potential broader network-

wide ramifications of an attack.   Often, the overall extent of the network-wide damage is not 

recognized until there is widespread and significant network connectivity instability.   

A potentially more efficient technique for large-scale network-wide assessments is 

postulated by Stephenson and Prueitt (Stephenson 2006; Stephenson and Prueitt 2005).  They 

argue that cyber attack mechanics over large-scale computer networks can be studied during 

the attack‟s formative stages through subtle changes in the network‟s environment.  To prove 

the potential feasibility of their approach, the research in this dissertation developed a novel 

Colored Petri Net (CPN) model of the Internet‟s router connectivity and emulated targeted 

denial-of-service attacks against this simulated router infrastructure. The baseline data for 

this research simulation were extracted from Rocketfuel Internet maps collected by the 

University of Washington (Alderson et al. 2005; Rocketfuel: An ISP topology mapping 
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engine n.d.; Spring et al. 2004).  Specifically, the simulation was based on a snapshot of the 

United States AT&T router backbone infrastructure consisting of 11,800 routers.   

This research studied connectivity changes between individual adjacent routers 

during the denial-of-service attack simulation.  At pre-determined time intervals during the 

simulated attack, the changes in individual router connectivity characteristics were 

aggregated into a network-wide connectivity state.  Subtle changes in the overall network-

wide connectivity states were studied for relevant patterns of behavior during the attack 

simulation. The techniques used in this research are a novel approach for studying networks 

under denial-of-service attack.   

The simulations in this investigation have uncovered subtle fluctuations in the 

connectivity environment of the baseline data during the earliest stages of a simulated denial-

of-service attack.  The approach used in this research may lead to the development of 

Internet-wide security tools to prevent and anticipate DoS attacks against the Internet‟s router 

connectivity infrastructure. 

 

A. Problem Statement  

Over the past decade, scale-free networks have been discovered among biological, 

social, and technological communication systems (Alderson et al. 2005; Barabasi and Albert 

2002; Boccaletti et al. 2006; Michalis, Petros, and Christos 1999).   Empirical research has 

shown that the router connection activity of the Internet‟s infrastructure behaves as predicted 

by scale-free network theory (Barabasi and Albert 2002; Barabasi, Ravasz, and Vicsek 2001; 

Dorogovtsev and Mendes 2002; Gallos 2005; Michalis, Petros, and Christos 1999; Newman 

2003).  Empirical studies have shown that the Internet‟s communication infrastructure is 
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dependent upon a relatively few centralized, highly connected routers (critical nodes) that 

may be vulnerable to targeted denial-of-service attacks (Albert, Jeong, and Barabasi 2000; 

Barabasi and Albert 2002; Boccaletti et al. 2006; Cohen 2000, 2001; Crucitti, Latora, and 

Marchiori 2004; Gallos 2005; Latora and Marchiori 2005; Motter and Lai 2002; Olalekan 

2008; Salla 2005; Sun et al. 2007; Wu et al. 2007).   

In scale-free computer networks of over 4,000 nodes, systemically removing as little 

as 5 percent of the network‟s most connected routers, via targeted denial-of-service attacks, 

initiates a rapid cascading degradation of the network‟s global connectivity (Barabasi and 

Albert 2002; Cohen 2001; Gallos et al. 2006; Holme et al. 2002a; Lai, Motter, and Nishikawa 

2004; Motter and Lai 2002; Wang et al. 2008).  This cascaded degradation occurs as “… 

traffic is rerouted to bypass malfunctioning routers, eventually leading to an avalanche of 

overloads on other routers that are not equipped to handle extra traffic. The redistribution of 

the traffic can result in a congestion regime with a large drop in the performance” (Crucitti, 

Latora, and Marchiori 2004).  Identifying cascaded denial-of-service attacks in their 

formative stages is a difficult task but is critical for impeding the cascading router failures 

(Cheetancheri et al. 2006; Cohen 2001; Dobson et al. 2007; Douligeris and Mitrokotsa 2004; 

Latora and Marchiori 2005; Lee et al. 2008; Lu et al. 2007; Motter 2004; Motter and Lai 

2002; Peng, Leckie, and Ramamohanarao 2007a; Tsunoda et al. 2008; Wang et al. 2008).      

The Internet‟s vulnerable router infrastructure along with identity concealment 

techniques (such as IP spoofing and packet redirection) and the extremely large volume of 

router-to-router communication messages have made identification of an attack on the 

Internet‟s core operations extremely difficult (Douligeris and Mitrokotsa 2004; Haggerty, 

Shi, and Merabti 2005; Lee et al. 2008; Mizrak et al. 2006; Mizrak, Savage, and Marzullo 
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2008; Peng, Leckie, and Ramamohanarao 2007a; Toby and Jun 2009; Tsunoda et al. 2008).  

Evidence of real world attacks dependent upon the application of cascading failures have not 

been cited in the literature.  However, it is highly probable that an undetected attack that 

maliciously modifies the Internet‟s router tables could lead to extreme traffic congestion, 

sub-optimal message routing decisions and significantly lowered network throughput 

(Chakrabarti 2002; Cheol-Joo et al. 2007; Hussain, Heidemann, and Papadopoulos 2003; 

Markopoulou et al. 2008; Mirkovic and Reiher 2004; Olalekan 2008; Peng, Leckie, and 

Ramamohanarao 2007a).   

 Commercial transactions, the nation‟s critical physical infrastructures and national 

security have a profound dependence on the Internet‟s infrastructure.  Individuals with 

hostile intent have ready access to easy-to-use malicious tools.  Rapidly changing technology 

and the ever-increasing occurrence of system vulnerabilities present a significant threat to the 

nation‟s information infrastructure.  The attackers may be malicious hackers, organized 

crime, terrorists or nation states (Adkins 2001; U. S. House 2005; U. S. Office of Science and 

Technology Policy 2006).  Attack objectives may include (1) espionage against sensitive and 

poorly defended data in government and industry, (2) financial and identity fraud, (3) theft of 

financial or identity assets, (4) disruption of normal communications over Internet‟s router 

infrastructure, (5) coordinated physical and cyber attacks that hinder emergency response 

dependent upon Internet communications, (6) industrial process control of critical physical 

infrastructure such as the electrical grid, (7) terrorist targets such as chemical plants, (8) 

global financial transactions involving billions of dollars, and (9) offensive information 

warfare aimed at military targets connected to the Internet‟s infrastructure (U. S. Office of 

Science and Technology Policy 2006). 
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The Internet was designed to achieve openness in a research-driven environment. The 

openness of a collaborative research-driven environment is at odds with the objectives of 

most security audit functionalities. Investigation of network security incursions and network 

protective measures are severely inhibited by the Internet‟s inherent design assumptions, 

including (1) the user community would be trustworthy and not seek to obfuscate identity or 

manipulate the Internet‟s communication mechanisms for malicious purposes, (2) high-speed 

traffic and performance requirements were essential and therefore any attempts at significant 

tracking would be too costly in terms of system performance criteria, and (3) due to the large 

volume of packets in a relatively short timeframe, storage of packet information was not 

viable (Lipson 2002). 

 As previously discussed in this chapter, the Internet‟s router infrastructure is 

vulnerable to denial-of-service attacks.  This vulnerability magnifies the aforementioned 

threat to the national information infrastructure.  It is in the national interest to deter, 

uncover, and prosecute perpetrators.  Tracking and investigating individual router 

communications attacks are costly, inefficient, and impractical (Casey 2002; Casey 2004; 

Mizrak, Savage, and Marzullo 2008; Rattray 2001a; Stephenson and Prueitt 2005). Solving 

the problem of attack detection, attribution, infrastructure protection, effective 

countermeasures, and attack retribution requires a new paradigm. This paradigm must rely on 

the systemic changes that occur during a cyber attack, not the individual changes (Mizrak et 

al. 2006; Overill 2007; Papadimitratos and Haas 2002; Stephenson 2006; Stephenson and 

Prueitt 2005).  The problem addressed by this research is to determine whether this new 

paradigm can be expressed though the study of subtle changes in the degree distribution of 

the Internet‟s connectivity environment.  Specifically, can these subtle changes be classified 
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as attack markers?  Can these attack markers be used to detect and protect the Internet‟s 

router infrastructure from targeted denial-of-service attacks?   

  

B. Research Statement   

The first objective of this research was to develop a novel, first-of-its-kind Colored 

Petri Net (CPN) model of a large-scale regional (United States) Internet router connectivity 

topology.  Using this model as the basis for the investigation of the systemic effects of  

targeted DoS attacks against the simulated Internet router infrastructure, the objectives of this 

research were to (1) determine whether it is possible to detect small subtle changes (attack 

markers) in the connectivity environment of the Internet‟s router connectivity infrastructure 

that occur during a cyber attack, and (2) if the first premise is valid, to ascertain the 

feasibility of using these changes as a means for (a) early infrastructure attack detection and 

(b) router infrastructure protection strategy development against these attacks.  This 

investigation found strong evidence that attack markers exist and that they are quantifiable 

through common statistical characteristics of the network‟s connectivity topology.   
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C. Research Contributions  

Basic Internet research will benefit from this novel model and simulation using 

Colored Petri Nets. The research simulation led to the formulation of the foundational 

justification for a unique approach to the study of denial-of-service cyber attacks. This 

dissertation has enhanced the body of knowledge in the application of attack modeling and 

simulation through the following contributions: 

1. Provides evidence that attack markers that represent subtle changes in the Internet‟s 

router connectivity topology can be used as a means to uncover denial-of-service attacks 

against the Internet‟s router infrastructure. 

2. Shows that the techniques presented in this research provide a feasible way to detect a 

cyber attack in its earliest stages. 

3. Presents a plausible and scientifically sound approach for the study of cyber attack 

mechanics that will provide the basis for future development of practical Internet security 

tools.   

4. Offers a unique quantifiable approach for illuminating attack markers as changes to the 

degree distribution during a targeted denial-of-service attack.  

5. Enhances the scope of applications for Colored Petri Net (CPN) modeling and simulation 

of concurrent and complex network communications. 

6. Develops the preliminary feasibility for future experimental research to empirically 

support  Stephenson and Pruiett‟s theory of cyber attack mechanics (Stephenson 2006; 

Stephenson and Prueitt 2005).  
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D. Terminologies 

The following definitions are necessary for understanding this dissertation. All node 

states will be formally defined in Chapter III of this dissertation.  These and other terms will 

be further defined as needed later in this document. 

adjacent node. An adjacent node is a node that has a direct communication link with another 

node (1-hop).  It is often referred to as a neighbor node.   

attack marker. An attack marker represents subtle changes in a scale-free network‟s 

connectivity that can be used to indicate a cyber attack‟s existence.  Network connectivity 

corresponds to any physical characteristic of the network that facilitates inter-nodal 

communications.  Here, network connectivity is represented by the number of node-pairs of 

type 1-1 and 1-2. The rationale for this selection will be presented in Chapter V.  The terms 

attack marker and changes in the number of node-pairs of types 1-1 and 1-2 will be used 

interchangeably in this document. Node-pair types are defined below. 

critical threshold. As shown in Figure 1.1, the critical threshold represents the point in time 

during the simulation when the network connectivity stability rapidly degrades in a short 

period towards the terminal condition. 

degree. A node‟s degree is the number of direct links between one node and all of its 

neighbor nodes.  A node with “k” number of links is referred to as a k-degree node.  The 

degree of a node is a rough measure of its connectivity.  Figure 1.2 illustrates a simple 

network connectivity example.  In Figure 1.2, the circles represent nodes, node “A” has a 

degree of 3 and node “B” has a degree of 4.  A link between two nodes is represented by a 

line between the nodes.  The term “degree” is used interchangeably with the term node 

degree.  
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degree distribution. The degree distribution of a network is the probability that a randomly 

selected node from a network is a k-degree node.  The probability of k-degree node is      

𝑝 𝑘 =
𝑛(𝑘)

𝑛
; where n is the number of nodes in the network and n(k) is the number of k-

degree nodes.  The distribution for all k-degree nodes in a network is one commonly used 

measurement for the network‟s overall connectivity. 

equilibrium point and level.  As shown in Figure 1.1, during the simulation the equilibrium 

point is encountered; at this point in time, the network‟s connectivity stability recovers to a 

constant equilibrium level for the remainder of the simulation‟s execution. 
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Figure 1.1. Information transfer (I) versus time curve showing descriptive research terms.  

Terms that depict network degradation are shown in A and terms showing network recovery 

as a result of network protection are shown in B.  

a) 

b) 
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mutual information transfer (I).  Mutual information transfer is used in this research to 

measure relative network connectivity stability.  Mutual information transfer (I) is the 

relative reduction in node connectivity uncertainty between two randomly selected nodes in 

the network (Cover and Thomas 2006).  The reduction in uncertainty can be thought of as an 

increase in relative information (knowledge) transfer between any 2 randomly selected 

nodes.  This increase in information leads to an increased likelihood that the two nodes will 

communicate as a node-pair.  Node-pairs are defined below.  From the network-wide 

perspective used in this research, mutual information transfer is the average reduction in 

uncertainty between 2 randomly selected nodes in the network at time 𝑡.  Therefore, the 

average likelihood of connectivity between any two randomly selected nodes in the network 

ranges from very high (when I=2) to non-existent (when I = 0).  The pre-attack network‟s 

information transfer value was 1.56, indicating that there was a relatively high likelihood for 

node-pair connectivity.  The terms mutual information transfer and information transfer will 

be used interchangeably in this dissertation.   

link. A link represents communication established with an adjacent node.  One node may 

have multiple links.  The number of links for a node is denoted as “k”. 

local minimum.  As shown in Figure 1.1, this represents the point in time early in the 

simulation that the network connectivity stability has degraded to its lowest level before the 

critical threshold has been encountered. 
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A B

 

Figure 1.2. Node connectivity example  

 

network connectivity parameter (NCP).  This network connectivity stability measure is used 

to determine the relative extent of the overall network‟s fragmentation.  The terms network 

connectivity parameter and connectivity parameter will be used interchangeably in this 

dissertation.  

network connectivity stability. As defined by this research investigation, it is the ability for 

network-wide connectivity as measured by the mutual information transfer and network 

connectivity parameter. The terms network connectivity stability and network stability will be 

used interchangeably in this dissertation.  

node. In this research, a node is an entity in a network that represents a router.  The terms 

node and router will be used interchangeably in this dissertation. A network can have more 

than one node, and the network‟s size is represented by the number of nodes. 
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node degree. The number of neighbor node links for any a specific node. A node with k 

neighbor links is said to have a node degree of k. 

node-pair type. For each simulation, routers were represented as nodes.  Two adjacent 

(neighbor) routers as mapped through the router tables were depicted as node-pairs.  All 

active node-pairs were classified into groups by determining the node degree of each node in 

the node-pair.  These groups were called node-pair types.  Each active node-pair was 

classified during the simulations at 50-second time intervals.  All node-pair types were 

determined by combining the degree of each node in the pair.  For example, if one node in a 

node-pair had a degree of 1 and the other node had a degree of 2, then this node-pair type 

was classified as type 1-2.  The syntax for each node-pair type designation is (1) position 1 

represents the node degree of the first node in the node-pair, (2) position 2 represents the 

node degree of the second node in the node-pair, and (3) position 1 in the node-pair type 

must always be less than or equal to position 2.  Certain specific node-pair types were used as 

attack markers and will be presented in Chapter V, Section C. 

power law degree distribution. Power laws are expressed in the form y   x
a
; where x and y 

is the variables of interest, „a‟ is constant, and   indicates that the two variables have a 

proportional relationship. The power law polynomial relationship exhibits scale invariance; 

that is, the scaling coefficient (a) is constant.  Another property of power law relationships is 

that a plot of log y versus log x (log-log plot) is linear. The slope of the resulting line for the 

log-log plot of y = x
a 
 is a constant value of  „a‟.  In terms of scale-free networks, the 

probability of any node in the network having k number of links is: 𝑝 𝑘 ∝ 𝑘−𝛾  ; where 𝛾  is 

the constant scaling coefficient.  It has been empirically determined that the scaling 

coefficient is between 2 and 3 for most “real world” networks (Barabasi and Albert 2002).  
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terminal condition.  As shown in Figure 1.1, this represents the point in time during the 

simulation when the network-wide connectivity no longer exists.  This occurs when the 

information transfer is less than zero and the network connectivity parameter is 

approximately 2. 

 

E. Organization of the Dissertation  

Foundational theories used by this research are discussed in Chapter II.  Chapter III 

contains formalisms and terminologies used in this research. Chapter IV presents the CPN 

model design, its assumptions, and subsequent simulation details.  Chapters V and VI discuss 

the results of the simulations and their relevance to real world router attacks.  The 

conclusions are given in Chapter VII along with recommendations for further study.  
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CHAPTER II.  FOUNDATIONS 

This chapter will discuss the relevant background literature.  The first section 

addresses cyber attacks.  This is followed by a discussion of complex network theory.  Then 

this chapter presents the literature support for the vulnerability of scale-free networks.  

Relevant network stability considerations are then addressed.  This chapter concludes by 

covering network topology-based router protection strategies and summarizes the theoretical 

rationale used in this research.  

 

A. Cyber Attacks 

The background for the study of cyber attacks using the network‟s environment is 

presented in this section.  This is followed by a discussion of attack modeling strategies.  It 

concludes with a discourse on Internet infrastructure attack techniques.  

1) Theory of Cyber Attack Mechanics. 

Cyber attack mechanics have been studied extensively (Albert, Jeong, and Barabasi 

2000; Chakrabarti 2002; Cohen 2001; Convery, Cook, and Franz 2004; Crucitti et al. 2004; 

Dirk et al. 2004; Douligeris and Mitrokotsa 2004; Gallos et al. 2006; Jung-Ying et al. 2008; 

Lai, Motter, and Nishikawa 2004; Lu et al. 2007; Mirkovic and Reiher 2004; Motter and Lai 

2002; Peng, Leckie, and Ramamohanarao 2007a; Salla 2005; Shannon et al. 2006; Sun et al. 

2007; Ziviani et al. 2007).  The literature supports the proposition that the Internet‟s 

connectivity topology exhibits fractal (self-similar) properties relative to geographic 

population centers (Caldarelli, Marchetti, and Pietronero 2000; Chakraborty et al. 2004; 

Lakhina et al. 2002; Yook, Jeong, and Barabasi 2002).  It may be plausible that the scale-free 

connectivity behaviors observed over the Internet are in some manner a manifestation of the 
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Internet‟s fractal connectivity topology (Stephenson 2006).  One novel approach that may 

provide a foundational premise for anomaly detection over the Internet is known as the 

“Theory of Cyber Attack Mechanics” (Stephenson and Prueitt 2005).  Using a unique set of 

foundational concepts and formalisms, Stephenson and Prueitt (2005) theorize that it may be 

possible to identify a cyber attack‟s origin by observing traffic disruptions in the Internet‟s 

fractal connectivity.  As related to network communication connectivity and very large 

computer networks (such as the Internet), Stephenson and Prueitt (2005) argue that cyber 

attack detection using the network‟s environment is plausible (Stephenson 2006; Stephenson 

and Prueitt 2005).   

During a cyber attack, the theory defines halting conditions as a set of specific 

network conditions that exist when the network‟s stability becomes totally degraded and 

network connectivity ceases.  Stephenson and Prueitt (2005) propose that halting conditions 

may be observable through disruptions in the Internet‟s traffic mechanisms as identifiable 

events (attack markers).  The “Theory of Cyber Attack Mechanics” leads Stephenson (2006) 

to postulate that the halting conditions brought on by the aforementioned disruptions in the 

Internet‟s fractal connectivity may be a result of an underlying violation of the Internet‟s 

preferential attachment linking rules and these violations may possibly be observable as 

event markers (attack markers).  Empirical studies found in the literature support their 

hypothesis, suggesting that disruptions in normal Internet traffic patterns can be observed 

(Liljenstam et al. 2002; Yegneswaran, Barford, and Ullrich 2003).   

Stephenson and Prueitt‟s (2005) hypothesis states that “The interaction between cyber 

attack space and fractal network space results in event markers that may anticipate the 

existence of a cyber attack.  Because „attack markers‟ are complex, they may result in 
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„halting conditions‟ within the network. These halting conditions can be represented formally 

and the source of the cyber attack may be deduced”.  The attack simulations in this research 

sought to uncover subtle variations in the network‟s connectivity patterns.  These 

“ambiguities” were represented as changes in specific physical characteristics of the 

network‟s topology.   

2) Attack Model Considerations. 

A variety of attack modeling approaches can be found throughout recent literature 

(Albert, Jeong, and Barabasi 2000; Convery, Cook, and Franz 2004; Crucitti, Latora, and 

Marchiori 2004; Crucitti et al. 2004; Dirk et al. 2004; Gallos et al. 2006; Li et al. 2008; 

Motter 2004; Motter and Lai 2002; Olalekan 2008; Ole Martin Dahl and Wolthusen 2006; 

Wang and Rong 2009a, 2009b; Wang, Guan, and Lai 2009; Zhao et al. 2005).  There are six 

fundamental attributes that should be considered when modeling cyber attacks: (1) 

consideration of the network‟s topology characteristics, (2) the attacker‟s system privileges, 

(3) the network‟s trust model, (4) the type of probable exploits, (5) the attack motivations, 

and (6) the attacker‟s specific knowledge of the target (Chakrabarti 2002; Jung-Ying et al. 

2008; Olalekan 2008; Richardson 2008; Zhang et al. 2008).   

When modeling Internet infrastructure attacks, it is commonly assumed that the 

attacker has knowledge of a network‟s topology (Gallos et al. 2006; Wu et al. 2007; Zhang et 

al. 2008).  The attack scenarios used in the research simulations were based on scale-free 

network theory.  The rationale for developing attack scenarios against scale-free computer 

network is that the literature indicates that the Internet‟s router connectivity topology behaves 

like a scale-free network.  Network topologies and their relevance to this research will be 

discussed later in this chapter.   
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Specifically, this research studied changes in the network‟s degree distribution state 

and its effects on information-theoretic measures of network connectivity stability.  Scale-

free network theory and the foundations for the network stability measures will be discussed 

later in this chapter.  This research assumes the attacker has sufficient knowledge to 

implement a denial-of-service attack against the Internet‟s most connected routers.  This 

research did not consider system privileges, trust model ramifications, or attacker 

motivations. 

3) Internet Router Infrastructure Attacks. 

 Denial-of-service attacks against the Internet‟s infrastructure focus on the malicious 

creation of message traffic congestion between routers.  They also maliciously manipulate 

the algorithms that are used to determine efficient message paths.  These conditions create 

communications havoc with the network‟s normal router traffic mechanisms, and this 

eventually leads to severe service degradation (Chakrabarti 2002; Mizrak et al. 2006).  There 

are 3 types of infrastructure denial-of-service attacks (Chakrabarti 2002): 1) router table 

“poisoning,” 2) router IP packet mistreatment, and 3) Domain Name System (DNS) hacking. 

 A denial-of-service attack that targets specific router regions might employ packet 

mistreatment and router table “poisoning” techniques to maliciously disrupt normal 

communications.  Router tables are stored on each router and are used to identify potential 

paths between routers.  They are essential to efficient path identification.  Routers with 

maliciously manipulated router tables broadcast false message routing information.  This 

leads to sub-optimal message routing and increased traffic congestion.  Routing information 

and user data are transmitted throughout the Internet in containers known as IP packets.  

These packets secure the data‟s integrity and confidentiality. Packet mistreatment attacks 
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maliciously manipulate Internet packets.  This technique can be used to disrupt normal traffic 

patterns.  

The Internet‟s efficient communication is dependent upon the availability of 13 

Domain Name System (DNS) root servers located around the world.  These 13 DNS root 

servers form the Internet‟s backbone infrastructure. The Internet can sustain limited damage 

concurrently to a few of these root servers without experiencing major service degradation 

(Peng, Leckie, and Ramamohanarao 2007b).  However, an attack that strategically cripples 

the DNS infrastructure might severely limit global Internet communication (Cheung 2006).  

In a DNS hacking attack, false entries are injected into the Domain Name System (DNS).  

This leads to counterfeit IP address translation that compromises the integrity of the 

Internet‟s web site authentication mechanisms.  Attackers use domain hijacking techniques 

along with DNS attacks to create bogus web sites that masquerade as legitimate.  They funnel 

large volumes of users to these bogus web sites.  Placement of these sites in the same router 

region could potentially overwhelm normal router communication mechanisms. 

 One technique employed by an attacker to obfuscate the attack‟s source is IP spoofing 

(Daniels 2002; Daniels and Spafford 2000; Tang and Daniels 2005).  This is accomplished 

using IP packet modifications.  During a denial-of-service attack, attackers inject falsified 

return address information into all IP packets used in the attack. Large volumes of these 

packets are funneled to the target destination. Normally after initial communications are 

established, the destination host returns a confirming message back to the source.  However, 

when IP spoofing techniques are used, these confirmation messages are invalid and the 

system generates large volumes of “host unreachable” messages. These “host unreachable” 

messages and other residual router messages generated during an attack are called 
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“backscatter” (Peng, Leckie, and Ramamohanarao 2007a; Shannon et al. 2006).  The effect 

of a denial-of-service attack is magnified by the large volumes of “backscatter” messages 

sent over the Internet‟s router infrastructure. “Backscatter” will cause extreme message 

traffic congestion over the router infrastructure. The infrastructure may become an indirect 

victim of a denial-of-service attack originally targeted against an enterprise network 

(Douligeris and Mitrokotsa 2004; Haggerty, Shi, and Merabti 2005; Lee et al. 2008; Paxson 

2001; Peng, Leckie, and Ramamohanarao 2007a; Shannon et al. 2006; Tsunoda et al. 2008). 

 

B. Complex Networks 

Complex networks have been discovered among biological, social, and technological 

communication systems (Albert and Barabasi 2002; Jamakovic, Uhlig, and Theisler 2007; 

Newman 2003).  Scale-free networks are complex networks with heterogeneous node 

connectivity and power law degree distribution. The World Wide Web (Albert, Jeong, and 

Barabasi 1999; Ravi et al. 2000), metabolic pathways (Jeong et al. 2000), and many social 

networks (Aiello, Chung, and Lu 2000; Albert and Barabasi 2000; Barabasi and Albert 1999; 

Redner 1998) have been cited as having scale-free characteristic behaviors.  Researchers 

have shown that the Internet is a scale-free network (Barabasi and Albert 2002; Boccaletti et 

al. 2006; Donnet and Friedman 2007; Hamed et al. 2008; Michalis, Petros, and Christos 

1999; Newman 2003; Siganos et al. 2003; Yook, Jeong, and Barabasi 2002).   The remainder 

of this section will cover complex network theory relevant to this research. 

1) Network Connectivity. 

A node‟s degree is the number of communication links established with adjacent 

nodes called neighbor nodes.  It is a fundamental component used to study network 
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connectivity.  Two approaches dominate the study of complex network connectivity.  Prior to 

2000, it was thought that large-scale complex networks were connected randomly.  The early 

approach of Erdos and Renyi (ER); (1960) hypothesizes that complex network connectivity 

is governed by an exponential degree distribution.  The ER model of network connectivity 

argued that each network node has an equal chance of forming a link with another node 

regardless of its degree (Erdos and Renyi 1960).   

Since 2000, the “Theory of Evolving Networks” has been the prevailing 

conceptualization.  This theory was originally postulated by Barabasi and Albert (BA) and 

has been supported by strong empirical evidence (Barabasi and Albert 2002; Boccaletti et al. 

2006; Dorogovtsev and Mendes 2002).  They hypothesized that the connectivity of complex 

networks is probabilistic and governed by power law degree distribution (Alderson et al. 

2005; Barabasi and Albert 2002; Boccaletti et al. 2006; Costa et al. 2007; Dekker and Colbert 

2008; Donnet and Friedman 2007; Michalis, Petros, and Christos 1999; Saffre et al. 2004).  

Barabasi and Albert (2002) argue that the likelihood of one node establishing a new link with 

a neighbor node is proportional to the degree of the neighbor node. Neighbor nodes with a 

higher degree will be more likely to establish new links.  This mechanism is known as 

preferential attachment.  Networks that exhibit power law degree distribution and follow 

preferential attachment mechanisms are known as scale-free networks (Alderson et al. 2005; 

Barabasi and Albert 2002; Costa et al. 2007; Newman 2003).  Empirical studies have shown 

that the Internet‟s router connectivity topology exhibits scale-free network behaviors (Albert, 

Jeong, and Barabasi 2000; Barabasi and Albert 2002; Crucitti et al. 2003b; Motter et al. 

2006; Newman 2003; Siganos et al. 2003).  A scale-free network is defined as a complex 

network that follows power law degree distribution regardless of network size (Barabasi and 
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Albert 2002; Boccaletti et al. 2006; Costa et al. 2007; Michalis, Petros, and Christos 1999; 

Motter et al. 2006).  Complex networks will be discussed in the next section.  Power law 

networks have a large number of nodes with a few links and a few nodes with many links.  In 

Figure 4 of Michalis, Petros, and Christos (1999), there is a depiction of power law degree 

distribution using live Internet data collected from a network of 3530 nodes with 6432 links 

in April 1998.   

The power law degree distribution exhibited by the Internet‟s router infrastructure is 

attributed to its preferential attachment mechanisms.  Preferential attachment has been 

studied extensively in the literature (Barabasi and Albert 2002; Boccaletti et al. 2006; 

Dorogovtsev and Mendes 2002; Motter et al. 2006; Newman 2003; Qin et al. 2008; Saffre et 

al. 2004; Sun et al. 2007; Wang et al. 2009; Zhang et al. 2008).  Empirical studies have 

shown that the Internet‟s router communication mechanisms behave by preferential 

attachment rules (Barabasi, Ravasz, and Vicsek 2001; Saffre et al. 2004).  In Figure 1 of 

Jeong, Neda, and Barabasi (2003), there is a depiction of preferential attachment probabilities 

in live Internet data collected from a network of 12,400 nodes with 13,445 links in 2000.  

Preferential attachment behavior leads to a greater probability that most nodes in the network 

will have a relatively few links that are connected to a small number of highly connected 

nodes. 

As a result of preferential attachment, scale-free networks exhibit heterogeneous 

connectivity (Barabasi and Albert 2002).  This connectivity topology has a few highly 

connected nodes that follow a power law degree distribution.  The heterogeneous nature of 

the Internet‟s inter-nodal links is an essential characteristic of its robust and stable 

communications (Barabasi, Albert, and Jeong 2000; Boccaletti et al. 2006; Costa et al. 2007; 
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Criado et al. 2006; Crucitti et al. 2003a; Dekker and Colbert 2008; Demetrius and Manke 

2005; Dorogovtsev and Mendes 2002; Hu and Wang 2008; Motter et al. 2006; Sanchirico 

and Fiorentino 2008; Wang et al. 2006; Wang et al. 2009; Zhang et al. 2008).  The 

heterogeneity of a network can be quantified (1)  directly using a heterogeneity index (Hu 

and Wang 2008) and (2) indirectly through measures such as its entropy (Demetrius and 

Manke 2005; Gudkov and Montealegre 2008; Wang et al. 2006), mutual information transfer 

(Leung and Chau 2007; Newman 2002; Piraveenan, Prokopenko, and Zomaya 2009; Sole 

and Valverde 2004), and the network connectivity parameter (Cohen 2001).  This research 

studies network connectivity using the Internet‟s infrastructure‟s heterogeneity as a measure 

of overall stability.  Heterogeneity was measured through changes in the attacked network‟s 

mutual information transfer and the network connectivity parameter.  Entropy was used to 

validate that the changes in the simulation reflected changes in heterogeneity. 

2) Complex Networks and Emergence. 

Researchers have shown that complex networks are governed by hidden mechanisms 

(Boschetti et al. 2005; Cassey 2004; Crutchfield 1994; Rosen 1985).  They showed that these 

hidden mechanisms control macro-level network behaviors (such as changes in the degree 

distribution) through many small micro-level rules of behavior.  The interactions of these 

mechanisms result in the emergence of patterns.  These patterns are referred to as emergent 

behaviors.  Emergence has been defined as “a process that leads to the appearance of 

structure not directly described by the defining constraints and instantaneous forces that 

control a system…” (Crutchfield 1994).  Emergence can only be detected indirectly through 

subtle changes in a system.   
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These subtle random changes are often referred to as system “noise” (Ale and Kub 

2003; Boschetti et al. 2005; Crutchfield 1994; Lazaroff and Snowden 2006; Rosen 1985).  

Changes in the system “noise” and connectivity patterns generated by complex network 

communications under attack can be observed through changes in its statistical mechanics 

(Barabasi and Albert 2002; Boccaletti et al. 2006; Newman 2003).  Specifically, this research 

applied changes in degree distribution mechanisms under attack to study emergent network 

connectivity patterns by distinguishing between random noise and systemic connectivity 

behaviors.  This research studied these systemic variations in scale-free network connectivity 

during simulated denial-of-service attacks.  The results of this examination may lead to a 

feasible technique to indirectly detect emergent behaviors during a cyber attack. 

 

C. Attack Vulnerabilities 

Scale-free computer networks (such as the Internet) are extremely robust to routine 

random errors yet are vulnerable to targeted attacks (Albert, Jeong, and Barabasi 2000; 

Crucitti et al. 2004; Sun et al. 2007).  To study this behavior, simulations differentiate 

between cyber attacks and routine router errors using selective node (router) removal 

techniques (Albert, Jeong, and Barabasi 2000; Crucitti et al. 2004; Crucitti et al. 2003b; 

Holme et al. 2002b; Latora and Marchiori 2004b; Salla 2005; Sun et al. 2007).  This section 

presents the foundations for the attack simulation methodology used in this research. 
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1) Error and Attack Tolerance. 

Error and attack tolerance of scale-free networks has been studied extensively. 

(Dall'Asta et al. 2006; Gallos et al. 2006; Holme et al. 2002a; Lai, Motter, and Nishikawa 

2004; Latora and Marchiori 2005; Moore, Ellison, and Linger 2001; Paxson 2001; Wang et 

al. 2008; Wu et al. 2007; Yu, Chen, and Zhou 2008; Zhao et al. 2005).  Using the techniques 

found in these studies, this research simulated denial-of-service attacks.  There are two 

relevant attack simulation techniques depicted in this literature, node removal and link 

removal (Dall'Asta et al. 2006; Gallos et al. 2006; Holme et al. 2002a; Lai, Motter, and 

Nishikawa 2004; Latora and Marchiori 2005; Moore, Ellison, and Linger 2001; Paxson 2001; 

Wang et al. 2008; Wu et al. 2007; Yu, Chen, and Zhou 2008; Zhao et al. 2005).  A link‟s 

weight measures the relative volume of message traffic flowing over it.  In a link removal 

approach, attacks are simulated through the removal of links based on their weight. 

(Dall'Asta et al. 2006; Furuya and Yakubo 2008; Huang and Li 2007; Leung and Chau 2007; 

Lopez 2007; Macdonald, Almaas, and Barabasi 2005; Wang and Rong 2009a, 2009b).  In a 

node removal approach, nodes are removed in the attack simulation based on their degree 

(Dall'Asta et al. 2006; Gallos et al. 2006; Holme et al. 2002a; Lai, Motter, and Nishikawa 

2004; Latora and Marchiori 2005; Moore, Ellison, and Linger 2001; Paxson 2001; Wang et 

al. 2008; Wu et al. 2007; Yu, Chen, and Zhou 2008; Zhao et al. 2005).  Since the literature 

has indicated that node-removal techniques are commonly used to emulate denial-of-service 

attacks, this research applied selective node removal techniques to simulate denial-of-service 

attacks (Albert, Jeong, and Barabasi 2000; Crucitti et al. 2004; Holme et al. 2002a; Salla 

2005; Sun et al. 2007; Wang et al. 2008).  
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The Internet‟s robust connectivity mechanisms seamlessly re-route traffic around 

disturbances without affecting normal efficient communication (Cicic 2008; Labovitz et al. 

2001; Markopoulou et al. 2008; Wang et al. 2006).  Random router errors occur frequently 

over the Internet (Cicic 2008; Labovitz et al. 2001; Markopoulou et al. 2008; Wang et al. 

2006).  The Internet was designed for efficient and robust communication in an error-prone 

environment: 

“From the early days of the Internet, the ability to tolerate loss of network 

components has been one of the key goals in its design. Internet routers include 

mechanisms that detect connectivity failures and topological changes, and convey this 

information to their routing protocols.  The protocols distribute the change 

information network-wide, and the network gradually adopts the new routing paths 

and converges to the new stable routing state” (Cicic 2008).  

Therefore, effective Internet attack detection studies must be able to distinguish between 

attack anomalies and routine router failures (Douligeris and Mitrokotsa 2004; Jung-Ying et 

al. 2008; Mizrak et al. 2006; Olalekan 2008; Shannon et al. 2006). 

Figures 2.1 and 2.2 illustrate the effects on network connectivity in attack simulations 

that use a node removal strategy. Figure 2.1 was taken from Crucitti et al. (2003b) and Figure 

2.2 was taken from Albert, Jeong, and Barabasi (2000) (annotations were added to these 

figures).  Both figures depict attack simulations against scale-free networks.  Figure 2.1 

presents network efficiency measurements in 20 simulation runs, 10 using an exponential (ER) 

network and 10 using a scale-free (SF) network (Crucitti et al. 2003b). 
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Figure 2.1. Error and attack tolerance study taken from Crucitti et al. (2003b) 

 

Each simulation started with a virtual network of 5,000 nodes and 10,000 links 

(Crucitti et al. 2003b).  Normal router errors are simulated as random removal of nodes 

regardless of their degree.  Attacks are emulated as selective removal of nodes with the 

highest degrees.  Starting at the node with the highest degree, the attack removal process 

removes nodes, one at a time, from the network simulation in decreasing node degree order.  

The proportion of the total number of nodes removed is plotted against changes in network 

efficiency measures.  It shows that the ER networks are not sensitive to small node removal 

attacks.  However, the scale-free network simulations show that selective node removal 

attacks and routine router error can be distinguished from normal router failures.   
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Figure 2.2 results were derived from experiments on an Internet router network of 

6,029 nodes and 12,200 links.  The node removal strategy used in Figure 2.2 was similar to 

the strategy used Figure 2.1.  Figure 2.2 evaluates network connectivity using changes in 

network diameter during attack experiments over the Internet (Albert, Jeong, and Barabasi 

2000).   In Figure 2.2, circles represent attacks, and squares represent normal random 

failures.  The network‟s diameter is the average shortest path for all possible paths in a 

network (Albert, Jeong, and Barabasi 2000).  It is a common method for measuring a 

network‟s efficiency.  The efficiency of the network decreases as the average shortest path 

increases.  As presented in Figure 2.2, attacks can be differentiated from routine router error 

over the Internet‟s router infrastructure. 

 

Figure 2.2. Error and attack tolerance over the Internet (scale-free), taken from Albert, Jeong, 

and Barabasi (2000) 
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For the random error simulations representing routine failures, Figure 2.1 (both ER 

and SF) and Figure 2.2 indicate that as the number of nodes removed increases the network 

efficiency remains in a stable steady state.  Under attack, it has been shown that scale-free 

networks behave differently than ER networks.  When the attacked nodes are removed in a 

scale-free network, both network efficiency measures shown in Figure 2.1 (for the SF 

network) and Figure 2.2 decrease dramatically.  In scale-free networks, after as little as 2% of 

the nodes are removed, the network‟s efficiency was reduced by more than 50%.  Both 

figures depict that denial-of-service attacks against scale-free networks are clearly 

distinguishable from normal router errors.   

2) Cascaded Failures. 

Cascaded failures induced by removing a small number of highly connected nodes 

from a scale-free network have been found to occur in complex technological, social, 

biological, and economic networks (Crucitti, Latora, and Marchiori 2004).  For example, the 

electrical grid of the United States has been shown to be a scale-free network (Crucitti, 

Latora, and Marchiori 2004; Dobson et al. 2007). Two major electrical outages in 1996 and 

2003 were the result of a single relatively small outage event that cascaded the electrical 

failures (Crucitti, Latora, and Marchiori 2004; Dobson et al. 2007).  As previously discussed, 

scale-free networks subjected to node removal attacks suffer early and rapid degradation in 

network efficiency.  Research studies show that an avalanche of cascading node failures is 

responsible for this rapid decline in network efficiency (Cohen 2000, 2001; Crucitti, Latora, 

and Marchiori 2004; Dobson et al. 2007; Huang, Lai, and Chen 2008; Huang and Li 2007; 

Lai, Motter, and Nishikawa 2004; Moreno, Gomez, and Pacheco 2002; Motter 2004; Motter 

and Lai 2002; Wang and Rong 2009a,2009b; Wu and Fang 2008; Xu and Wang 2005).   
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The cascading avalanche mechanism is well supported in the literature (Cohen 2000, 

2001; Gallos 2005; Lai, Motter, and Nishikawa 2004; Lopez 2007; Motter and Lai 2002; 

Wang et al. 2008).  It has also been shown that increasing the link capacity of the network‟s 

nodes slows down the avalanche‟s degradation of network performance (Crucitti, Latora, and 

Marchiori 2004; Lai, Motter, and Nishikawa 2004; Motter and Lai 2002).  The research of 

this dissertation studied simulated DoS attacks by varying the speed and severity of the 

cascading avalanche of node failures using targeted denial-of-service attacks.  Crucitti et al. 

(2004) describe the mechanism: “Cascading failures take place on the Internet, where traffic 

is rerouted to bypass malfunctioning routers, eventually leading to an avalanche of overloads 

on other routers that are not equipped to handle extra traffic. The redistribution of the traffic 

can result in a congestion regime with a large drop in the performance”.   

 

D. Network Connectivity Stability 

As previously discussed in this chapter, network communication becomes irreversibly 

degraded when a  “halting condition” is encountered (Stephenson and Prueitt 2005).   During 

a cascaded failure, it has been observed that at some critical threshold (“halting condition”) 

the network fragmentation rate dramatically increases and the network‟s connectivity is 

totally destroyed (Barabasi and Albert 2002; Cohen 2001; Gallos 2005; Huang and Li 2007; 

Moreno, Gomez, and Pacheco 2002; Motter 2004; Motter and Lai 2002; Wu et al. 2007; Wu 

and Fang 2008).  Percolation theory studies an attacked network‟s stability as it fragments 

into increasingly smaller and isolated clusters  (Cohen 2000, 2001; Dorogovtsev, Goltsev, 

and Mendes 2008; Gallos 2005; Lopez 2007; Pietsch 2006; Zhao et al. 2005).  Percolation 

theory establishes the groundwork for further study of a network‟s physical statistics 
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undergoing a rapid decline in network stability.  The research methods developed in this 

dissertation applied the basic tenets of percolation theory to study network stability.  

Researchers have found a direct relationship between the network‟s stability and its 

heterogeneity (Wang et al. 2006).  During a node removal attack, the network‟s connectivity 

loses its heterogeneous nature, and information flow between nodes is restricted (Albert, 

Jeong, and Barabasi 2000; Cohen 2001; Crucitti et al. 2004; Demetrius and Manke 2005; 

Salla 2005; Sun et al. 2007; Wang et al. 2006).  This degradation of network stability can be 

quantified using (1) mutual information transfer (Lerner 2004; Piraveenan, Prokopenko, and 

Zomaya 2009; Sole and Valverde 2004; Srivastav, Ray, and Gupta 2009), (2) global network 

efficiency (Criado et al. 2006; Crucitti et al. 2003a; Latora and Marchiori 2001, 2004a), (3) 

entropy (Gudkov and Montealegre 2008; Wang et al. 2006), (4) network connectivity 

parameter, average node degree, and neighbor node degree (Cohen 2000, 2001; Dorogovtsev 

and Mendes 2002; Gallos and Argyrakis 2007),  (5) joint entropy (Boschetti et al. 2005; 

Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004; Wang et al. 2006), (6)  

heterogeneity index (Hu and Wang 2008), and (7) assortativeness (Newman 2002; 

Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004).  This research used 

mutual information transfer and the network connectivity parameter to monitor the network‟s 

fragmentation and loss of stability during the attack simulations.  These two measures were 

used to determine the extent of network stability degradation.  This provided a way to 

observe network stability degradation as a function of the heterogeneity changes catalyzed by 

the simulated DoS attacks. The remainder of this section describes these two measures of 

network stability. 
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1) Mutual Information Transfer. 

Previous discourse indicates that communications over a complex network generate 

system “noise.”  Information theory studies the quantification of communications in a  

“noisy” environment (Piraveenan, Prokopenko, and Zomaya 2009).  The uncertainty of 

Internet communications during a cyber attack can be studied using information theory 

(Gudkov and Montealegre 2008; Piraveenan, Prokopenko, and Zomaya 2009; Sole and 

Valverde 2004).  Joint entropy is a measure of the average uncertainty of a network‟s inter-

nodal linking mechanisms (Boschetti et al. 2005; Mahadevan et al. 2005).  It has been shown 

to be a reliable measure of a network‟s link heterogeneity (Boschetti et al. 2005; Mahadevan 

et al. 2005).  Mutual information transfer is derived from the network‟s joint entropy.  It is a 

measure of the average uncertainty of information flow between 2 nodes (Boschetti et al. 

2005; Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004; Wang et al. 

2006). Studies have shown that the mutual information transfer is a relatively unbiased 

statistic that accurately portrays the global inter-nodal information flow of a scale-free 

network (Boschetti et al. 2005; Newman 2002).  Mutual information transfer quantifies the 

affects of network fragmentation during node removal attack (Boschetti et al. 2005; 

Demetrius and Manke 2005; Lopez 2007; Piraveenan, Prokopenko, and Zomaya 2008; 

Srivastav, Ray, and Gupta 2009). 

2) Network Connectivity Parameter and Average Node Degree. 

The network connectivity parameter (NCP) measures the physical extent of network 

fragmentation (Cohen 2000, 2001; Dorogovtsev and Mendes 2002; Gallos and Argyrakis 

2007). While mutual information transfer measures the stability of the network‟s information 

flow, the network connectivity parameter measures the extent of the network‟s physical 
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fragmentation.  As the parameter value approaches 2, the network‟s heterogeneity decreases.  

Generally, if the parameter value is less than 2, the network is totally fragmented and is no 

longer considered heterogeneous (Gallos and Argyrakis 2007). In addition to the NCP, 

network connectivity stability is measured through changes in the network‟s average node 

degree (Costa et al. 2007; Estrada, Higham, and Hatano 2009; Mahadevan et al. 2005; Wang 

et al. 2006).   Both the average node degree and the NCP are used in this research to monitor 

network stability during the attack simulations. 

 

E. Topology Based Protection 

This section will present a few promising protection schemes that utilize topology 

knowledge of scale-free network connectivity.  One study divided a large heterogeneous 

network  into small clusters of nodes (Huang, Lai, and Chen 2008).   Huang et al. (Huang, 

Lai, and Chen 2008) examined a protection scheme based on inter-cluster shortest paths and 

the “bridge” nodes between clusters.  Huang et al. (2008) presented evidence that their 

techniques might be able to halt a cascaded avalanche of node failures.  Another method 

examined changes to the average shortest path while individually removing select nodes from 

the network (Latora and Marchiori 2005).  The removed nodes that caused the greatest 

damage to the shortest path were considered candidates for protection.   

Wang and Rong (2008) studied the effects of changes to a node‟s link capacity to 

estimate a breakdown probability for each network node (Wang and Rong 2009a). They 

proposed protecting the nodes with the highest probability of breakdown.  A low cost and 

counterintuitive finding in two different studies suggests that protecting the nodes with the 
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lowest degrees may reduce the cascaded degradation effects (Motter 2004; Wang and Rong 

2008; Wang et al. 2008).  Another study determined a critical threshold for the network 

connectivity parameter (Gallos and Argyrakis 2007).  Gallos and Argyrakis (2007)  proposed 

protecting nodes below this threshold.  One research examination found that using a “reverse 

percolation” process to restore the power law properties of a network under attack was 

proposed as a reactive mechanism to maintain network stability (Rezaei et al. 2007).  Rezaei 

et al. (2007) proposed that the network‟s connectivity robustness can be maintained during an 

attack by monitoring the degree distribution and adding links to compensate for nodes 

removed during the attack.  Sekiyama and Araki (2007) investigate a similar network 

recovery approach.  They examined manipulation of the network‟s topology during an attack 

to regenerate the network‟s connectivity infrastructure (Sekiyama and Araki 2007).  It has 

also been found that hiding network topology information can be an effective protection 

technique (Gallos 2005; Gallos et al. 2007).   

 

F. Theoretical Rationale Summary 

This section summarizes the theoretical rationale for this study for the identification 

of attack markers has been presented in this chapter.  As shown in the literature, assortativity 

is a summary measure of a network‟s link diversity (Newman 2002).  The assortativity 

coefficient for complex networks has been found in the range of  −1 ≤ 𝑟 ≤ 1 .  A perfectly 

disassortative network (𝑟 = −1) signifies that all nodes are connected to nodes of a different 

degree.  A perfectly assortative network (𝑟 = 1) indicates that all node connections are 

between 2 nodes of the same degree.  Most networks are either predominant disassortative 

(r<0) or assortative (r>0) (Newman 2002).  The literature has shown that technological scale-
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free networks, such as the Internet‟s router infrastructure, tend to exhibit primarily 

disassortative behavior (Leung and Chau 2007; Newman 2002; Piraveenan, Prokopenko, and 

Zomaya 2008, 2009).   

The literature indicates that as the assortativity approaches zero and becomes 

increasingly more positive, the network‟s heterogeneity and robustness decreases (Newman 

2002; Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004).  As the 

heterogeneous behavior diminishes, the network‟s linking mechanism tends to become more 

like an exponential (ER) network (Newman 2002; Piraveenan, Prokopenko, and Zomaya 

2009; Sole and Valverde 2004).  Previous discussion has shown that preferential attachment 

is a probabilistic mechanism that favors link establishment with highly connected nodes.  

Preferential attachment mechanisms are essential for the communication robustness found in 

scale-free networks.  It follows that as the assortativity of a scale-free network approaches 

zero, its characteristic scale-free robustness also diminishes. 

This research did not directly compute assortativity.  However, researchers indicate 

that assortativity and mutual information transfer exhibit an inverse relationship (Newman 

2002; Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004).  They show that 

as a result of this relationship, assortativity can be observed indirectly through the mutual 

information transfer.  This in turn can be used to study the simulated attack and the network‟s 

loss in heterogeneity.  Entropy was also used to observe the simulated network‟s 

heterogeneity loss. 

The theoretical rationale presented in this chapter has shown background support for 

this research investigation.  This chapter has shown (1) the Theory of Cyber Attack 

Mechanics that argues that during cyber attacks, emergent patterns of connectivity can be 
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indirectly identified through attack markers; (2) studies of the Internet‟s router infrastructure 

vulnerabilities to targeted DoS attacks; (3) scale-free network theory; (4) error and attack 

studies against scale-free networks; (5) cascading node failures as a result of targeted DoS 

attacks; (6) mutual information transfer and the network connectivity parameter as a means 

to measure the simulated attack connectivity stability and heterogeneity; and  (7) recent 

studies that seek to protect scale-free networks using knowledge of the physical 

characteristics of the network.  In Chapter III, the formalisms used to develop the attack 

model and simulation developed in this research will be presented.  
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CHAPTER III. FORMAL DEFINITIONS 

This chapter introduces the rudimentary formalisms developed to design the cyber 

attack model and simulation for this research.  Chapter IV will cover the design derived from 

these formalisms.  All simulation processes will also be discussed in Chapter V. 

   

A. Node State Data Structures 

The formal definitions developed in this chapter were derived from the node state 

transitions summarized in Figure 3.1 and Table 3.1.  The node state diagram shown in Figure 

3.1 is described by the state transition matrix in Table 3.1.  As shown in Table 3.1, the 6-

tuple (<AC, NR, TO, NL, OL, AN>) depicts a node‟s state as it is processed by the 

simulation. Each term and associated values in the 6-tuple are defined in Table 3.1.  As 

depicted in Table 3.1, if the transition condition evaluates as true then the corresponding 

tuple position is recorded as a “1” value, otherwise the value is “0”.  Active nodes are 

represented as states 𝑁𝑆0, 𝑁𝑆1, 𝑁𝑆2  with a 6-tuple value of “1” in position “AC”; otherwise 

the value is “0”.    If all positions are “0” then the node state is a null-link.  In Figure 3.1 each 

state is represented by a circle and the transition between states is depicted by a line between 

the circles.  The direction of the transition is indicated by the arrows on the lines.  Inside each 

node state circle of Figure 3.1 the corresponding 6-tuple values are shown. As depicted in 

Table 3.1, the value at the intersection of a row (transition conditional) and column (current 

state) indicates a new possible state.  For example, a node in current state 𝑁𝑆0 will transition 

to state 𝑁𝑆1, if and only if NP-Release is true.  All node state changes are triggered by the 

attack simulation clock ticks represented as 𝑡 ∈  0,1,2,3, …  .   The remainder of this chapter 

will formally define each node state and its corresponding data structures. 
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Table 3.1. Node state transitions for Figure 3.1 

  

Condition 

Current Node State  

Description 

6-

Tuple 

NS0

 
NS1

 
NS2

 
NS3

 
NS4

 
NS5

 

NP-RELEASE = T   Node is a member of a released node-

pair
 

NR = 1 

 

NS1
 

     

NP-RELEASE = F  Node is not a member of a released 

node-pair
 

NR = 0 

 

NS0

 
     

TEMP-ORPHAN = T  Node is a temporary orphan TO = 1  NS2

 
    

TEMP-ORPHAN = F Node is not a temporary orphan TO = 0  NS0

 
    

NEW-LINK = T Node has an available neighbor  NL = 1   NS5

 
   

NEW-LINK = F Node does not have an available 

neighbor  

NL = 0 

 

  NS3

 
   

OVERLOAD = T Node link load has exceeded its link 

capacity 

OL = 1 

 

     NS4

 

OVERLOAD = F Node link load has not exceeded its 

link capacity 

OL = 0 

 

     NS0

 

ATTACKED = T Node is a critical node that has been 

attacked
 

AN = 1 

 

NS5

 
     

ATTACKED = F  Node is not a critical node that has 

been attacked
 

AN = 0 

 

NS0
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Figure 3.1. Node state diagram for the CPN simulations 
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1) Set of All Active Nodes. 

At time 𝑡, a node is in the active state if it has not been removed from the simulation 

during an attack. Pre-attack active nodes are all nodes present at time 𝑡 = 0. 

𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 =   𝑛𝑖
𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡)  𝑖 ∈ {0,1,2,3, … ,  𝑀(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 1 } ;                                                             (1) 

where 𝑀(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒  is the number of active nodes at time 𝑡. 

2) Set of All Node-Pairs. 

At time 𝑡, the set of all node-pairs is the set of ordered pairs of two adjacent active 

nodes, (𝑛𝑡
𝑖 , 𝑛𝑡

𝑗
), such that router (node) 𝑛𝑗

𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡) is a router table entry in router (node) 

𝑛𝑖
𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡).   A simulated communication attempt does not occur until the node-pair has been 

randomly evaluated in the simulation stream.  Each node-pair was released into the 

evaluation using a linear congruential algorithm (Sedgewick 1983) and further randomized 

by the CPN application engine.  The simulated communication attempt process will be 

described in the next chapter. A node-pair is defined as:  

𝑝𝑦 (𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 =   (𝑛𝑖 𝑡 , 𝑛𝑗 (𝑡))  𝑛𝑖 𝑡 ∈ 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 , 𝑛𝑗 (𝑡) ∈ 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 , 𝑖 ≠ 𝑗, 𝑛𝑗 (𝑡) ∈ 𝐴𝑖 𝑡 ) ;                 (2) 

𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 =   𝑝𝑦
𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡)  𝑦 ∈ {0,1,2,3,… ,  𝑄(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 1 } ;                                                             (3) 

where 

𝑃(𝑡)𝐴𝑐𝑡 𝑖𝑣𝑒  is the set of active node-pairs, (𝑛𝑖 𝑡 , 𝑛𝑗 (𝑡)); 

𝑄(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒  is the number of active node-pairs at time 𝑡; 

𝐴𝑖 𝑡  is the set of all neighbor nodes of node 𝑖. 

The set of all neighbor (adjacent) nodes of node 𝑖 is: 

𝐴𝑖 𝑡 =   𝑎𝑘 𝑡   𝑘 ∈  0,1,2,3, … ,  𝐾𝑖(𝑡) − 1  , 𝑎𝑘 𝑡 ∈ 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒  ;                                                     (4)                                                    
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Where 𝐾𝑖(𝑡) is the number of neighbor nodes of  active node 𝑖, 𝑛𝑖 𝑡 , and referred to as the 

degree of node 𝑖, that is the number of links for node 𝑖. 

3) Attack Class. 

During the simulation critical nodes are randomly attacked. For each simulation run, 

an attack class was defined as the fraction of all nodes selected to be critical nodes. Critical 

nodes are nodes that will be eventually attacked (removed) during the simulation.  For each 

simulation run there exists one and only one attack class.  The attack classes used in this 

research were supported by previous error and attack studies (Albert, Jeong, and Barabasi 

2000; Cohen 2001; Crucitti et al. 2004; Guillaume, Latapy, and Magnien 2005; Motter and 

Lai 2002; Salla 2005).  The set of all attack classes is an ordered set such that: 

𝐶 𝑡 = 0 =  𝑐𝑧  𝑐 ∈ ℝ, 𝑧 ∈ { 0,1,2,3, … (𝑧𝑚𝑎𝑥 − 1) , 𝑧𝑚𝑎𝑥 = 10}};                                                      (5) 

where 

𝑧𝑚𝑎𝑥  = maximum number of attack classes used in this research. 

𝑐0 = 0.05; 

𝑐𝑧 = (𝑐𝑧−1 + 𝑐0); 

∀𝑧 > 0, 𝑐𝑧 > 𝑐𝑧−1   

4) Critical and Attacked Nodes. 

Critical nodes for each simulation run are selected based on their degree.  The set of 

all node degrees (𝐾(𝑡 = 0)𝑂𝑟𝑑𝑒𝑟𝑒𝑑 ) is an ordered set of all unique active node degrees 

(𝑘𝑖 𝑡 = 0 ).  It is sorted from highest to lowest node degrees.  Nodes corresponding to the 

top 𝑐𝑧 ∗ 100 percent are specified critical nodes (𝑛𝑤 (𝑡 = 0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ).  The set of all critical 

nodes for attack class 𝑐𝑧  is: 

𝑁𝑤(𝑡 = 0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑐𝑧) =   𝑛𝑤  𝑡   𝑤 ∈  0,1,2,3,… ,  𝑊𝑐𝑧
(𝑡 = 0) − 1                                                         (6) 
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Where 𝑊𝑐𝑧
(𝑡 = 0) is the number of critical nodes. 

From the set of critical nodes, attacked nodes were randomly selected at random simulation 

times.  The set of all unordered node degrees is defined: 

𝐾(𝑡) =   𝐾𝑖 𝑡   𝑖 ∈  0,1,2,3, … ,  𝑀(𝑡 = 0)𝐴𝑐𝑡𝑖𝑣𝑒 − 1                                                                        (7) 

The ordered set of all unique node degrees in the network at 𝑡 = 0, sorted from high to low 

degree is:  

𝐾(𝑡 = 0)𝑂𝑟𝑑𝑒𝑟𝑒𝑑 =  𝐾𝑖  (𝑡 = 0) 

  
𝑖 ∈ {0,1,2,3, …   𝑀(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 1 },

(𝑘𝑖 > 𝑘𝑖+1)
                                                           (8) 

It follows that for all unique node degrees of attack class 𝑐𝑧  in one simulated network: 

1. The number of critical nodes is:  

𝑊𝑐𝑧
(𝑡 = 0) =  (𝑐

𝑧
∗  𝑀(𝑡 = 0)𝐴𝑐𝑡𝑖𝑣𝑒)                                                                                          (9)                                            

2. The set of all of non-critical nodes is: 

𝑁𝑔(𝑡 = 0)𝑁𝐶(𝑐𝑧) =   𝑛𝑔 𝑡   𝑔 ∈  0,1,2,3, … ,  𝑈𝑐𝑧
 𝑡 = 0 − 1                                    (10) 

3. The number of all of non-critical nodes is: 

𝑈𝑐𝑧
 𝑡 = 0 = 𝑀(𝑡 = 0)𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑊𝑐𝑧

(𝑡 = 0)                                                                  (11) 

4. The set of all attacked nodes at time 𝑡: 

𝑁(𝑡)𝐴 =   𝑛𝑎 (𝑡)𝐴  𝑎 ∈ {0,1,2,3, … ,  𝑀(𝑡 = 0)𝐴 − 1 , 𝑛𝑎 (𝑡)𝐴 ∈  𝑁𝑤 (𝑡 = 0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑐𝑧)                     (12) 

      where 𝑀(𝑡 = 0)𝐴 is the number of nodes randomly designated for attack. 

5) Set of all Temporary Orphan Nodes. 

A communications attempt is emulated by randomly releasing node-pairs into the 

simulation stream for evaluation.  During the node-pair evaluation process, one node in the 

node-pair may be classified as a temporary orphan node.  This indicates that the 

communication attempt between the two nodes in the node-pair has failed.  The criterion for 
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orphan node determination is defined below.  The process designed to simulate 

communication attempts will be discussed in Chapter IV.  Once a node has become a 

temporary orphan, the simulation will determine whether it can establish a new incremental 

link with an existing neighbor node.  If no other active neighbor nodes exist, then the 

temporary orphan will become a permanent orphan.  The permanent orphan has lost all 

ability to communicate with other nodes and it will be added to the set of removed nodes.  

Since no information flows to or from a permanent orphan, they do not contribute to the 

network-wide information transfer value.  Given the node-pair, (𝑛𝑖 𝑡 , 𝑛𝑗 (𝑡)), a temporary 

orphan, 𝑛𝑟 𝑡 
𝑇𝑂exists as a member of the set of all temporary orphan nodes: 

𝑖𝑓  𝑛𝑖 𝑡 ∈ 𝑁 𝑡 𝑅 ∧ (𝑛𝑗  𝑡 ∉ 𝑁 𝑡 𝑅)) then 𝑛𝑗  𝑡  ∈ 𝑁 𝑡 𝑇𝑂                                                            (13) 

𝑖𝑓  𝑛𝑗  𝑡 ∈ 𝑁 𝑡 𝑅 ∧ (𝑛𝑖 𝑡 ∉ 𝑁 𝑡 𝑅)) then 𝑛𝑖 𝑡  ∈ 𝑁 𝑡 𝑇𝑂                                                           (14) 

Where 𝑁 𝑡 𝑅  is the set of all removed node and will be defined in (22). 

The set of all temporary orphans is: 𝑁 𝑡 𝑇𝑂 =   𝑛𝑟 𝑡 
𝑇𝑂   𝑟 ∈  0,1,2,3, … ,  𝑀(𝑡)𝑇𝑂 − 1                (15)                                                               

 Where 𝑀(𝑡)𝑇𝑂is the number of temporary orphan nodes at time 𝑡. 

6) Set of all Null-Link Orphan Nodes. 

If a temporary orphan node exists, then the temporary orphan node recovery process 

will determine whether the orphan can establish a valid communication link with another 

neighbor node.  If the temporary orphan node has at least one active neighbor node, then a 

new node-pair connection will be established using the preferential attachment mechanisms 

discussed in Chapter II.  If an active neighbor node does exist, then a new node-pair is 

established and the orphan node is no longer an orphan and remains active.  If there are no 

other active neighbor nodes, then it will be classified as a null-link orphan node.  Null-link 
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orphans are permanent orphans.  Given the existence of temporary orphan node, 𝑛𝑡
𝑇𝑂 , then 

the set of null-link nodes is defined as: 

𝑛𝑟 𝑡 
𝑇𝑂 ⇒  𝑛𝑠 𝑡 

𝑁𝑢𝑙𝑙   if and only if there are no active neighbor nodes for the temporary 

orphan node 𝑛𝑟 𝑡 
𝑇𝑂 , then the set of neighbor nodes for the temporary orphan node 𝑟 is:  

𝐴𝑟 𝑡 = {}; 

𝑁(𝑡)𝑁𝑢𝑙𝑙 =   𝑛𝑠 𝑡 
𝑁𝑢𝑙𝑙   𝑠 ∈  0,1,2,3,… ,  𝑀(𝑡)𝑁𝑢𝑙𝑙 − 1  , 𝑛𝑠 𝑡 

𝑁𝑢𝑙𝑙  ∈  𝑁(𝑡)𝑂 , 𝑛𝑠 𝑡 
𝑁𝑢𝑙𝑙  ∉  𝑁 𝑡 𝑇𝑂      (16)          

Where 𝑀(𝑡)𝑁𝑢𝑙𝑙  is the number of null-link orphan nodes at time 𝑡.  

7) Set of all Overloaded Orphan Nodes. 

When a temporary orphan node, 𝑛𝑟 𝑡 
𝑇𝑂 , has an active neighbor, a new incremental 

node-pair is established.  This incremental link is denoted as 𝑘𝑥(𝑡) to node 𝑥, 𝑛𝑥(𝑡) in the 

new node-pair (𝑛𝑟 𝑡 
𝑇𝑂 , 𝑛𝑥(𝑡)).  When the incremental node-pair ((𝑛𝑡

𝑇𝑂 , 𝑛𝑡
𝑥)) is established, 

the load on node 𝑥, 𝑛𝑥(𝑡), is incremented by one link.  This additional load may exceed the 

node‟s link capacity.  If the link capacity of node 𝑛𝑥(𝑡) is exceeded, then node 𝑛𝑥(𝑡) is 

transitioned to an overloaded orphan node, 𝑛𝑓 𝑡 
𝑂𝐿 .   

The overloaded orphans (𝑛𝑓 𝑡 
𝑂𝐿) and null-link orphans (𝑛𝑠 𝑡 

𝑁𝑢𝑙𝑙 ) are unavailable 

for further communications and removed from the simulation.  If the new incremental link 

results in an overloaded orphan, then 𝑛𝑟 𝑡 
𝑇𝑂  remains a temporary orphan and continues to 

look for a valid link with one of its existing active neighbor nodes.  When a valid link occurs, 

that is, the new incremental link does not result in an overloaded node, then 𝑛𝑟 𝑡 
𝑇𝑂  is 

removed from the set of temporary orphans. The node transitions are described in the 

previously presented Table 3.1 and Figure 3.1.  The overloaded node occurs as follows: 

1. The pre-attack link load of node 𝑛𝑥(𝑡):𝑘𝑥
𝐿𝑜𝑎𝑑 (𝑡=0)

=  𝐴𝑥(𝑡 = 0)                                         (17)                                                               
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      Where 𝐴𝑥(𝑡 = 0) is the number of pre-attack neighbor nodes of  node 𝑥. 

2. At time t, 𝑁𝑟(𝑡)𝑁𝑒𝑤𝐿𝑖𝑛𝑘 (𝑥) is the set of all temporary orphan nodes that have established 

an incremental link to node 𝑛𝑥(𝑡) through the recovery process.    

3. At time 𝑡 ′ , the additional link load due to the temporary orphan recovery process: 

𝑘𝑥
𝐿𝑜𝑎𝑑 (𝑡 ′ )

= ( 𝑘𝑥
𝐿𝑜𝑎𝑑 (𝑡)

+ 𝑀𝑟(𝑡)𝑁𝑒𝑤𝐿𝑖𝑛𝑘 (𝑥) );                                                                               (18)                                                              

Where 𝑀𝑟(𝑡)𝑁𝑒𝑤𝐿𝑖𝑛𝑘 (𝑥) is the number of 𝑁𝑟(𝑡)𝑁𝑒𝑤𝐿𝑖𝑛𝑘 (𝑥) nodes for the entire simulation that 

form a new incremental link with 𝑛𝑥(𝑡). 

4. The capacity index (𝐿) for all active nodes is dependent upon the tolerance parameter.  

The constant tolerance parameter (Motter 2004; Motter and Lai 2002; Wang and Rong 

2009a, 2009b) used in this research was: 𝛿 = 0.1: 

𝐿 = 1.0 + 𝛿                                                                                                                     (19) 

5. Total link capacity for node 𝑛𝑡
𝑥 : 

 𝑘𝑥
𝐶 = 𝐿 ∗ 𝑘𝑥

𝐿𝑜𝑎𝑑 (𝑡=0)
                                                                                                        (20) 

6. The set of overloaded orphan nodes that occur when a node‟s current load exceeds its 

link capacity: 

𝑁𝑓 𝑡 𝑂𝐿 =   𝑛𝑓 𝑡 𝑂𝐿 𝑓 ∈  0,1,2,3, … ,  𝑀(𝑡)𝑂𝐿 − 1  , ( 𝑘𝑥
𝐿𝑜𝑎𝑑 (𝑡)

>  𝑘𝑥
𝐶   ) ;                                     (21) 

      Where 𝑀(𝑡)𝑂𝐿  is the number of overloaded orphan nodes at time 𝑡. 

8) Set of all Removed Nodes. 

  Null-link and overloaded orphan nodes are added to the set of removed nodes.  The 

set of all removed nodes at time 𝑡 represents all nodes that are unable to communicate with 

other nodes. The set of removed nodes is: 

𝑁(𝑡)𝑅 = 𝑁(𝑡)𝑂 + 𝑁(𝑡)𝐴                                                                                                                    (22) 

𝑁(𝑡)𝑅 =   𝑛𝑓(𝑡)  𝑓 ∈ {0,1,2,3, … ,  𝑀(𝑡)𝑅 − 1 } ;                                                                (23) 
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Where 𝑀(𝑡)𝑅  is the number of removed nodes at time 𝑡. 

The set of all permanent orphan nodes is:  

𝑁(𝑡)𝑂 = 𝑁(𝑡)𝑁𝑢𝑙𝑙 + 𝑁(𝑡)𝑂𝐿                                                                                                               (24)                                                                       

Permanent orphans are unable to establish communications as a result of cascaded node 

failures.  

 

B. Topology Based Node Protection 

This research has shown that targeted protection of pre-attack nodes based on node-

pair types is plausible.  In the attack simulation, a protected node was a node that always 

remained active.  These protected nodes were not subjected to communication breakdown 

during the simulated attacks. Protected nodes are defined as follows: 

Given: 

1. The set of protected node degrees: 

𝐻𝑑(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 =   𝑑 (𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡   𝑑 ∈ {0,1,2,3,… ,  𝐼𝑑 (𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 − 1 } ;                                             (25)                                           

      Where 𝐼𝑑(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡  is the number of node degrees designated for protection. 

2. The set of protected nodes: 

𝐻(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 =   𝑝 (𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡   𝑝 ∈ {0,1,2,3, … ,  𝐼(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 − 1 } ;                                                (26)                                                       

     Where 𝐼(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡  is the number of nodes designated for protection. 

3. The set of  attack marker node-pair types: 

𝑉(𝑡)𝐴𝑀 =   (𝑣1 𝑡 ,𝑣2 𝑡 )  (𝑣1 𝑡 , 𝑣2 𝑡 ) ∈ 𝑃(𝑡)𝐴𝑐𝑡 𝑖𝑣𝑒  ;                                                             (27)                                                                        

4. Active node 𝑛𝑖 𝑡  has a node degree of 𝐾𝑖(𝑡) and node 𝑛𝑗  𝑡  has a node degree of 𝐾𝑗 (𝑡); 

both nodes are members of node-pair 𝑝𝑦
𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡) 
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It follows that at time 𝑡, if  node 𝑖 has a degree that is a member of the set of protected node 

degrees and node 𝑖 is a member of an attack marker node-pair that was designed for 

protection, then  node 𝑖 is also protected.  This was defined as:   

If (𝑛𝑖 𝑡 ∈ 𝐻𝑝(𝑡)𝐴𝑀 ) ∧  𝐾𝑖 𝑡 ∈ 𝐻𝑑 𝑡 𝑃𝑟𝑜𝑡𝑒𝑐𝑡   then 𝑛𝑖 𝑡 ∈ 𝐻(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 ∧ (𝑛𝑖 𝑡 ) ∉ 𝑁(𝑡)𝑅 ;                 (28)                

 

If node 𝑗 has a degree that is a member of the set of protected node degrees and node 𝑗 is a 

member of an attack marker node-pair that was designed for protection then  node 𝑗 is also 

protected.  This was defined as:     

If (𝑛𝑗  𝑡 ∈ 𝐻𝑝(𝑡)𝐴𝑀 ) ∧  𝐾𝑗  𝑡 ∈ 𝐻𝑑 𝑡 𝑃𝑟𝑜𝑡𝑒𝑐𝑡   then 𝑛𝑗  𝑡 ∈ 𝐻(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 ∧ (𝑛𝑗  𝑡 ) ∉ 𝑁(𝑡)𝑅 ;                    (29)                        

 

Node-pairs and active nodes were previously defined in Section A of this chapter.  The 

selection of nodes to be protected, node-pair types, and attack markers will be discussed in 

Chapter IV.  

 

C. Simulated Attack Definition 

This research focused on DoS attacks. Stephenson and Prueitt define a taxonomy for 

DoS attacks using cyber attack primes as attack descriptors (2005).  The attack tuple (DoS) 

described by Stephenson and Prueitt and relevant to this study was defined by their taxonomy 

as:  

<DOS, User_Err_Slf_Protect, User_Err_Misuse_Avl_Resc, Power_Disrupt, 

Malicious_Code, Hack_Phys, Hack_Avl_Resc, Failure_DS_Comp, Dev_Flawed_Code, 

Component_Failure, Admin_User_Priv, Admin_Hostile_Modify, Admin_Err_Commit, 

Admin_Err_Omit> 
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For detailed explanations of each element, see Stephenson and Prueitt (2005).  The remainder 

of this section will formally represent a DoS attack as simulated in this research. 

1) Cyber Attack States. 

 An external stimulus (𝛽) is any entity that seeks to induce a denial-of-service attack 

using the attack descriptors discussed above.  An attack is defined as a network state change 

incurred as a result of an external stimulus applied to normal network states: 

𝛽 ∙   𝑠𝑖    𝑖 ∈  0,1,2, … . . , 𝑚   ⇒   𝑠𝑘
𝑎    𝑘 ∈  0,1,2, … . . , 𝑛                                                 (30) 

Given that 𝑡 ′ > 𝑡 and 𝑘′ > 𝑘 𝑡hen an external stimulus (𝛽) applied to a set of normal 

network states ({ 𝑠𝑖}) results in a set of new attacked states ({𝑠𝑘
𝑎 }); 𝑖 = 𝑘 = 0 ⇔ pre-attack 

network state.  An attack state (𝑠𝑘
𝑎 ) is inferred when external stimulus is applied to a normal 

network state resulting in an anomalous new state: 𝛽 ∙   𝑠𝑖  ⇒ 𝑠𝑘
𝑎  .  By convention this 

research dissertation will represent 𝛽 ∙ 𝑠 ⇔ 𝛽 ∙ {𝑠}.  The attack simulation process 

definitions are defined below.  All terminologies below have been previously defined in this 

chapter. 

2) Network State Transitions. 

All node related terms were previously defined in Sections A and B of this chapter.  

This section will present the state transition details that were discovered during this study. 

Transition 1: A new attack state results when an external stimulus is applied to the set of 

critical nodes. 

𝛽 ∙  𝑁𝑤 (𝑡 = 0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑐𝑧)  ⇒ 𝑁(𝑡′)
𝐴                                                                                (31)                                                                                 

𝑁(𝑡′)𝐴 ⇒  𝑠𝑘
𝑎                                                                                                                     (32)                                                                                                                 
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Transition 2: As a result of the attack state change in Transition 1: 

1. The attacked nodes are removed from the set of active nodes. 

𝑠𝑘
𝑎 ⇒ 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ; where 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 =  𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑁(𝑡)𝐴                                         (33)                                            

2. Cascaded failures lead to overloaded nodes that are removed from the set of active nodes.  

𝑠𝑘
𝑎 ⇒ 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ; where 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 =  𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑁(𝑡)𝑂𝐿

                                            (34)                                                

3. Cascaded failures lead to null-link nodes that are removed from the set of active nodes. 

𝑠𝑘
𝑎 ⇒ 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ; where 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 =  𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑁(𝑡)𝑁𝑢𝑙𝑙

                                          (35)                                            

4. Nodes are permanently orphaned the set of active node-pairs is altered.  

      𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ⇒ 𝑃(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ;                                                                                              (36)                                                                                              

      𝑃(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 =  𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − (𝑁 𝑡′ 𝑅 ⊂ 𝑃 𝑡 ′ 𝐴𝑐𝑡𝑖𝑣𝑒 ) ;                                                   (37)                                                      

      𝑛𝑖 𝑡 ∨ 𝑛𝑗  𝑡  ∈ (𝑁 𝑡′ 𝑁𝑢𝑙𝑙 + 𝑁 𝑡′ 𝐴 + 𝑁 𝑡′ 𝑂𝐿);                                                           (38)                                                             

 

Transition 3: As a result of the network distortions depicted in Transition 2, the network‟s 

stability is altered.  The network‟s stability is monitored during the attack simulation.  The 

network‟s information transfer stability (𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘
𝐼 ) is a measure of the ability of 

any two random nodes to communicate.  The network‟s NCP stability 

(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑘
𝑁𝐶𝑃

) is the extent of the physical fragmentation of the network into 

increasingly more isolated clusters.   

 𝑠𝑖 ⇒ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖                                                                                                      (39)                                                                                                      

𝛽 ∙ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ⇒ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘                                                                   (40) 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘 ⇒ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘
𝐼 + 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘

𝑁𝐶𝑃                             (41)                            

Transition 4: Steep fluctuations in the network‟s stability as depicted in Transition 3 will 

eventually lead to a set of halting conditions. Execution of the simulation is halted when the 
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“halting condition” is encountered. This is the stability threshold at which network 

communications are completely degraded.  The “halting condition” 𝐻 is Boolean.   

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘 ⇒ 𝐻;                                                                                                    (42)                                                                                                  

𝑖𝑓𝑓 (𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘
𝐼 < 0  ∧  𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘

𝑁𝐶𝑃 < 2)                                         (43)                                          

3) Network Fragmentation. 

Network fragmentation is one measure of the network‟s connectivity stability used in 

this research.  As previously discussed in Chapter II, it is a relative measure of the physical 

extent of the network‟s breakup during the attack. As considered in this research, Figure 3.2 

and Figure 3.3 depict an example connectivity fragmentation that occurs during an attack.  

The circles represent nodes, and the numbers in the circles represent the node‟s degree.  The 

darker line shown indicates a specific message path.  The path represented flows from its 

source, through two intermediate nodes and then to its final destination.  The finer lines 

indicate links between neighbor nodes.  These two figures represent a small area of network 

activity and a single message path from the much larger overall network.   

Figure 3.2 represents a small portion of the network before the attack has 

commenced.  It depicts normal operating conditions with no network fragments.  Figure 3.3 

depicts an attack on node B resulting in its removal from normal connectivity. When node B 

is removed, a new path is formed and all nodes previously connected to node B break off into 

smaller fragments.  The fragment sizes vary and the number of fragments that occur is equal 

to the degree of node B. Some fragments may have only one node; these nodes were 

previously defined as orphan nodes.  In Figure 3.3, the arrows point to the connectivity 

fragments.  As a result of the attack, connectivity between the source and the destination 

requires an additional two intermediate nodes for completion.   
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Figure 3.2. Pre-Attack network example of message path hops over small region  
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Figure 3.3. Attacked network at some point after attack, message path change and 

fragmentation 

 

During the attack as the attacked nodes are removed, the cascading extent of the 

network-wide fragmentation dominates all connectivity patterns.  Eventually, the network‟s 

stability is completely degraded.  This progression is shown in Figure 3.4.  Region A depicts 

the network before the attack without fragmentation.  Region B reflects some intermediate 

snapshot over time and shows a partially degraded network.  Region C represents the final 

state of the network after it has been totally degraded.  This total connectivity stability 

degradation occurs because the network is predominant small isolated fragments of 2 nodes.  



55 

 

During this research, changes in the network‟s stability during the attack simulations 

as indicated by the network‟s fragmentation were measured in controlled intervals.  The 

network stability changes were defined previously in this section during the discussion of 

Transitions 3 and 4. 

 

Figure 3.4.  Illustrative example of network fragmentation over time 

  

  

A 

B 

C 



56 

 

D. Computational Foundations 

This section will discuss the foundational network connectivity definitions used in the 

research computations.  This will be followed by a discussion of the pre-attack data and 

its descriptive statistics. 

1) Network Connectivity Stability Computations. 

The effects on network connectivity stability of the simulated denial-of-service (DoS) 

attack were measured primarily using two indicators, mutual information transfer and the 

network connectivity parameter.  The network‟s mutual information transfer was used in this 

research to represent the loss of information transmission capabilities during an attack.  The 

extent of the network‟s physical fragmentation was monitored using the network connectivity 

parameter.  Along with the information entropy, these two measures represent the network‟s 

loss of heterogeneity during the simulated DoS attack.  As previously discussed in Chapter II, 

the link heterogeneity of a scale-free network is representative of its connectivity robustness 

and stability.   Table 3.3 presents the network connectivity terms used in the research 

computations. 
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Table 3.2. Network connectivity terms used in the research computations 

Term Definition 

𝑘 Node degree. 

𝑚(𝑘) Number of nodes with k-degree. 

𝑚(𝑘1𝑘2) Total number of 𝑘1-degree nodes linked to 𝑘2-degree nodes. 

𝑚 Total number of active links for the network. 

𝑁 Total number of active nodes for the network. 

𝑘𝑀𝑎𝑥  Maximum k-degree of the network. 

𝜇(𝑘1𝑘2) Constant value, if 𝑘1 = 𝑘2 then 1 else 2; a weight assigned for joint 

degree computation. 

𝑝(𝑘) Probability that a node with k-degree node will establish a link; 

𝑝 𝑘 =  
𝑚(𝑘)

𝑛
 

𝑝(𝑘1𝑘2) Probability that a node with 𝑘1-degree node will establish a link with a 

𝑘2-degree node;  𝑝 𝑘1𝑘2 = 𝜇(𝑘1𝑘2)
𝑚(𝑘1𝑘2 )

2𝑚
 

 

All terms and their relevance in the equations below were previously discussed in Chapter II. 

The computations used in this research are defined as follows: 

Mutual Information Transfer (𝐼), relative to its joint entropy (Boschetti et al. 2005; Schreiber 

2000; Srivastav, Ray, and Gupta 2009),  

𝐼 =   𝑝(𝑘1𝑘2)𝑙𝑜𝑔2
𝑝(𝑘1𝑘2)

𝑝(𝑘1)𝑝(𝑘2)

𝑚
𝑘2=1

𝑚
𝑘1=1                                                                                  (44)                                                                                          

Information Entropy (𝐻) (Gudkov and Montealegre 2008) 

𝐻 = −  𝑝 𝑘 log2 𝑝(𝑘)𝑁−1
𝑘=1                                                                                                             (45)                                                                                                                        
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Network connectivity parameter (𝕂) (Cohen 2001; Gallos and Argyrakis 2007) 

𝕂 =
<𝑘2>

<𝑘>
                                                                                                                                                     (46)                                                                                                                                                             

 

Average Node Degree (𝑘  𝑜𝑟 < 𝑘 >) (Mahadevan et al. 2005) 

< 𝑘 > =
2𝑚

𝑛
                                                                                                                                                (47)                                                                                                                                               

 

Average Neighbor Node Degree (𝑘 𝑛𝑛  𝑜𝑟 < 𝑘𝑛𝑛 >) (Mahadevan et al. 2005) 

< 𝑘𝑛𝑛 > =
 𝑘𝑛𝑛

𝑘𝑀𝑎𝑥
𝑘=1

𝑚
                                                                                                                            (48)             

                                                                                                                                

2) Pre-Attack Network Connectivity. 

Table 3.3 depicts the pre-attack connectivity used in this study.  Equations (44) 

through (48) were used for the computations found in Table 3.3. The pre-attack state (𝑡 = 0) 

depicted in Table 3.3 was the baseline condition for all simulated attacks.  Previously cited 

literature indicates that a scale-free network‟s scaling degree exponent is between 2 and 3.  

Graphical analysis of its log-log plot for the degree (k) versus the frequency of each degree in 

the network is commonly used to determine the degree exponent of a power law network.  

Figure 3.5 and Figure 3.6 depict the degree distribution of the pre-attack network.  The 

degree distribution plot depicted in Figure 3.5 was consistent with the literature.  The degree 

exponent for the AT&T router infrastructure was found to be approximately 2.26 and 

therefore exhibits power law degree distribution behavior.  The baseline router infrastructure 

used in this research represented a scale-free network.  All values were consistent with the 

literature previously cited (Albert, Jeong, and Barabasi 2000; Barabasi and Albert 2002; 



59 

 

Crucitti et al. 2004; Demetrius and Manke 2005; Mahadevan et al. 2005; Piraveenan, 

Prokopenko, and Zomaya 2009; Sole and Valverde 2004; Wang et al. 2006). 

 

Table 3.3. Pre-Attack simulation baseline connectivity 

Term Definition Pre-Attack 

Value 

𝑚 Total links for the network 28,592 

𝑁 Total nodes for the network 11,800 

𝑘𝑀𝑎𝑥  Maximum k-degree of the network 68 

𝑘  Average node connectivity degree for the network 4.8 

k nn  Average neighbor node connectivity degree for the network 15.8 

𝑝(𝑘) Probability that a node with k-degree node will establish a 

link: 𝑝 𝑘 =  k−α .  See Figure 4.22 and Figure 4.23. 

 

𝛼 Scale Coefficient (Alpha) 2.26 

𝐼 Mutual Information Transfer 1.56 

𝐻 Information Entropy 1.48 

𝕂 Network Connectivity Parameter 15.8 
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Figure 3.5.  Pre-Attack network degree distribution 

 

Figure 3.6.  Pre-Attack network rank/frequency plot (log-log scale)  
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In this chapter, the formal definitions and foundational node representations were 

discussed. Chapter IV will now depict the cyber attack model and simulation designed for 

this research that was based on the definitions presented in this chapter. 
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CHAPTER IV.  MODEL AND SIMULATION DESIGN 

  This chapter discusses the attack model and simulation used in this research.  As 

previously discussed in Chapter I, it should be noted that routers are represented as nodes and 

the links between the nodes represent router communication adjacencies as defined in their 

router tables.  Specific computer code, functions and declarations can be found in Appendix 

A and Appendix B. 

 

A. Simulation Strategy 

A robust, reusable, automated model has been developed that simulates complex 

scale-free computer network communication connectivity.  The model simulates targeted 

denial-of-service attacks.  These attacks were simulated through random removal of the 

network‟s most highly connected nodes.  This research studied the resulting cascaded node 

failures and their effects on network connectivity.  Network communications between routers 

was represented as node-pairs.  Node-pair relationships under attack were studied. 

The representation of network connectivity using node-pair relationships was 

foundational to this research.  The rationale for this conceptualization is consistent with the 

basic algorithm for Internet message transmission.  Over the Internet, a complete message 

path, from its initial source to its ultimate destination, consists of consecutive multiple hops 

between intermediate router pairs.  As depicted in Figure 4.1, it is common to represent a 

complete path as the sum of each of its individual intermediate router-to-router ordered pairs 

(ordered because the path is one-way).  The numbers shown in the circles represent router 

numbers. Source and destination shown in the figure represent the original source and the 

final destination.  Figure 4.1 depicts 4 distinct communication paths in the following order: 
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(1) from the original message source to intermediate destination represented by router 1, (2) 

from the intermediate source represented by router 1 to the next intermediate destination 

represented by router 2, (3) from the intermediate source represented by router 2 to the next 

intermediate destination represented by router 3, and (4) from the intermediate source 

represented by router 3 to the final destination represented by router 4. 

As a whole, the formation of these intermediate node-pairs over the entire message 

path reflects router communication relationships of the network.  This research used these 

relationships to study targeted denial-of-service attacks over a scale-free computer network, 

specifically the Internet‟s router infrastructure. 

 

 

  Figure 4.1. Node-pairs and network connectivity model 

 

The model and simulation of network connectivity presented in this research is 

predicated upon an accepted modeling and simulation language known as Colored Petri Nets 

(CPN).  The characteristic connectivity patterns of a network were emulated using node-pairs 

from a real network infrastructure.  This research used the United States AT&T core 

infrastructure node-pairs to develop the simulation‟s pre-attack state.  Attacks against this 

baseline were then simulated and anomalies in the distribution of these node-pairs were 

studied. Changes in the underlying communication characteristics of the network, such as its 
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mutual information transfer, were also studied.  The next section in this chapter introduces 

the foundational assumptions used in this research to develop the model and simulation. 

 

B. Foundational Assumptions 

The following assumptions were made during the research simulations and all 

subsequent data analysis: 

1. This research does not introduce attack motivation theories or discussion. 

2. The simulations were limited to scale-free computer network connectivity mechanisms as 

related to preferential attachment and network traffic flow characteristic patterns. 

3. The cyber attack was simulated in a virtual environment; there were no live Internet 

experiments performed in this research. However, real Internet router adjacency data 

were used to prime the pre-attack CPN simulations. 

4. The CPN simulations were executed using the Microsoft Windows XP SP2 operating 

system and CPNTools version 2.2.0. 

5. This research was limited to large-scale (regional backbone) router connectivity 

topologies and their degree distribution characteristic changes during a cyber attack. 

6. This research assumes that the attacker has knowledge of the Internet‟s router 

infrastructure and has identified critical routers.  This knowledge will not be modeled. 

7. Ordered node-pairs represent network connectivity relationships. 

8. Network stability was considered a relative function of its ability to transfer information 

and the extent of attack-induced physical connectivity fragmentation.  

9. Network stability is a gradual degradation influenced by its node-pair connectivity 

behaviors and multiple violations of preferential attachment theory. 
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10. Node removal attack modeling is the only method used to simulate an attack; link-based 

attacks are not considered in this research. 

11. All node-pairs are considered of equal weight (one link per node-pair).  However, one 

node may have multiple physical links to the same node. 

 

C. CPN Modeling and Simulation Language 

The modeling and simulation language for this research was Colored Petri Nets 

(CPN) as realized through CPNTools (Kristensen, Christensen, and Jensen 1998).  CPNs are 

used to model and simulate a wide variety of industrial strength applications through virtual 

representations (Kristensen, Christensen, and Jensen 1998).  These include communication 

protocols, audio/visual systems, operating systems, hardware designs, embedded systems, 

software system designs and business process re-engineering.  This research methodology 

represented a unique application of CPNs.   

1) CPN Syntax. 

CPN model development may be done in both a graphical and textual programming 

environment.  The foundational building blocks of the CPN programming syntax are places, 

tokens, arcs, colors, transitions, markings and guards.  A place represents an environment 

(such as a network router) and is assigned markings (token values) to portray the system state 

(configuration) of that place.  Tokens are computer bit strings (such as variable values) that 

are transmitted across arcs (communication lines) to other places (routers).  Communication 

between 2 places is facilitated by transitions.  Transitions are enabled so that tokens may be 

passed between 2 places in the simulation.  It is possible to transmit multiple tokens between 



66 

 

2 places sequentially or concurrently.  Colors (programming declaration statements) provide 

the essential data types for the information stored on the places.   

Syntactically, places must be connected to transitions. Arcs connect places and 

transitions and they allow state changes. The flow of tokens is controlled through arc 

conditionals and transition guards.  As transitions are enabled they execute model code and 

control the information flow between places.  For a contextual understanding, tokens will be 

referenced as being moved between places. However, the actual underlying simulation 

actions represented are state changes.  When a transition between 2 places is enabled, the 

tokens bound to these places are altered.  This reflects a state change for both places.  

2) An Illustrative Simulation Example. 

A simple illustrative example of a CPN simulation is shown in Figure 4.2, Figure 4.3, 

and Figure 4.4.  In Figure 4.2, the “bindings” on place 1 consist of 2 tokens of the integer 

data type (color).  As shown in Figure 4.2, for each simulation clock tick, variable n is bound 

to a randomly selected token passed from place 1.  If the arc and “transition A” guard 

conditional statements are true, then “transition A” is enabled.  The token is bound to 

variable n is passed to “transition A.”  If one or both conditional statements evaluates to 

false, then no token is passed.  In this example, the value 5 is bound to variable n and is 

passed to “transition A.” 

   As depicted in Figure 4.2, as the token passes through “transition A,” if there is a 

functional code object associated with the transition, it will be executed using any available 

input tokens.  Predicted upon the execution of the transition function, the tokens that are 

input to the transition may be altered.  The function output is then placed on all outbound 

arcs from the transition.  In this case, the input is token n with a value of 5 and the transition 
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computes n plus 10 for the output.  The output of “transition A,” shown in Figure 4.2, is 

bound to the token variable “a” and its value is 15.  This token will be passed to place 2.  

After the first few clock ticks, place 1 will have no more bindings, and place 2 will be bound 

to 2 integer tokens with the values of 15 and 11 as computed by the function on “transition 

A.”  In this example it is assumed that the guard and arc conditional statements are true.  

Therefore, 15 is the result of the first clock ticks, and it is followed by an output of 11 with 

subsequent clock ticks.  The results of the first 2 firings of “transition A” are depicted in 

Figure 4.3 and Figure 4.4.  
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Figure 4.2. Colored Petri Net example, before transition “A” fires 
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Figure 4.3. Colored Petri Net example, after transition “A” fires once 
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Figure 4.4. Colored Petri Net example, after transition “A” fires a second time  

 

 

 



71 

 

3) Justifications for Modeling Language Selection. 

Jensen (Jensen 1997, 1998), an international authority on Colored Petri Nets,  

describes this modeling and simulation language.  Kurt Jensen and his team at the University 

of Aarhus in Denmark are major contributors to the development and use of CPN models.  

They define the essence of the language as follows: “Colored Petri Nets provide a framework 

for the construction and analysis of distributed and concurrent systems” (Kristensen, 

Christensen, and Jensen 1998).  Cyber attack interactions and router message transmissions 

over a scale-free computer network are complex, concurrent, and distributed. Therefore, CPN 

modeling is an ideally suited, mathematically proven virtual representation that may present 

these complex systems in a controllable and analytical context (Jensen 1994, 1997, 1998; 

Kristensen, Christensen, and Jensen 1998; Kristensen and Christensen 2004).  Currently, 

there are many tools for design, development, and simulation of Color Petri Nets (Jensen 

1994, 1997, 1998; Kristensen, Christensen, and Jensen 1998; Kristensen and Christensen 

2004).   Jensen‟s team has developed an intuitive tool for CPN modeling and simulation (the 

CPN Tool) that is used by more than 700 research organizations in over 70 different 

countries (Wang et al. 2008).  Their CPN Tool will be the foundational instrument used for 

model development and simulation utilized in this research.  

Advantages of CPN modeling and simulation as stated by the CPN group include (1) 

an intuitive modeling language that allows for the flexibility and power of modern 

programming languages as well as graphical representations of the model; (2) well-defined 

semantics leading to unambiguous models of system behavior;  (3) a flexible modeling 

environment that can be used in a wide variety of complex industrial-strength applications; 

(4) a modeling language consisting of a few powerful programming primitives; (5) a model 
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that exhibits true concurrency, not interleaving; (6)  timed and probabilistic simulation 

functionalities; and (7) a universally accepted formal analysis and verification of any derived 

model (Wang et al. 2008).  

 

D. General Research Simulation Design 

During the simulation, as node-pairs are “released” into the simulation stream, nodes 

are randomly “designated” for attack and undergo state changes as described in Chapter III.  

This section will summarize the simulation flow and node state changes.     

1) Simulation Design Information Flow. 

Figure 4.5 depicts a summary of the information flow for this research design. The 

pre-attack priming data were extracted from the Rocketfuel datasets (Spring et al. 2004).   

They will be discussed in Section E.  The raw Rocketfuel data were formatted as CPN tokens 

by a series of offline Visual Basic routines specifically developed for this research. As 

discussed in Chapter III, the network‟s connectivity state was represented as a function of its 

node-pairings and statistical mechanics.  As nodes were removed, the node-pairings changed 

and eventually led to cascading node failures.  The network went through a series of 

intermediate node-pairings that influence network stability and its degree of fragmentation.  

As the attacked nodes were removed from the connectivity state, the output generated was an 

audit trail file that consisted of all changes to the network‟s node states.  The network 

fragmentation and connectivity degradation continued until the halting conditions were 

encountered.  The simulation was then terminated. These halting conditions were previously 

discussed in Chapter II, Section A.   
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Figure 4.5. Summary of simulation process information flow 
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Through pre-simulation sensitivity analysis it was determined that 6 million CPN 

execution steps was sufficient to encounter halting conditions for all attack scenarios in this 

research.  Each simulation run was implemented and halted after the same number of CPN 

execution steps (6 million).  The audit trail of node state changes and the distribution of 

intermediate node-pairs were used as input to another set of offline Visual Basic routines.  

These routines were specifically designed for this research.  The offline computations 

generated the relevant statistical mechanic data for research analysis. 

2) Node Interactions. 

The previous discourse presented the general flow of information in the simulation.  

The core processes of the simulation were driven by node state changes.  Node state data 

were collected at pre-determined time intervals during the simulation.  The intervals were 

determined using significant changes in network stability.  For each unique attack scenario, 

from the set of critical nodes, attacked nodes were randomly “designated” by the simulation.  

Critical and attacked nodes were previously defined in Chapter III.  The number of critical 

nodes does not exactly equal the top percent of all nodes as depicted in Table 4.1.  Since 

multiple nodes have the same degree, the number of critical nodes will be greater than the 

percent of the total number of nodes.  The total number of nodes in the pre-attack network 

was 11,801. 
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Table 4.1.  Simulation runs classes denoting critical node removal proportions  

Run Class Top xx percent of nodes by 

degree sorted in  highest to 

lowest degree order  

(Critical Nodes) 

Number of 

Critical Nodes 

Tolerance 

Parameter  

RC0051 xx = .50% 60 .10 

RC0101 xx = 1.0% 124 .10 

RC0151 xx = 1.5% 179 .10 

RC0201 xx = 2.0% 241 .10 

RC0251 xx = 2.5% 304 .10 

RC0301 xx = 3.0% 363 .10 

RC0351 xx = 3.5% 421 .10 

RC0401 xx = 4.0% 478 .10 

RC0451 xx = 4.5% 544 .10 

RC0501 xx = 5.0% 613 .10 

 

As depicted in Table 4.1, each individual attack scenario was represented as a run class. Each 

attack scenario was initially applied against the same pre-attack network connectivity state 

baseline.  As shown in Figure 4.6, the initial pre-attack connectivity state was altered as 

attacked nodes were removed from the simulation.  This led to cascading node failures 

which, in turn, generated multiple intermediate connectivity states. Each intermediate state 

was the result of state changes of the network‟s nodes.  During the simulation, one node in a 

released node-pair attempted communication with the other node in the pairing.  If one of the 

2 nodes were determined to be a temporary orphan, then the temporary orphan recovery 

process was engaged.  This process either created a new communication node-pairing or it 

generated a permanent orphan.  The temporary orphan recovery process was defined earlier 

in this dissertation in Chapter III, Section A.   
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As the number of permanent orphan nodes increased, the cascading affect was 

magnified.  This led to increasingly degraded network stability.  The stability was measured 

through its connectivity topology.  The connectivity states were represented by the set of 

active node-pairs, and their stability was computed using their degree distribution 

characteristics.  The network connectivity simulation continued to execute until the halting 

conditions were encountered in the final state.   
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Figure 4.6.  Summary of the node interactions during the simulation 
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E. Simulation Runs 

1) General Strategy. 

The overall process is summarized: 

1. Extract Rocketfuel router adjacencies (node-pairs) for the pre-attack network 

connectivity state and use this to prime the CPN attack simulation. 

2. Execute the simulation against a set of attack classes with varying degrees of severity.   

3. Extract the simulation audit trail for each simulation run. 

4. For each simulation run, compute the global network connectivity measures discussed in 

this chapter, such as mutual information transfer.  This computation was performed 

offline. 

Figure 4.7 depicts the simulation run architecture and the simulation run strategy used 

in this research.  The Rocketfuel project extracted snapshots of selected autonomous systems 

data from the Internet (Rocketfuel: An ISP topology mapping engine n.d.; Spring et al. 2004; 

Spring, Mahajan, and Wetherall 2002).   The extracted data consisted of backbone and access 

router pairs.  The data collection methods used in this research will be discussed later in this 

chapter.  The pre-attack state of this simulation was developed using one of the Rocketfuel 

datasets.  Specifically, this research simulation focused on the United States AT&T backbone 

and access routers. Forty simulation runs representing 10 different attack scenarios were 

implemented.  For each attack scenario, there was a corresponding run class.  A run class 

represents an attack class and a protection class.  The protection class for all runs is 1, 

representing a link capacity of 1.1 for all nodes.  Link capacities were discussed in Chapter 

III.  As shown previously in Table 4.1, the number of attacked nodes for each attack class 

ranged from 0.5% to 5.0% of the total number of network nodes.   
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Figure 4.7. Simulation execution strategy 

 

As shown in Figure 4.7, for each run class there were 4 simulation run types.  Run 

type 1 represented the network simulation with no protection.  Run type 1 simulation runs 

were executed first.  Using these results, the protection strategies were developed.  Table 4.2 

depicts the nature of the nodes protected by each protection strategy.  Node-1 is one node in 

an active node-pair, and node-2 represents the other node.  For instance, run type 2 identifies 
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all node-pairs where node-1 is of degree 1 and node-2 is of degree 2.  For run type 2, all pre-

attack nodes with node-1 degree that are in a node-pair with a node-2 degree node were 

protected.  A protected node cannot be removed from the network by a cascaded node failure 

or direct attack.  Protection strategy development as an experimental treatment will be 

discussed in Chapter VI.  As shown in Table 4.2, run type 1 represented the network without 

node protection, run type 2 is the network simulation using protection strategy 1, run type 3 

protects the network simulation with protection strategy 2, and run type 4 implements 

protection strategy 3.  Protection strategy 3 was studied as an extension of protection strategy 

2.  The purpose was to observe the effects of increasing the number of nodes from 1009 to 

1257.  Protection strategy 0 depicted the simulations without any additional protections and it 

was used as a baseline for the comparisons the other 3 protection strategies. 

For example, as shown in Table 4.2, for all run type 4 simulations, node-pairs of type 

1-2 found in the pre-attack network were protected by protecting one node in the node-pair.  

A node-pair type 1-2 consists of two nodes, one with a degree of 1 and the other with a 

degree of 2.  The protected node for run type 4 was the node with a degree of 2 of all node-

pairs of type 1-2.   The protection strategy protected individual nodes in specific node-pair 

types.  Only one of the nodes in the node-pair is protected.  The protection determinations are 

made using the pre-attack network only.  Node-pair types were defined in Chapter I.  

The network connectivity states for all run classes, except 0451 and 0501, were 

computed at 50,000 ms (in real time) data collection intervals.  Due to the severity of the 

attacks in run classes 0451 and 0501, the network degraded at a very rapid rate, leading to a 

limited volume of data points.  Consequently, for these 2 run classes the data were collected 
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at 2,000 ms intervals. In Table 4.2, RC represented the set of all run classes: 𝑅𝐶 =

 0051, 0101, 0151,… 0501  and * indicates that the column is not applicable. 

 

Table 4.2. Protection strategy 

Protection 

Strategy 

Run 

Classes 

(Total = 

10) 

Run 

Type 

Degree 

of 

Node-1 

Degree 

of 

Node-2 

Protect 

 

Number 

of Nodes 

to 

Protect 

Protected 

% of all 

Pre-

Attack 

Nodes 

0 RC 1 * * None None * 

1 RC 2 1 2 Node-1 1009 8.5% 

2 RC 3 1 2 and 3 Node-1 1257 10.7% 

3 RC 4 1 2 Node-2 1009 8.5% 

 

2) Simulated Attack, An Illustrative Example. 

For clarification, Figure 4.8 presents a useful example. The following assumptions are 

in place for this example:  

1. Node-B is a member of the set of removed nodes. 

2. Node-A is an active node. 

3. Node-X is an available neighbor node for node-A.  

4. Node-X is selected using preferential attachment to communicate with node-A. 

5. Node-X becomes overloaded after forming a new link with node-A. 

As shown in Figure 4.8, the router table node-pairs are the set of all node-pairs 

𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒  prior to the attack at 𝑡 = 0.  It is static and assumes the router tables are not 

refreshed during the simulation.  All released node-pairs are randomly selected from this set 

and released continuously throughout the simulation.  A node-pair can be released more than 
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once.  First, node-pair A-B is released; this represents a communication attempt based on the 

router tables between Node-A and its neighbor Node-B.  The simulation stream processes 

determine whether Node-A and/or Node-B is a member of the set of removed nodes.  The set 

of removed nodes is dynamically changed as nodes are orphaned and attacked.  If Node-B is 

not a removed node, then the communication is successful and no other simulation actions 

are taken.  

In this example, Node-B is a removed node.  This leads to Node-A becoming a 

temporary orphan.  The simulation stream process then selects a neighbor node of Node-A 

using preferential attachment mechanisms.  The previously failed communication attempt 

will now be attempted using this newly selected node.  In this example, Node-X is selected to 

facilitate the previously failed communication with Node-B.  This leads to additional link 

load on Node-X.  Before this communication is classified as successful, it must be 

determined whether additional load on Node-X has exceeded its link capacity.  Link capacity 

was previously discussed in Chapter III.  An example of this determination is depicted in 

Table 4.3. 
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Figure 4.8. Communication attack simulation example 

 

Table 4.3 depicts the connectivity profile of Node-X, before and after it was selected.   

If the link capacity is exceeded, Node-X is an overloaded permanent orphan, the network 

connectivity state is updated, and Node-X is added to the set of removed nodes.  As a result, 

node-A is again a temporary orphan.  It must now find another neighbor to complete the 

communication attempt.  If all of its neighbors have been attacked or are permanent orphan 
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nodes, then Node-A will become a null-link permanent orphan.  Then the network 

connectivity state is updated and node-A is added to the set of removed nodes. 

 

Table 4.3. Overloaded orphan node profile in Figure 4.8 

Simulation Action Node 
Neighbor Node 

List 
Degree Capacity 

Before node-pair A-X  

(communication attempt) 

A 

X 

C,X,W,C 

C,W,A,W,D 

4 

5 

6 

6 

After node-pair A-X is incrementally 

added to X (overloaded orphan node X) 

A 

X 

C,X,W,C 

C,W,A,W,D,A 

4 

6 

6 

6 

 

If the link capacity of Node-X is not exceeded after the new communication with 

Node-A, then the communication is successful and the network connectivity state is updated.  

The network connectivity state is represented by the profiles of all active nodes and node-

pairs, 𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 and 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒  at 𝑡 > 0.  All node connectivity states are stored in the CPN 

record structure called networkDB. A node connectivity profile stores a dynamic record for 

each node that includes its current degree and active neighbors and its current state.  This 

process is repeated for all released node-pairs until the simulation halting condition is 

encountered. All node and node-pair states have been previously defined in Chapter III of 

this dissertation. 
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F. Network Connectivity State Computations 

The audit trail recorded all node state changes during each simulation run over 

constant time intervals.  This information was used to compute the network‟s temporal 

stability and degree characteristics.  For each simulation run, the audit trail collected all node 

status (𝑛𝑡
𝑠) changes that denote a node‟s state.  For each simulation run, the audit trail was 

used to represent the connectivity and stability characteristics of the attacked network over 

the life of the simulation.  The status codes in the simulation were defined as: 

1. Status = 0: node was considered active and a member of the set of active nodes 

(𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 ). 

2. Status = 1: node was considered an attacked node and a member of the set of attacked 

nodes (𝑁(𝑡)𝐴). 

3. Status = 3: node was considered a Null-Link node and a member of the set of Null-Link 

nodes (𝑁(𝑡)𝑁𝑢𝑙𝑙 ). 

4. Status = 4: node was considered a overloaded node and a member of the set of 

overloaded nodes (𝑁(𝑡)𝑂𝐿). 

The audit trail output file recorded all node state changes and other node specific 

information.  The information collected was node-id, node status, node neighbor list, time of 

change in milliseconds, and timestamp in user clock time hours and minutes.  After each 

simulation run was halted, this information was fed to a series of Visual Basic computational 

routines.  These routines were developed specifically for this research.  At specific time 

intervals, these routines computed the network‟s connectivity state, the extent of the 

network‟s fragmentation, and its stability. Appendix C presents the all output files generated 

for each simulation run.  
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1) Pre-Attack Data Collection Methodology. 

Traceroute is a well-known computer network research tool that traces network 

packets from their original source, through their intermediate paths and then to its ultimate 

destination. It has been found to be an appropriate technique for collecting network path data 

for studies of the Internet‟s topological characteristics (Leguay et al. 2007; Mahadevan et al. 

2006; Mahadevan et al. 2005).   Rocketfuel is a traceroute-based Internet topology mapping 

tool developed at the University of Washington (Alderson et al. 2005; Donnet and Friedman 

2007; Liljenstam, Liu, and Nicol 2003; Spring et al. 2004; Spring, Mahajan, and Wetherall 

2002).  From December 2001 to January 2002, the Rocketfuel team collected large volumes 

of ISP-level traceroute path data representing the 10 distinguishable world-wide ISP router 

infrastructures. These data provided the requisite router adjacency relationships needed to 

model the pre-attack network state used in this research.  

An illustrative example of the router connectivity architecture of the data collected by 

the Rocketfuel project team is depicted in Figure 4.9.  Each Internet Service Provider (ISP, 

also known as an autonomous system [AS]) consists of multiple server regions referred to as 

points-of-presence (POP).  Each POP connects user and enterprise level servers.  Three POP 

regions are shown in Figure 4.9.  Special purpose routers that connect the POP regions are 

known as backbone and access routers.  These routers facilitate large volumes of Internet 

traffic within and between POPs.  They also facilitate network traffic among the ISPs.   

Figure 4.9 illustrates one ISP with 3 different points-of-presence depicted as POP-1, 

POP-2, and POP-3.  As shown in the system architecture example in Figure 4.9, backbone 

routers (layer 0) connect each POP in the ISP.   Access routers connect the enterprise (user) 

level routers to each other and to the backbone routers.  The actual number of access routers 
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in a POP varies. Most inter-POP communication travels through the backbone routers, and 

most intra-POP traffic travels through the access routers.  The pre-attack router adjacencies 

used in this research simulation represent the backbone and access router communications of 

the United States AT&T (ASN7018) ISP regional infrastructure. Figure 4.10 was taken from 

Spring, Mahajan, and Wetherall (2002) and depicts a descriptive rendering of the for layer 0 

(backbone) routers in this infrastructure.  

 

 

 

Figure 4.9. POP backbone and access router architecture example  
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Figure 4.10. United States AT&T router backbone (layer 0) taken from (Spring, Mahajan, 

and Wetherall 2002), Image from: NASA‟s Visible Earth Project http://visibleearth.nasa.gov      

 

 

G. Research CPN Model and Simulation Execution 

The CPN syntax was introduced earlier in this chapter.  The main CPN page of this 

simulation as depicted in Figure 4.11 represents the overall high level implementation 

summary.  All sub-pages interact with the main page through the standard input/output ports 

provided in CPN Tools.  The main page controls the overall flow of the simulation and the 

evaluation of each node-pair.  For reference and clarity purposes, all transitions and places 

presented are assigned reference numbers.  All CPN function code and color data 

declarations can be found in appendices A and B of this dissertation. This section presents 

the CPN main page and an overview of the model and simulation execution.  The CPN sub-

pages associated with the main page and a more detailed level of granularity can be found in 

Appendix D and Appendix E. 

http://visibleearth.nasa.gov/
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1) CPN Main Page. 

As shown in Figure 4.11, transitions A1, A2, and A3 fire to initialize the CPN list 

tokens found on places 4, 2, 3 respectively.  All data structures were loaded with the pre-

attack node data.  This occurs during the first few clock ticks of the simulation.  The timing 

of all CPN actions was controlled by the CPN simulation engine.  Place 1 triggered transition 

B to fire and transition B created a list of pre-attack network connectivity node records 

(networkDB).  The list was stored on place 6.  This list of node records was implemented 

using CPN record structures.  During the simulation, the networkDB list was updated with 

the current node states.  The networkDB was used in transition D1 to evaluate each currently 

released node-pair.   

Transition C randomly designated critical nodes to be transformed into an attacked 

node from the critical nodes list on place 3.  As previously discussed in Chapter II, attacked 

nodes are removed from all node communications, and they begin the cascaded failures of 

their children nodes.  Transition C updates the network DB record for critical nodes 

randomly designated for attack.  The transition also added the attacked node to the set of 

removed nodes on place 7.  This process continued throughout the simulation until all the 

critical nodes were attacked.  Node states and critical nodes were previously defined in 

Chapter III. 

The CPN list token on place 6 represented a list of records where each record (tuple) 

represented one node‟s connectivity state at time.  The node tuples were defined in Chapter 

III, Section A.  Continuously, at time 𝑡, as the simulation proceeded, transition D2 was 

randomly fired to release node-pairs into the simulation stream.  The release of node-pair 

tokens into the simulation stream represented a single communication attempt between two 
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adjacent routers.  When a node-pair was released it was added to place 5.  Eventually it 

triggered the random firing of transition D1.   

 

 

Figure 4.11.  CPN main page 

 

As node-pairs were available on place 5, each node-pair was triggered transition D1 

to fire.  It executed a set of functions that evaluated each released node-pair.  This process 

was previously defined in Chapter III.  As each transition in Figure 4.11 fired, the associated 

sub-page took control of simulation execution.  Each sub-page associated with a specific 

transition rectangle is denoted on the transition in Figure 4.11.  For example, when transition 

D2 is enabled, it will shift control to sub-page “ReleaseNP.”  Table 4.4 depicts the sub-pages 

that interact with each transition on the main page shown in Figure 4.11. 
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Table 4.4. Main CPN page transitions and associated sub-pages 

Transition that Fires Control taken by sub-page 

A1 IntializeNodePairs 

A2 IntializeNodeNeighList 

A3 GetCriticalNodeList 

B IntializeNetworkDB 

C IntializeCriticalNodes 

D1 EvaluateNP 

D2 ReleaseNP 

 

2) Core Simulation Evaluation Algorithm. 

Node states for each node will vary over the life of the simulation run.  At any given 

time, whenever a node-pair is released into the simulation stream, one of the two nodes may 

potentially be an orphan node.  The simulation stream is a set of processes that are used to 

evaluate a node-pair and determine whether one of the nodes has been orphaned due to a 

cascaded failure of its partner. Network connectivity states change as the attack proceeds 

until the halting conditions are encountered.  The halting conditions and network 

connectivity metrics was previously defined in Chapter II.  The pseudo-code for the 

simulation is: 
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BEGIN         /* Start simulation */ 

Initialize node-pair set;                /* Transition A1 */ 

Initialize CPN data records;        /* Transition B */ 

Initialize node neighbor set;     /* Transition A2 */  

Initialize Critical nodes set;     /* Transition A3 */ 

 

/*  Process 1 – Runs in parallel with Process 2*/ 

DO UNTIL Number of attack nodes = 0 

Randomly designate one attacked node from critical node list;   /* Transition 

C */ 

Add to removed nodes set;           /* Place 7 */    

      LOOP 

 

/*  Process 2 – Simulation Stream - Runs in parallel with Process 1*/ 

DO UNTIL halting condition 

Release one node-pair at random;        /* Transition D2 */ 

/* Start Transition D1 */ 

Evaluate node-pair against removed nodes set; 

If orphan node then  

BEGIN 

Update orphan set;  

Add orphan to removed nodes set; 

Update network connectivity state; 

END 

else 

do nothing; 

END IF 

/* End Transition D1 */ 

LOOP 

END. 
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3) CPN Main Page Flow. 

Table 4.5 depicts a summary of the CPN places in Figure 4.11.  The tokens that move 

between places carry one of the following structures: (1) node-pairs, (2) CPN list of network-

DB records representing the current node states, and (3) nodes. 

 

Table 4.5. Summary of CPN places in Figure 4.11 

Reference in Figure 4.11 Description 

Place-1 Token used to start the simulation. 

Place-2 A list of list structures holding the neighbor node relationships as 

described in detail in the appendix.  

Place-3 The set of critical nodes, previously defined as 𝑁𝑤 (𝑡 =
0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝐶𝑧). 

Place-4 The set of all node-pairs, previously defined as𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 . 

Place-5 One released node-pair for evaluation, previously defined as 

(𝑛𝑖 𝑡 , 𝑛𝑗  𝑡 ). 

Place-6 Current state of the network represented as a list of networkDB 

records, one per node.  Defined as [<node-tuple1>, <node-

tuple2>, <node-tuple3>,…. <node-tupleN>], where <node-

tupleN> is defined as <node-id, node-status, [node-neighbor list], 

timestamp, simulation real time>.  [..] denotes a CPN list. 

Place-7 The set of all removed nodes, previously defined as 𝑁(𝑡)𝑅 . 

 

Figure 4.12 depicts the functionality of the transition D1 denoted Figure 4.11.  It is 

responsible for implementing process 2 in the previous paragraph.  The token flow in this 

transition is controlled as follows:   

1. As depicted by the annotation box labeled “A,” as the node-pair was released into the 

simulation stream, if one of the nodes (for example, NODE2) was a member of the 

removed nodes set (Place 7), then the other node (NODE1) was transformed into a 

temporary orphan. 
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2. At annotation “A,” if neither node was a member of the set of removed nodes (Place 7) 

then the node-pair was returned to the set of all node-pairs (Place 4). 

3. At annotation box labeled “B,” NODE1 attempted to establish a new link with an 

available neighbor node through preferential attachment mechanisms. In this figure, the 

new node is NODE3.  

4. At annotation box labeled “C,” if link load of NODE3 did not exceed its link capacity 

then the new node-pair was added to the set of node-pairs (Place 4). 

5. At annotation “C,” else if NODE3 link capacity was exceeded then the communication 

failed and NODE3 was transformed into an overloaded orphan.  It was then added to the 

set of removed nodes (Place 7).  NODE1 executed steps 2 and 3 above until a successful 

node-pair was established.  

6. At annotation “B,” if no more neighbors existed for NODE1 in step 5 then NODE1 was 

transformed into a null-link orphan and it was added to the set of removed nodes (Place 

7). 
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Figure 4.12.  CPN main page flow functionality 
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All CPN data type declarations are available in Appendix A and CPN function code 

in Appendix B.  This section has presented the top layer of the CPN model and simulation 

execution algorithms.  Simulation code and detailed description of the CPN sub-pages 

discussed here can be found in Appendix A and Appendix B. 

In this chapter the model and simulation design used in this research was introduced.  

This chapter also covered the research simulation run strategies, data collection methodology 

and the foundations.  The results of the simulation runs defined in this chapter will now be 

presented in Chapter V. 

  



97 

 

CHAPTER V.  RESULTS 

This chapter will present the execution results of the 40 simulation runs performed in 

this research.  For each of 4 run types, this research executed 10 simulations, one for every 

attack class.  Table 4.1 defined the simulation‟s execution parameters.  Table 4.2 defined the 

attack scenarios for the attack classes. The attack modeling and simulation techniques used in 

this section were previously discussed in Chapter IV.  As discussed earlier in Chapter II, 

network stability was measured using information transfer (I) and the network connectivity 

parameter (NCP).  The terms terminal conditions, equilibrium and critical threshold used 

later in this chapter were defined previously in Chapter I.  Data were collected in 50-second 

time intervals to highlight significant change in network stability as it related to the research 

objectives.  Simulation time represented real clock time.  

As previously discussed in Section C of Chapter II, error and attack studies indicated 

that node removals targeted at a scale-free network‟s most connected nodes led to systemic 

degradation in network stability.  The literature indicates that the extent of this degradation 

was dependent upon the attack‟s severity (Albert, Jeong, and Barabasi 2000; Crucitti et al. 

2004; Guillaume, Latapy, and Magnien 2005; Lai, Motter, and Nishikawa 2004; Salla 2005; 

Wang et al. 2008).  For this research, as shown in Table 4.1, attack severity was defined from 

least to most severe attack classes as follows: 0.5%, 1.0%, 1.5%, …, 5.0%.  The first section 

in this chapter will show that the model and simulation were consistent with the relevant 

literature.  The next section will establish the reliability of the network stability results.  This 

chapter concludes by presenting data that support the foundational objectives of this research 

investigation. 
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A. Model and Simulation Validation and Consistency 

The simulation design was validated using 10 run type 1 simulations. Each simulation 

collected data at 50-second real time intervals.  This research investigation compared the 

results of these executions with earlier research studies of scale-free computer networks.  

This section will consider scale-free computer network: 1) error and attack studies, 2) 

fragmentation, 3) communication robustness, and 4) heterogeneous linking characteristics.  

1) Attack Severity – Error and Attack Studies. 

This section will validate run type 1 simulation results against foundational error and 

attack studies found in the literature.  For each simulation run a critical threshold was 

encountered.  After this critical threshold there was a sudden and rapid decrease in network 

stability.  The existence of a critical threshold was supported in the scale-free computer 

network error and attack studies found in the literature (Barabasi and Albert 2002; Cohen 

2000, 2001; Dorogovtsev and Mendes 2002; Lopez 2007). The supporting evidence for this 

assertion will be presented later in this chapter. 

By varying the proportion of nodes removed during each simulation, this research 

was able to systemically reduce the network connectivity stability.  These results are shown 

in Figure 5.1 and Figure 5.2 and were consistent with previous error and attack studies 

(Albert, Jeong, and Barabasi 2000; Crucitti et al. 2004; Guillaume, Latapy, and Magnien 

2005; Lai, Motter, and Nishikawa 2004; Salla 2005; Wang et al. 2008).  As shown in Figure 

5.1, Figure 5.2, and Figure 5.3, the fraction of nodes removed was represented as: 𝑓 =

𝑁𝑡
𝑅

𝑁𝑡=0
𝐴𝑐𝑡𝑖𝑣𝑒 ; where 𝑁𝑡

𝑅 and 𝑁𝑡=0
𝐴𝑐𝑡𝑖𝑣𝑒  were previously defined in Chapter III, Section A.  As 

discussed earlier, 𝑁𝑡
𝑅 reflected both nodes removed directly by the targeted attack as well as 



99 

 

nodes that were subsequently orphaned by cascaded failures.  For reader clarity, the dotted 

line in Figure 5.2 represents the previously cited NCP ≅ 2 cutoff.   

Figure 5.1 and Figure 5.2 depicts changes in network stability relative to changes in 

the proportion of nodes removed during the attack simulations.  As shown in Figure 5.1 and 

Figure 5.2, for each independent attack class the values of I and NCP decreased with an 

increase in the fraction of nodes removed.  As the fraction of nodes removed increased, 

attack classes 0.5% through 4.0% established a local minimum at varying levels of I and 

NCP.  This local minimum was influenced by the attack severity.  The local minimums for 

each attack class shown in Figure 5.1 and Figure 5.2 decreased as the relative attack severity 

increased.  As shown in Figure 5.1 and Figure 5.2, attack classes 4.5% and 5.0% did not 

establish a local minimum.  Instead, both attack classes decreased at a relatively steady rate 

towards the terminal conditions. The terminal conditions for these two attack classes was 

achieved at 𝑓 ≅ 0.70.   

Figure 5.3 depicts the change in the fraction of removed nodes for all 10 simulation 

runs.  Independent of attack class, it shows that the fraction of nodes removed increases as a 

function of the simulation time.  The rate and magnitude of this increase was influenced by 

attack class severity.  The fraction of all nodes removed and the rate of removal increased as 

the attack class severity increased.  As depicted in Figure 5.3, the rapid increase in the first 

200 seconds was consistent with results that will be presented later in this chapter.  

The local minimums established in Figure 5.1 and Figure 5.2 was consistent with the 

sudden rate change shown in region A on Figure 5.3.  For attack classes 0.5% through 4.0% 

shown in Figure 5.1 and Figure 5.2, after the local minimum was established, I and NCP 

remained relatively constant with an increase in the fraction of nodes removed.  This trend 
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continued until each attack class encountered a critical threshold at  𝑓 ≅ 0.95.  At 𝑓 ≅ 0.95, 

I and NCP  suddenly and rapidly decreased towards the terminal conditions.  Terminal 

conditions were previously discussed in Chapter III.  The critical thresholds found in Figure 

5.1 and Figure 5.2 was consistent with the critical thresholds presented later in this chapter.   

   

Figure 5.1. Run type 1, information transfer versus nodes removed fraction over time
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   Figure 5.2. Run type 1, connectivity parameter versus nodes removed fraction over time 

Over the 10 simulations studied, on average approximately 2.85% of the total 

removed nodes were nodes that were directly targeted for removal.  As previously defined in 

Chapter III, the total number of removed nodes is the sum of all nodes permanently orphaned 

plus all nodes targeted for attack; 𝑁(𝑡)𝑅 = 𝑁(𝑡)𝑂 + 𝑁(𝑡)𝐴 .  Therefore, the nodes removed in 

Figure 5.1, Figure 5.2, and Figure 5.3 primarily reflect network changes due to cascading 

node failures.  Permanent orphans, attacked nodes, and cascaded failures were previously 

defined in Section A of Chapter III.  Cascaded nodes were previously defined as permanent 

orphans (𝑁(𝑡)𝑂).   
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 Figure 5.3. Run type 1, fraction of all nodes removed versus simulation time 

The change in network stability shown in Figure 5.1, Figure 5.2, and Figure 5.3 were 

consistent with previous scale-free attack studies (Albert, Jeong, and Barabasi 2000; Crucitti 

et al. 2004; Guillaume, Latapy, and Magnien 2005a; Lai, Motter, and Nishikawa 2004; Salla 

2005; Wang et al. 2008).  These cascaded node failure trends were similar to those found by 

other researchers (Cohen 2001; Huang and Li 2007; Motter 2004; Motter and Lai 2002; Wu 

and Fang 2008).  The next section will cover another characteristic of scale-free networks 

under attack, network fragmentation. 

2) Network Fragmentation. 

For the 10 run type 1 simulations executed, Figure 5.4 depicts evidence of increasing 
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fragmentation can be measured using the network connectivity parameter (NCP).  Higher 

NCP values indicate less fragmentation.  Equation (46) in Chapter III defines the network 

connectivity parameter (NCP).   Each attack class experienced similar rapid fragmentation in 

the first 150 seconds.  Attack classes 4.5% and 5.0% rapidly and completely fragmented into 

isolated clusters in the first 150 seconds. 

As shown in Figure 5.4, all run type 1 attack classes experienced a sudden decline in 

network fragmentation in the first 100 seconds.  The information transfer for attack classes 

4.5% and 5.0 % rapidly declined and met their terminal conditions in the first 150 seconds.  

The information transfer decrease in the first 100 seconds experienced by all attack classes 

was influenced by the relative attack severity.  Over the first 100 seconds, the rate and 

magnitude of network fragmentation increased with an increase in attack severity.   

Figure 5.4 depicts that attack classes 0.5% through 4.0% established a local minimum 

value at approximately 200 seconds.  This local minimum value decreased with an increase 

in attack severity.  After the local minimum was established, the network fragmentation level 

for each attack class remained relatively constant over time. This level was maintained until 

each attack class encountered its critical threshold. The attack severity influence on the 

critical threshold time for attack classes 0.5% through 2.0% varied.  Attack classes 2.5% 

through 4.0% achieved their critical threshold earliest.  The critical threshold time increased 

with an increase in attack severity for attack classes 2.5% through 4.0%.  The most severe 

attack classes, 4.5% and 5.0%, did not project a critical threshold or local minimum.      
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     Figure 5.4. Run Type 1, network connectivity parameter vs simulation time 

 

These results showed evidence of network fragmentation during the attack 

simulations.  This discovery was consistent with the literature (Albert, Jeong, and Barabasi 

2000; Barabasi and Albert 2002; Cohen 2000, 2001; Crucitti et al. 2004; Wang, Guan, and 

Lai 2009).  The next section will cover the loss of heterogeneity that has been observed 

during a connectivity attack that results in scale-free network communication destabilization. 

3) Loss of Heterogeneous Linking. 

One way to study network stability is through its heterogeneous linking behaviors.  It 

has been shown that as a scale-free network‟s heterogeneous connectivity decreases, its 

communication robustness also decreases (Crucitti, Latora, and Marchiori 2004; Demetrius 

and Manke 2005; Hu and Wang 2008; Sanchirico and Fiorentino 2008; Wang et al. 2006; 

Wu and Fang 2008).   Loss of heterogeneity and robustness can be measured indirectly 
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through changes in information transfer and entropy.  This research studied variations in the 

network‟s information transfer and information entropy during the simulated attacks.  This 

section will present these results and their validity. 

a) Mutual Information Transfer Loss. 

As previously discussed, assortativity is an indirect measure of a network‟s 

heterogeneity.   Scale-free and heterogeneous networks tend to be disassortative (r < 0) 

(Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004).  It has been shown 

that positive information transfer values indicate assortative connectivity (r > 0) (Piraveenan, 

Prokopenko, and Zomaya 2009; Sole and Valverde 2004). It has also been shown in the 

literature that assortative connectivity is not heterogeneous and robust (Piraveenan, 

Prokopenko, and Zomaya 2009; Sole and Valverde 2004).  The results presented here 

showed that the information transfer decreased significantly towards zero for all of the 10 run 

type 1 simulations.  During the simulated attacks, as the network connectivity changed the 

information transfer decreased towards zero.  It has been shown in the literature that this 

behavior is indicative of a network with decreasing heterogeneity (Piraveenan, Prokopenko, 

and Zomaya 2009; Sole and Valverde 2004).  Results trends that support this assertion will 

be presented later in this section.      

b) Information Entropy Loss. 

Information entropy was previously defined in Section D of Chapter III.  Network 

heterogeneity can be measured through its information entropy (Demetrius and Manke 2005; 

Gudkov and Montealegre 2008; Wang et al. 2006).  Researchers have found that the 

heterogeneity decreases with a decrease in entropy (Gudkov and Montealegre 2008; Wang et 

al. 2006).  As shown in Figure 5.5, the combined data of these 10 simulations were used to 
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compute the average entropy and the average <k> for all run type 1 simulations.  The data 

were evaluated in 50-second time intervals. 

Figure 5.5 depicts the average <k> plotted against its corresponding average entropy 

for each run type 1 simulation.  It shows a direct polynomial relationship between the 

simulated average <k> and its average entropy.  The relationship was statistically significant 

at  𝛼 = 0.01.  Table 5.1 depicts the change in entropy that was found at the terminal 

condition for all run type 1 simulations.  As shown in Table 5.1, the average decline in 

entropy over the life of the simulation was 52.4%.  Figure 5.5 and Table 5.1 were consistent 

with Figure 2 found in Wang et al. (Wang et al. 2006).  

    

Figure 5.5. Run type 1, avg. entropy versus avg. degree, combined runs, 50-second intervals 
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Table 5.1. Run type 1 simulations, entropy at total collapse at I = 0 

Attack 

Class       

Entropy at Terminal 

Condition (I = 0) 

Percent Entropy Change from  

Pre-Attack Entropy of 1.48 

0.5% 0.60 -59.5% 

1.0% 0.65 -56.1% 

1.5% 0.70 -52.7% 

2.0% 0.69 -53.4% 

2.5% 0.60 -59.5% 

3.0% 0.59 -60.1% 

3.5% 0.60 -59.5% 

4.0% 0.85 -42.6% 

4.5% 0.95 -35.8% 

5.0% 0.87 -41.2% 

10 Run 

Average 

0.71  

+/- .13 

-52.04%    

+/- 0.09 
 

 

As previously discussed in Section C of Chapter II, during a targeted node removal 

attack, the literature indicates that as the network fragments over time the characteristic 

scale-free heterogeneity diminishes.  This can be reflected as a decrease in the network 

connectivity parameter and entropy.  The combined results of all run type 1 simulations 

indicated 1) a Pearson correlation between NCP and the information entropy of 0.48 and 2) a 

Pearson correlation of -0.69 between the information entropy and simulation execution time.  

Both correlations were statistically significant at the 𝛼 = 0.1 level.   Over the life of each 

simulation, information entropy decreased as the network fragmented.  This relationship was 

consistent with the literature (Cohen 2001; Crucitti, Latora, and Marchiori 2004; Demetrius 

and Manke 2005; Gudkov and Montealegre 2008; Motter and Lai 2002; Wang et al. 2006) .   

This research has provided evidence that the information entropy, information 

transfer, and the network connectivity parameter simulation data were consistent with the 

relevant scale-free network literature.  The information entropy, information transfer, and 

network connectivity decreased over the life of each attack simulation.  As previously 
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discussed in Chapter II, the literature indicates that these behaviors are indicative of a scale-

free network undergoing a significant loss of heterogeneity, communication robustness and 

stability. 

 

B. The Relationship between  NCP and I 

As previously discussed in Chapter III, information transfer (I) and the network 

connectivity parameter (NCP) were used in this research to monitor the network‟s 

connectivity stability.  The relationship between the network connectivity parameter and 

information transfer is presented in Figure 5.6. This relationship exhibited a strong positive 

Pearson correlation of 0.90.  The relationship was statistically significant at 𝛼 = 0.1.  Since 

this research has uncovered a strong correlation between information transfer and the 

network connectivity parameter, for the remainder of this dissertation the discussion will be 

limited to information transfer only.  Additional network connectivity parameter data can be 

found in Appendix E, Appendix F and Appendix G.  The next section will present the 

foundational investigation of node-pair relationships with this network performance 

degradation. 



109 

 

 

Figure 5.6. Run type 1, NCP and information transfer, 10 combined simulations 
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2
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or negative correlation greater than 0.8 and 2) the relationship was statistical significant at 

the α=0.1 level.  This correlation cutoff provided a significantly strong enough correlation to 

distinguish emergent patterns in the node-pair type counts. 

Node-pair types represent the state of the network at a specific time.  Information 

transfer was previously shown in Chapter II to represent the stability of the network 

connectivity.  As the information transfer decreases, the network-wide connectivity stability 

decreases, and the amount of information uncertainty between two randomly selected nodes 

increased.  If the number of certain node-pairs is strongly correlated with changes in the 

information transfer, then the number of these node-pairs might indicate an attack‟s 

existence.  

Table 5.2 and Table 5.3 depict all correlations found above the correlation cutoff.   

Both tables were sorted in decreasing order of correlation strength.  Table 5.2 depicts node-

pair type correlations with a negative correlation with the information transfer (I).  Table 5.3 

presents node-pair type correlations with a positive correlation with the information transfer.   

    

Table 5.2. Run type 1, potential attack markers for attack detection, node-pair counts having 

strong negative correlation with information transfer for the first 500 seconds  

Node-pair 

Type 

Degree of node1 

in node-pair 

 

Degree of node2 

in node-pair 

 

Counts having Strong  

Negative Pearson  

Correlation with I   

1-1 1 1 -0.902 

4-4 4 4 -0.832 

1-56 1 56 -0.821 
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Table 5.3. Run type 1, potential attack markers for network protection, node-pair counts 

having strong positive correlation with information transfer for the first 500 seconds 

 

Node-pair Type Degree of node1 

in node-pair 

 

Degree of node2 

in node-pair 

 

Counts having Strong  
Positive Pearson 

Correlation with I   

4-54 4 54 0.988 

4-55 4 55 0.988 

4-40 4 40 0.987 

4-31 4 31 0.965 

4-51 4 51 0.963 

4-48 4 48 0.957 

2-17 2 17 0.928 

2-2 2 2 0.927 

3-60 3 60 0.923 

1-2 1 2 0.913 

3-18 3 18 0.911 

3-21 3 21 0.909 

2-7 2 7 0.905 

3-17 3 17 0.902 

2-15 2 25 0.890 

2-24 2 24 0.887 

1-17 1 17 0.869 

2-22 2 22 0.857 

1-3 1 3 0.845 

3-29 3 29 0.842 

3-65 3 65 0.838 

4-21 4 21 0.802 

 

 

 This Pearson correlation analysis precipitated the selection of significant node-pair 

types for further analysis, specifically node-pair type 1-2.  Chapter VI will discuss the 

selection criteria further.   The correlation results were foundational in the development of 

the simulation specifications for run types 2, 3, and 4.  Run types 2, 3, and 4 simulation 
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results will be addressed later in this chapter.  The next section will present the relationship 

of the node-pair type 1-2 counts, attack class severity, and the protection schemes developed 

in this research.   

 

   

D. Network Stability by Run Type 

Variations in information transfer and the number of node-pairs of type 1-2 over the 

life of each simulation are covered by this section.  The research results were derived from 

40 simulation runs, 10 simulations for each of four run types.  Run types were previously 

defined in Table 4.2.  The data were collected in 50-second time intervals over the life of 

each simulation.  The simulations used in this research were halted after 25,000 execution 

seconds.  Node-pair type counts were a determinant used in this feasibility study.  The next 

section will introduce the meaning of these node-pair types.    

1) Node-pair Types. 

This research classified all active node-pairs into groups by node degree composition.  

This classification was performed for each simulation at 50-second time intervals. These 

groups were called node-pair types.  Each node-pair type was distinguished by a combination 

of the degree of each node in the pairing.  For example, if one node in a node-pair had a 

degree of 1 and the other node had a degree of 2, then the node-pair type was classified as 

type 1-2.  The syntax for each node-pair type designation is: 1) position 1 represents the node 

degree of the first node (𝑛𝑖(𝑡)) in the node-pair, 2) position 2 represents the node degree of 

the second node (𝑛𝑗 (𝑡)) in the node-pair, and 3) position 1 in the node-pair type was always 

be greater than or equal to position 2. The first (𝑛𝑖(𝑡)) and second node (𝑛𝑗 (𝑡)) in the node-

pair were previously defined in Section A of Chapter III. 
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During the attack simulation, as node-pairs were destroyed and new node-pairs were 

established, the count of each node-pair type changed. These changes were monitored with 

changes in the overall network‟s connectivity stability.  During each simulation, this research 

studied variations in the number of node-pairs of type 1-2 with changes in the information 

transfer.   

The influence of attack severity on the information transfer data shown in Figure 5.7 

and Figure 5.9 were consistent with the node-pair loss shown in Figure 5.8 and Figure 5.10, 

respectively.   Therefore attack severity influence discourse found in this chapter will be 

limited to Figure 5.7 and Figure 5.9.  The terminal conditions and the equilibrium points 

established in Figure 5.7 and Figure 5.9 were also consistent with the node-pair loss shown in 

Figure 5.8 and Figure 5.10, respectively.  Therefore, future discourse on terminal condition 

and equilibrium point behaviors will be limited to Figure 5.7 and Figure 5.9. 

Further data representing variations in the information transfer, network connectivity 

parameter and node-pair type 1-2 can be found in appendix.  These data are available by run 

type and attack class.  The attack simulation results presented in the remainder of this chapter 

will establish foundational evidence that the network‟s connectivity stability was related to 

the composition of its node-pairs. 

Run type 2 and 3 simulation runs were determined to be transitional results leading to 

the discoveries found in the run type 4 results.  Therefore, the results of run types 2 and 3 can 

be found in Appendix H and Appendix I.  Run types 1 and 4 were found to present trends 

that merit further discourse.  The remainder of this section will present the results for run 

type 1 and run type 4. 
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2) Run Type 1. 

Ten run type 1 simulations are presented in this section.  These simulations 

represented the affects of denial-of-service attacks against the pre-attack network.  These 

simulations did not have additional node protection.   For each attack class, Figure 5.7 

represents changes in information transfer over the life of the simulation.  Figure 5.8 depicts 

the corresponding change in the number of node-pairs of type 1-2 for the same simulations 

shown in Figure 5.7. 

 

 
 

Figure 5.7. Run type 1, network stability, information transfer versus time 
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Figure 5.8. Run type 1, node-pair type 1-2 counts versus time 
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information transfer decreased for all attack classes by 12.7% to 96.2% from the simulation‟s 

pre-attack conditions.  The information transfer loss increased during this period over a range 

of approximately 0.20 bits/sec to 1.50 bits/sec. 

Along with the information transfer decreases shown in Figure 5.7 there was a 

corresponding decrease in the number of node-pairs of type 1-2.  As shown in Figure 5.8, 

there was also sudden decline in the number of node-pairs of type 1-2 in the first 100 to 200 

seconds. Over the first 100 to 200 seconds, the number of node-pairs of type 1-2 decreased 

for all attack classes by 0.0% to 52.6% from the simulation‟s pre-attack conditions.  The 

node-pair count rate of decline during this period ranged from approximately 0 to 539 node-

pairs/sec.   

b) Behaviors after the First 200 Seconds. 

As shown in Figure 5.7, attack classes 0.5% through 4.0% established a local 

minimum value at approximately 200 seconds.  This local minimum value decreased with an 

increase in attack severity.  After the local minimum was established, the information 

transfer level for each attack class remained relatively constant over time. For this time 

period, the information transfer loss stabilized at a rate of less than 0.03 bits/sec.  This level 

was maintained until each attack class encountered its critical threshold.   

During this period of slower information transfer decline shown in Figure 5.7 and 

Figure 5.8, there is a corresponding decrease in the number of node-pairs of type 1-2.  After 

the first 200 seconds, the number of node-pairs for attack classes 0.5% through 4.0% 

declined over time at a significantly lower rate ranging from 23 to 38 node-pairs/sec.  This 

slower rate of node-pair loss continued for each attack class until the terminal conditions 

were met.   
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c) Critical Threshold and Terminal Condition Behaviors. 

For the information transfer data shown in Figure 5.7, the attack severity influence on 

the critical threshold time for attack classes 0.5% through 2.0% varied.  Attack classes 2.5% 

through 4.0% achieved their critical threshold earliest.  The critical threshold time increased 

with an increase in attack severity for attack classes 2.5% through 4.0%.  The most severe 

attack classes, 4.5% and 5.0%, did not project a critical threshold.  As shown in Figure 5.8, 

node-pair type 1-2 counts gradually approached the terminal conditions and did not present a 

critical threshold.   

3) Run Type 4. 

Ten run type 4 simulations are presented in this section.  These simulations 

represented the effects of the denial-of-service attacks against the pre-attack network.  These 

simulations represented protection strategy 3 that was previously presented in Table 4.2.  For 

each attack class, Figure 5.9 represents changes in information transfer over the life of the 

simulation.  Figure 5.10 depicts the corresponding change in the number of node-pairs of 

type 1-2 for the same simulations shown in Figure 5.9.  
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  Figure 5.9. Run type 4, network stability, information transfer versus time 

     Figure 5.10. Run type 4, node-pair Type 1-2 counts versus time 
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a) Behaviors in the First 400 Seconds. 

As shown in Figure 5.9, all run type 4 attack classes experienced a sudden decline in 

information transfer in the first 300 to 400 seconds.  The information transfer for attack 

classes 4.5% and 5.0% rapidly declined and met their terminal conditions in the first 400 

seconds.  The information transfer decrease in the first 400 seconds experienced by all attack 

classes was influenced by the relative attack severity.  Over the first 400 seconds, the 

magnitude of the information transfer loss increased with an increase in attack severity.  In 

the first 400 seconds, information transfer decreased for all attack classes by 3.4% to 25.1% 

from the simulation‟s pre-attack conditions.  The information transfer loss increased during 

this period over a range of approximately 0.06 bits/sec to 0.51 bits/sec. 

Along with the information transfer decreases shown in Figure 5.9, there was a 

corresponding decrease in the number of node-pairs of type 1-2.  As shown in Figure 5.10, 

there was also sudden decline in the number of node-pairs of type 1-2 in the first 400 

seconds. Over the first 300 to 400 seconds, the number of node-pairs of type 1-2 decreased 

for all attack classes by 4.0% to 25.0% from the simulation‟s pre-attack conditions.  The 

node-pair count rate of decline during this period ranged from approximately 40 to 206 node-

pairs/sec.  The loss of node-pairs by attack class varied.  Attack severity did not influence the 

loss of node-pairs. 

b) Behaviors after the First 400 seconds. 

As shown in Figure 5.9, attack classes 0.5% through 4.0% established a local 

minimum value at approximately 400 seconds.  This local minimum level decreased with an 

increase in attack severity.  After the local minimum value was established, the information 

transfer decreased for each attack class at a slower rate less than 0.01 bits/sec. This slow rate 
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of decrease continued until each attack class encountered its equilibrium point.  Attack 

classes 4.0% through 5.0% did not encounter an equilibrium point. 

During this period of slower information transfer decline shown in Figure 5.9 and 

Figure 5.10, there was a corresponding decrease in the number of node-pairs of type 1-2.  As 

shown in Figure 5.10, after the first 400 seconds, attack classes 0.5% through 4.0% declined 

over time at a significantly lower rate ranging from 8 to 19 node-pairs/sec.  This slower rate 

of node-pair loss continued until each of these classes encountered its equilibrium point. 

c)  Equilibrium, Critical Threshold and Terminal Condition Behaviors. 

Figures 5.9 and 5.10 did not exhibit a critical threshold.  As shown in Figure 5.9, 

attack classes 0.5% through 3.5% encountered an equilibrium point after the initial 1,800 

seconds.   No equilibrium point occurred for attack class 4.0%, which met its terminal 

conditions around 1,400 seconds.  Attack classes 4.5% and 5.0% did not encounter an 

equilibrium point; they met their terminal conditions in the first 400 seconds.  The 

equilibrium point and level varied by attack class.  The equilibrium levels attack classes 0.5% 

through 3.5% occurred in the range of approximately 200 to 400 node-pairs.  The minimum 

node-pair count for attack class 4.0%, 4.5%, and 5.0% at their terminal conditions was  240, 

480, and 485 node-pairs, respectively. 

  

E. Attack Detection 

During each simulation, this research inferred an attack‟s existence as the first time 

that the number of node-pairs of type 1-1 increased by more than 50%.  To measure the 

accuracy of this detection, the inferred attack times were compared with the actual attack 

commencement times.  The actual attack commencement time was recorded when the first 
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targeted node was removed during the simulation.  Table 5.4 depicts the variance between 

the actual attack time and the inferred attack time for all 40 simulation runs by run type.  This 

table summarizes results previously presented in Section D of this chapter.  The differences 

are shown in Table 5.4 where the actual attack times were later than the projected attack 

times are denoted in parentheses.  As previously defined in Table 4.2, each run type 

represented a different protection scheme.   

 

Table 5.4. Attack detection percent variance, actual versus inferred 

Attack 

Class 

Total Num 

of Attacked 
Nodes / 

Avg 

Degree 

Run Type 1  
Percent 

Variance  

Run Type 2  
 Percent 

Variance 

Run Type 3  
Percent  

Variance 

Run Type 4  
Percent 

Variance 

Average 
Percent 

Variance 

0.5% 60 / 47 1.9% 1.0% (0.8%) (2.8%) (0.2%) 

1.0% 124 / 41 1.6% 7.1% (0.6%) 0.8% 2.2% 

1.5% 179 / 38 11.1% 3.2% (0.6%) (2.0%) 2.9% 

2.0% 241 / 35 1.4% 0.0% 1.5% (2.4%) 0.1% 

2.5% 303 / 31 5.3% 4.8% 0.0% 1.1% 2.8% 

3.0% 363 / 29 7.1% 1.9% (2.5%) (3.8%) 0.7% 

3.5% 421 / 26 (25.5%) 4.8% (1.8%) 0.0% (5.6%) 

4.0% 478 / 24 2.3% 1.3% (2.0%) (5.7%) (1.0%) 

4.5% 544 / 22 11.1% 6.4% 20.7% (7.4%) 7.7% 

5.0% 613 / 20 9.8% 12.7% 0.0% 9.5% 8.0% 

Average 

Percent 
Variance   

 
2.6% 4.3% 1.4% (1.3%) 1.8% 

        

 

Figure 5.11 depicts the descriptive statistics for the average percent variance across all 40 

simulation runs.  Over the 40 simulation runs, the average detection time derived in this 
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research varied from the actual attack time by 1.75 %.  Additional attack detection data can 

be found in appendices M through P.   

 

Figure 5.11. Attack detection, descriptive statistics over 40 simulation runs 

 

F. Network Protection 

For attack classes 0.5% through 3.5%, the results depicted in Chapter V indicate that 

after the early rapid network stability degradation, there was a recovery in network stability.  

The level of recovery was influenced by the attack class severity.  After the recovery, each of 

these attack classes established a relatively constant equilibrium level at this recovery level 

for the remainder of the simulation.   The recovery levels were most pronounced and at 
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higher information transfer levels for the run type 4 simulations.  Table 5.5 depicts the 

percent of the original information transfer recovered at the equilibrium level.  This table 

summarizes results previously presented in Section D of this chapter.  The 20 simulations of 

run types 2 and 3 exhibited similar equilibrium behaviors but not as pronounced as run type 

4.  The average equilibrium effects for all run types can be found in the appendix. 

 

Table 5.5.  Network protection, equilibrium and stability recovery for run type 4  

Attack Class Information Transfer Recovery at the Equilibrium level 

0.5% and 1.0% Almost 100% 

1.5% Approx. 44% 

2.0% Approx. 31% 

2.5% Approx. 25% 

3.0% Approx. 13% 

3.5% Approx. 6% 

4.0%, 4.5% and 5.0% 0% 

 

This chapter has shown that changes in network stability during the attack simulations 

resulted in corresponding variations in the number of node-pairs.  The results depicted in 

Figure 5.8 and Figure 5.10 were consistent with the behaviors observed in Figures 5.7 and 

Figure 5.9, respectively.  The results indicated that attack severity and run type influenced 

node-pair and network stability behaviors during the simulated attacks.  The next chapter will 

discuss the theoretical and practical implications of the research results presented in this 

section. 
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CHAPTER VI.  DISCUSSION 

 This chapter will summarize the previously presented rationale and methods of this 

research.  This will be followed by a discussion of the theoretical and practical implications 

of this research investigation.  A discourse on research limitations will conclude this chapter. 

A. Research Summary 

For the first time, Colored Petri Net (CPN) modeling and simulation techniques have 

been used in this research to simulate targeted denial-of-service attacks over the Internet‟s 

router infrastructure. This research developed a cyber attack model and simulation using 

Colored Petri Nets with actual Internet router connectivity data.  The simulation was used to 

study changes in the Internet‟s connectivity state during a targeted denial-of-service attack. 

Using scale-free network theory, this research sought to determine whether there is strong 

evidence that underlying network-wide connectivity changes (attack markers) that occur 

during the formative stages of a massive targeted denial-of-service attack against large-scale 

computer networks can be used to study cyber attack mechanics. 

As presented earlier in this dissertation, the CPN model and simulation developed 

specifically for this research investigation was used to 1) determine whether it is possible to 

detect small subtle changes (attack markers) in the connectivity environment of the Internet‟s 

router connectivity infrastructure that occur during a cyber attack, and 2) if the first premise 

is valid, to ascertain the feasibility of using these changes as a means for a) early 

infrastructure attack detection and b) router infrastructure protection strategy development 

against these attacks.  

Previous studies have shown that the Internet‟s router infrastructure is vulnerable to 

targeted denial-of-service attacks against the network‟s most connected routers.  Severe 
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damage to the Internet‟s router infrastructure could lead to significant disruptions in global 

commerce as well as impede national security objectives.  The availability of easy-to-use 

malicious attack tools and significant potential gain for an attacker has increased the 

frequency of all cyber attacks.  Early attack detection is critical to avoid catastrophic network 

stability degradation.  In addition, cost effective and reliable means to protect the Internet‟s 

router infrastructure from malicious attempts to impede critical global transactions is a 

national priority (Richardson 2008; U. S. House 2005).  

Previous discourse has shown that current cyber attack detection techniques rely on 

the tedious and time-consuming examination of individual network router communication 

packets. This leads to a reactive process that detects an attack only after significant network 

degradation has occurred.  In addition, most network protection schemes are dependent upon 

router traffic analysis for deployment of defensive countermeasures.  This dependence also 

leads to a reactive defense of the network‟s connectivity.   

Tracking and investigating individual router communications is costly, inefficient, 

and impractical.  As previously discussed in Chapter I, to avoid the problems associated with 

the large volumes of complex network traffic, attack detection and network protection must 

be environmentally-based.  To achieve early attack detection and efficient network protection 

requires a new paradigm.  For attack detection purposes, this paradigm must rely on systemic 

changes to the underlying physical characteristics of the router‟s infrastructure during the 

formative stages of an attack.  Understanding these changes may also provide a means to 

protect the Internet‟s core router infrastructure from catastrophic network stability 

degradation.  Attack detection and network protection will be discussed later in this chapter. 
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1) Methods Summary. 

As previously discussed in Chapter IV, the attack simulations used data from an 

actual large scale Internet router infrastructure to simulate router connectivity.  Using a trace-

route based protocol, the University of Washington‟s Rocketfuel project extracted snapshots 

of the Internet‟s core router infrastructure (Alderson et al. 2005; Rocketfuel: An ISP topology 

mapping engine n.d.; Spring et al. 2004)  at the autonomous system level.  These data 

represented router adjacencies present over a time period ranging from December 2001 to 

January 2002.  The research simulation utilized these data as its initial pre-attack state.  

Specifically, this research used the United States AT&T (ASN 7018) backbone and access 

router datasets extracted by the Rocketfuel project team.  The pre-attack network represented 

11,800 routers connected by 28,592 links.   

As discussed earlier, the research model and attack simulation results were consistent 

with earlier studies of scale-free computer networks found in the literature.  To emulate 

denial-of-service attacks, the simulations employed a targeted node removal attack strategy 

(Albert, Jeong, and Barabasi 2000; Crucitti et al. 2004; Salla 2005; Sun et al. 2007).  During 

each simulation, the network‟s most connected nodes were randomly removed.  Over specific 

time intervals, the changes in the simulated network‟s underlying physical characteristics and 

stability were studied.  As previously discussed in Chapter II, network stability was measured 

using two network characteristics, mutual information transfer, and the network connectivity 

parameter.   

This research executed 40 simulation runs.  Each execution represented a different 

attack scenario.  For every attack scenario there were 4 different protection schemes 

emulated.  Table 4.1 defines the simulation‟s execution parameters.  Table 4.2 defines the 
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attack scenarios.  Using a Pearson correlation analysis, this investigation focused on the 

relationship of information transfer and the number of node-pairs by type.  Node-pair types 

were previously defined in Chapter I.   

For select simulations, the analysis was performed in 50-second time intervals.  This 

correlation analysis led to the selection of significant node-pair types.  The number of node-

pairs identified as significant types exhibited a correlation greater than 0.8 at a 99.9% 

statistical confidence level.  During the attack simulations, as node-pairs were destroyed and 

new node-pairs were established, the count of each node-pair type changed. During each 

simulation, changes in the number of node-pairs of type 1-1 and 1-2 were correlated with 

variation in the network‟s overall connectivity stability.  These variations represented critical 

changes in the physical characteristics of the network‟s connectivity during an attack. The 

next section will present the significant theoretical implications of this research investigation. 

 

B. Theoretical Implications for this Research 

The theoretical implications of this research with regard to the Theory of Cyber 

Attack Mechanics will now be addressed (Stephenson and Prueitt 2005).  In Chapter II, this 

dissertation previously discussed the relevance of the cyber attack mechanics hypothesis 

developed by Stephenson and Prueitt (2005).  The formal representation of a cyber attack as 

postulated by Stephenson and Prueitt (2005) is: 𝑎 ⋅ {ℯ𝑓 ⇒ △ 𝐷𝑓 ℯ } ⇒ 𝜉, where: 

𝑎 is an attack, that is an ordered threat-vulnerability pair. 

𝜉 is an event marker. 

ℯ𝑓  is an element of a fractal set describing Internet based router traffic. 

△ 𝐷𝑓 ℯ  is the change in the fractal dimension  
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Table 6.1. Cyber attack mechanics hypothesis and this dissertation 

Term Theory of Cyber Attack Mechanics Research in this dissertation 

𝑎 Ordered threat-vulnerability pair. Threat: easy availability of targeted denial-of-

service techniques. Vulnerability: nature of 

scale-free computer network connectivity. 

ℯ𝑓  Element describing Internet based 

router traffic. 

Network connectivity stability and 

fragmentation. 

△ 𝐷𝑓 ℯ  Change in ℯ𝑓 . Variance in the expected behaviors of scale-free 

router connectivity  

𝜉 An event (attack) marker. Connectivity “noise” as depicted through 

changes in the network‟s characteristic statistical 

mechanics. 

 

 

The work detailed in this research can be applied to the cyber attack mechanics hypothesis 

described as follows: The Internet‟s router connectivity can be represented as a finite state 

machine.  During a targeted denial-of-service attack, finite network stability states present 

during the breakdown of normal communications characterize its relative connectivity 

fragmentation.   The network‟s connectivity topology can be formally represented through its 

node states.  Two adjacent node states represent a node-pair state.  Subtle changes in node-

pair states can formally represent variations in the network‟s topology.  Changes in the node-

pair states present during a denial-of-service attack produce emergent patterns and residual 

connectivity “noise.”  It is possible to distinguish the “noise” from the emergent patterns 

through characteristic changes in the underlying network degree distribution that represent 

attack markers.  These attack markers indirectly represent variation in the network‟s 

emergent connectivity patterns. During the formative stages of the attack, discrete attack 
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markers may provide a means to sense an attack‟s existence before significant stability 

degradation has occurred.  In addition, by preserving discrete attack markers it should be 

possible to protect the network‟s connectivity topology against denial-of-service attacks. 

The cyber attack mechanics theory also postulates that scale-free networks under 

attack will encounter halting conditions. The halting conditions represent a sudden rapid and 

complete degradation in network connectivity.  The critical threshold presented in the results 

chapter of this dissertation has confirmed the existence of these halting conditions.  Another 

important aspect of this theory is the existence of attack markers.  Attack markers have been 

previously defined in Chapter I.  Node-pair type behaviors relative to information transfer as 

studied in this research indicated that attack markers exist.  

 This section has shown that the results previously presented support the Theory of 

Cyber Attack Mechanics as a scientifically sound hypothesis.  The next section in this 

chapter will discuss potential practical applications of this research. 
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C. Practical Implications of this Research 

The necessity for new techniques that utilize changes in the Internet‟s environment to 

thwart malicious attacks against the Internet‟s router connectivity infrastructure was 

previously discussed in Chapter I.  This research has shown that using the network‟s 

environment to detect denial-of-service attacks as well as protecting the network is feasible. 

This research found two attack markers represented as changes in the number of node-pairs 

of type 1-1 and 1-2.  This section will first address how node-pair type 1-1 counts were used 

to detect the existence of a denial-of-service attack against the network.  The discussion will 

then focus on using node-pairs of type 1-2 as a means to protect network connectivity 

stability against a denial-of-service attack. 

1) Using Node-pair Counts to Detect Denial-of-Service Attacks. 

As previously discussed in Chapter I, identifying a practical means to detect a denial-

of-service attack in its formative stages has useful applications.  The underlying physical 

characteristics of an attacked network could be used as an attack indicator. The underlying 

physical characteristics were represented in this research as the number of node-pairs of type 

1-1.  As a result of the correlation analysis presented in Chapter V, changes in the number of 

node-pairs of type 1-1 were considered attack markers.   The changes in the number of node-

pairs of type 1-1 were strongly correlated with network stability degradation. In the first 150 

seconds of each simulation, the rapid increase in the number of node-pairs of type 1-1 

represented network fragmentation during the formative stages of an attack because they 

represented isolated node-pairs.   

Table 5.4 suggests that the network‟s environment can be used for attack detection.  

Current detection methods assume that the attack would be detected at the critical threshold, 
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when the network is rapidly degrading and no communication is possible.  The detection 

method used in this research indicates an attack‟s existence much earlier than the critical 

threshold.  The detection techniques described here led to an approximately 90% 

improvement over the detection time using critical threshold as an indicator of attack. 

Based on these results, it may be possible to develop a new application that monitors 

the number of node-pairs of type 1-1 present in the network over time.  An automated sensor 

might be employed to signify an attack‟s existence using the techniques described in this 

section.  Further potential applications of these research findings will be discussed in Chapter 

VII.  The next section will present the practical implications of using a different node-pair 

type to protect the network from a targeted denial-of service attack. 

2) Using Node-pair-type Counts for Network Protection. 

As previously discussed in Chapter I, the Internet‟s router infrastructure defense 

would benefit from a new security tool that utilizes a systemic paradigm that can protect the 

network‟s connectivity.  By manipulating the number of node-pairs of specific types, this 

investigation has uncovered a potential technique to protect the network‟s connectivity.  This 

research investigation selected node-pair type 1-2 for further study of potential protection 

effects.  The reasoning for this selection was 1) it is assumed that routers with fewer 

connections are less expensive and less complex to protect than routers with a large number 

of connections, 2) the literature indicates that protecting the outer low degree nodes in a 

scale-free network may be advantageous for the network‟s overall stability, 3) the consistent 

data trends previously shown in Figure 5.7 and Figure 5.8, and 4) the correlation of this 

node-pair type with information transfer met the previously defined research criteria for 

attack marker selection. 
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The evidence of network protection using node-pair type manipulation found for run 

types 2, 3, and 4 indicates that it is feasible to protect the network using these techniques.  

However, further study is required to determine the optimum attack markers.  This section 

has shown that changes in the network‟s connectivity stability are accompanied by 

corresponding changes in the number of node-pairs of type 1-2.  The changes in the node-

pair type count were consistent over the life of the simulation.  As shown in Table 5.5, 

simulations using protection strategy 3 (run type 4) as defined earlier suggest that it is 

possible to protect the network‟s connectivity stability by manipulating the node-pair type 

counts.  Therefore, this research has shown that using the network‟s environment as a means 

to protect the network is scientifically plausible and merits further study. 

 

D. Limitations 

This research was a feasibility study that sought to determine whether the network‟s 

connectivity environment could be utilized for attack detection and network protection.  The 

theoretical potential for attack attribution discussed in the theory of cyber attack mechanics 

was not addressed.  The feasibility of the techniques proposed was benchmarked against a 

static pre-attack network.  A dynamic pre-attack network undergoing normal router failures 

during the simulation may also be a useful benchmark. As shown earlier, the Internet‟s robust 

connectivity allows normal network operations, even with the occurrence of regular, random, 

and routine router failures.  A study of simulation behaviors using a dynamic pre-attack 

network as the benchmark might uncover trends not found in this research investigation.   

This study only considered changes in the number of node-pair of types 1-1 and 1-2 

as attack markers.  The correlation analysis produced other node-pair types that exhibited a 
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relatively strong correlation with network stability.  It is possible that other node-pair types 

may provide further evidence to support or refute the conclusions of this investigation. In 

addition, this study only considered denial-of-service attacks on large scale router 

infrastructures and may not be applicable to significantly smaller networks.  Further 

investigation is needed to determine if this method could be applied to other types of exploits 

such as worm or virus propagation attacks.  However, it is expected that regardless of the 

attack genre, the attack router infrastructure will likely exhibit systemic router failures.   

 

E. Chapter Summary 

The CPN model and simulation developed for this research behaved in a consistent 

manner with relevant scale-free network connectivity studies. This model and simulation has 

provided a unique methodology for further study of scale-free network connectivity attacks.  

This chapter has discussed the practical and theoretical implications of this research 

including the feasibility of using the Internet router node-pair types to detect attacks and 

protect the network from denial-of-service attacks.  The research limitations presented may 

provide foundation for further study.  Research conclusions and potential future work to 

expand the discoveries of this research investigation will be addressed in the next chapter. 
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CHAPTER VII.  CONCLUSIONS 

This chapter will first discuss the conclusions reached by this research investigation 

and then address future work.  

 

A. Research Relevance 

As previously discussed in Chapter I, the Internet‟s router infrastructure, a scale-free 

computer network, is vulnerable to targeted denial-of-service attacks. Current attack 

detection techniques and countermeasures have been shown to be costly and inefficient 

(Casey 2002; Casey 2004; Mizrak et al. 2006; Rattray 2001a; Stephenson 2006; Stephenson 

and Prueitt 2005). Attack detection before the network has suffered substantial degradation 

would greatly enhance the security of military and economic transactions.  

This research investigation developed a Colored Petri Net model and simulation that 

emulated changes in the Internet‟s core router infrastructure connectivity during a targeted 

denial-of-service attack.   From these simulations, attack markers were discovered that 

identified the critical indicators of DoS attacks.  These results support the feasibility of using 

knowledge of a network‟s underlying physical connectivity environment for defensive 

purposes.  In summary this research concludes that: 

1. The unique CPN model and its simulation results were consistent with the scale-free 

network literature. 

2. It is plausible to use changes in a scale-free computer network‟s underlying physical 

characteristics to study attack detection and network protection. 

3. Subtle changes in the number of node-pairs of type 1-1 and 1-2 represent a physical 

characteristic that can be used as attack markers. 
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4. The Theory of Cyber Attack Mechanics is a scientifically sound premise. 

5. Specific attack marker node-pair types can be used to detect attacks, while others can be 

used to protect a network‟s connectivity. 

6. The protective effects of certain attack markers were strongly influenced by the attack‟s 

severity. 

7. The model and simulation developed in this research has provided a prototype for 

studying cyber attacks. 

8. A systemic approach for identifying cyber attacks based on the network‟s environment 

may provide the foundation for the development of new network security tools.   

 

B. Attack  Detection and Network Protection Application 

This study has provided confirmation that monitoring a network‟s environment can 

be used for defensive purposes.  It has presented a unique paradigm for the development of 

future network security applications. This section will describe a potential network security 

application that might be derived from this research. 

Autonomous agents are “a group of free-running processes which can act 

independently of each other and the global controls” (Crosbie and Spafford 1995).  These 

agents are goal-oriented systems that can be defined for single purposes while maintaining a 

small environmental footprint.  The techniques proposed in this research might lead to a 

network-wide defense strategy by strategically placing autonomous agents throughout the 

network.  Real time node-pair information collected by these autonomous agents could 

determine the location of potential attack marker node-pairs and dynamically provide a list 

of all node-pairs in its domain to a centralized command center.   
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After the centralized command center has identified attack marker node-pairs and 

sent the information to the autonomous agents, the agents would periodically send the 

command center the number of each attack marker node-pairs.  The number of attack marker 

node-pairs could be analyzed by the command center, and if it appears an attack is forming 

then the command center could notify the affected autonomous agents.  One possible quick 

countermeasure that could be taken by these autonomous agents might be to increase the link 

capacity of the node-pairs identified as attack markers.  This increase in link capacity would 

protect these node-pairs from attack-induced destruction.  After the threat has subsided, the 

command center could order the autonomous agents to remove the additional capacity.  

Advantages of this attack detection and protection methodology are: (1) it is cost 

efficient because only nodes that have been flagged will increase their capacity; (2) it is 

resource efficient because the only small amounts of information must be transmitted to a 

few select routers; (3) it is specific; only attack marker node-pairs are updated; (4) the time-

interval of the data transmissions can be fine-tuned as needed; and (5) it is flexible because 

autonomous agent designations can be dynamic and changed to optimize agent deployments. 

 

C. Future Work 

This study can lead to several avenues of work.  Expansion of this feasibility study 

might lead to the development of new cyber attack tools.  These tools would be proactive and 

systemic, not reactive and haphazard.  While this research validated two potential attack 

marker node-pair types, there may be other more accurate attack marker node-pair types.  

Further study of the other 22 node-pair types identified by the correlation analysis might lead 

to more efficient attack marker node-pair types.  In addition, the collection and analysis 
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protocol for the identification of attack marker node-pair types was manually intensive. 

Automation of this analysis would greatly enhance the usability of this technique.  

To further evaluate the variability and validity of the research conclusions, the 

research simulations discussed in Chapters V and VI should be replicated.  This research 

simulation analyzed a large scale-free computer network.  Large networks may behave 

differently than smaller networks.  Future work is needed to determine whether the attack 

marker selection methods discovered in this research are scalable to smaller networks.  

Additional studies using other Internet router datasets, such as those found at the CAIDA 

website (www.caida.org), might advance this study‟s contribution to the cyber attack 

literature.  This research dissertation focused on scale-free network connectivity theory, but it 

might be possible to base the simulations developed in this research on other network 

theories, such as the Erdos and Renyi (ER)  (1960) exponential network. 

Further investigation using the research results of this study might lead to the 

development of an information warfare offensive application.  Since protection of the 

aforementioned node-pair types has been shown to protect network stability, it may be 

reasonable to assume that a DoS attack against these node-pair types might significantly 

degrade an adversary‟s network connectivity stability.  

Instead of comparing the attacked networks against a static pre-attack network, 

further study benchmarking the attack simulation results against a dynamic pre-attack 

network undergoing normal router failures might yield additional useful information.  A next 

phase of this research would validate the simulation results against a virtual Internet router 

lab.  By implementing the same protocols used in this investigation against the virtual router 

lab, the results from the two settings could be compared.  If the virtual lab testing results 

www.caida.org
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were consistent with the CPN simulations, then these research findings would further 

validate the results presented here.  Additional validation using an existing Internet security 

and event management tool over an actual Internet region may also be possible.  

 

D. Summary 

 As discussed earlier in this dissertation, detecting cyber attacks and protecting 

networks using individual router anomalies is costly, inefficient, and impractical.  This study 

presented a new paradigm that focused on systemic environmental network changes that 

occur during a cyber attack.  The techniques proposed by this investigation are unique and 

have not been cited in the literature.  This research has provided evidence that using 

knowledge of the Internet‟s connectivity topology and its physical characteristics to protect 

the router infrastructure from targeted DoS attacks is a scientifically sound premise.  In 

addition, this research has also shown that it is plausible that these techniques could be used 

to detect targeted DoS attacks and may lead to new network security tools. 
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Appendix A 

CPN Declarations 

 

 

(* Base Declarations *) 

     colset INT = int declare output_col; 

     colset BOOL = bool; 

     colset E = with e; 

     colset LIST = list INT; 

     colset NODE = INT declare ms; 

     colset ORPHAN_NODE = NODE declare ms; 

     colset NEIGH_NODE = INT declare ms; 

     colset ATTACKED_NODE = NODE declare ms; 

     colset TEMP_ORPHAN_NODE = NODE declare ms; 

     colset PERM_ORPHAN_NODE = NODE declare ms; 

     colset NODE_TYPE = INT declare ms; 

     colset NP = product NODE * NODE declare ms; 

     colset NP_LIST = list NP declare ms; 

     colset STATUS_INT = int with 0..4; 

     colset NP_ORPHAN_STATUS = INT declare ms; 

     colset NODE_STATUS = STATUS_INT declare ms; 

     colset NODE_REMOVED_STATUS = BOOL declare ms; 

     colset REMOVED_NODE = NODE declare ms; 

     colset REMOVED_NODE_LIST = list REMOVED_NODE declare ms; 

     colset NEIGH_NODE_LIST = list NEIGH_NODE declare ms; 

     colset NEIGH_NODE_LIST_LIST = list NEIGH_NODE_LIST declare ms; 

     colset NODE_THRESHOLD = INT declare ms; 

     colset NODE_DEGREE = INT declare ms; 

     colset LINK_PROB_OUT_OF_100 = INT declare ms; 

     colset NEIGH_NODE_PROB =  

        product NEIGH_NODE * LINK_PROB_OUT_OF_100 declare ms; 

     colset NEIGH_NODE_PROB_LIST = list NEIGH_NODE_PROB declare ms; 

     colset NODE_RECORD1 =  

             record id:NODE * neigh:NEIGH_NODE_LIST * degree:NODE_DEGREE *  

             threshold:NODE_THRESHOLD * status:NODE_STATUS *  ts:INT  

            declare output_col,ms; 

     colset NODE_RECORD1_LIST = list NODE_RECORD1 declare output_col; 

     colset NODE_RECORD2 =  

record oid:NODE * odegree:NODE_DEGREE * 

nnDegreeProbList:NEIGH_NODE_PROB_LIST * nnDegreeTotal:INT *  

newLink:NEIGH_NODE declare ms; 

     colset NODE_RECORD2_LIST = list NODE_RECORD2 declare ms; 
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(* Product Declarations with Multiple Colorsets *) 

     colset NODExNPxREMOVED_NODE_LIST =  

            product NODE * NP *      REMOVED_NODE_LIST declare ms; 

     colset NPxNP_LIST = product NP * NP_LIST declare ms; 

     colset ORPHAN_NODExNODE_STATUS =  

            product ORPHAN_NODE * NODE_STATUS declare ms; 

     colset NP_STATUSxNPxNODE =  

             product NP_ORPHAN_STATUS * NP * NODE declare ms; 

     colset NPxNP_ORPHAN_STATUS = product NP * NP_ORPHAN_STATUS declare ms; 

     colset NPxNODE_REMOVED_STATUS =  

            product NP * NODE_REMOVED_STATUS declare ms; 

     colset NODE_RECORD1xNODE_RECORD1_LIST =  

            product NODE_RECORD1 * NODE_RECORD1_LIST declare ms; 

     colset NODExNODE_RECORD1_LIST =  

            product NODE * NODE_RECORD1_LIST declare ms; 

     colset ORPHAN_NODExNODE_STATUSxNODE_RECORD1_LIST =  

            product ORPHAN_NODE * NODE_STATUS * NODE_RECORD1_LIST declare 

ms; 

     colset NODE_RECORD1xNODE_RECORD1_LISTxNODE_RECORD2 =  

            product NODE_RECORD1 * NODE_RECORD1_LIST *  

           NODE_RECORD2 declare ms; 

     colset REMOVED_NODExNODE_RECORD1xNODE_RECORD1_LIST =  

             product REMOVED_NODE * NODE_RECORD1 * NODE_RECORD1_LIST  

            declare ms; 

     colset REMOVED_NODExNODE_RECORD1_LIST =  

            product REMOVED_NODE * NODE_RECORD1_LIST declare ms; 

     colset REMOVED_NODExNODE_RECORD1_LISTxREMOVED_NODE_LIST  =  

            product REMOVED_NODE * NODE_RECORD1_LIST *  

            REMOVED_NODE_LIST   declare ms; 

     colset REMOVED_NODExREMOVED_NODE_LIST =  

            product REMOVED_NODE * REMOVED_NODE_LIST declare ms; 

     colset NODE_RECORD2xNODE_RECORD1_LIST =  

             product NODE_RECORD2 * NODE_RECORD1_LIST declare ms; 

     colset NODE_RECORD2xNODE = product NODE_RECORD2 * NODE declare ms; 

     colset INTxINT = product INT * INT declare ms; 

     colset NODExBOOL = product NODE * BOOL declare ms; 

     colset NODE_RECORD1_LISTxTEMP_ORPHAN_NODE =  

            product NODE_RECORD1_LIST  * TEMP_ORPHAN_NODE declare ms; 

     colset TEMP_ORPHAN_NODExNODExNODE_RECORD1_LIST =  

             product TEMP_ORPHAN_NODE * NODE * NODE_RECORD1_LIST declare ms; 

 

(* Variables *) 

     var nplist1,nplist2,nplist3,nplist4,nplist5,nplist6:NP_LIST; 

     var neighNodeListList1, neighNodeListList2: NEIGH_NODE_LIST_LIST; 

     var rlist1,rlist2,rlist3,rlist4,rlist5,rlist6,rlist7,rlist8,rlist9:REMOVED_NODE_LIST; 
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     var nodeRecord1List1,nodeRecord1List2,nodeRecord1List3,nodeRecord1List4, 

         nodeRecord1List5,nodeRecord1List6:NODE_RECORD1_LIST; 

     var nodeRecord2List1,nodeRecord2List2,nodeRecord2List3,nodeRecord2List4, 

         nodeRecord2List5:NODE_RECORD2_LIST; 

     var b1,b2,b3,b4,criticalNodeCount,timeStamp:INT; 

     var n1,n2:NODE; 

     var n3_n4:BOOL; 

     var tempOrphanNode1,tempOrphanNode2,tempOrphanNode3, 

         tempOrphanNode4:TEMP_ORPHAN_NODE; 

     var 

permOrphanNode1,permOrphanNode2,permOrphanNode3:PERM_ORPHAN_NODE; 

     var node,node1,node2,node3,node4:NODE; 

     var nodeRemovedStatus1,nodeRemovedStatus2:NODE_REMOVED_STATUS; 

     var npStatus1,npStatus2:NP_ORPHAN_STATUS; 

     var nodePair1,nodePair2:NP; 

     var nodeStatus1,nodeStatus2:NODE_STATUS; 

     var evalNodePair1,evalNodePair2:NP; 

     var removedNode,removedNode1,removedNode2,removedNode3:REMOVED_NODE; 

     var 

nodeRecord1,nodeRecord2,nodeRecord3,nodeRecord4,nodeRecord5:NODE_RECORD1; 

     var nodeRecord2_1,nodeRecord2_2,nodeRecord2_3,nodeRecord2_4:NODE_RECORD2; 

 

(* Global Variables *) 

     globref packets = empty: NEIGH_NODE_LIST ms; 

     globref packets1 = empty: NP ms; 

     globref outfile = TextIO.stdOut; 

     globref packetsCrit = empty: REMOVED_NODE ms; 

     globref packetsCritCount = empty: INT ms; 

     globref rt = Timer.startRealTimer(); 

     val PROTECT_LIST = []; 

     val NODE_THRESHOLD = 0.1; 

     val NODE_THRESHOLD_PROTECT = 5.0; 

     val M = 100000000; 

     val M1 = 10000; 

     val B = 31415821; 

     val RANDOM_SEED = 7789; 

(* Exceptions *) 

     exception notFound of int; 
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Appendix B 

CPN Function Code 

 

 

(* Functions *) 

  fun getTarget (_,nil) = raise notFound(1) 

      |  getTarget (target, recordList:NODE_RECORD1_LIST) = 

     let 

     val b = hd recordList; 

     val key = #id(b); 

     in 

     if (key = target) andalso (List.null recordList = false) 

             then b 

             else (getTarget (target,tl recordList)) 

     end; 

     

 fun getTarget2 (_,nil) = raise notFound(1) 

      |  getTarget2 (target, recordList:NODE_RECORD2_LIST) = 

     let 

     val b = hd recordList; 

     val key = #oid(b); 

     in 

     if (key = target) andalso (List.null recordList = false) 

             then b 

             else (getTarget2 (target,tl recordList)) 

     end; 

   

 fun mult(p:INT,q:INT):INT =  

     let  

         val p1 = p div M1; 

         val p0 = p mod M1; 

         val q1 = q div M1; 

         val q0 = q mod M1; 

     in 

        (((p0*q1+p1*q0) mod M1) * M1 + p0 * q0) mod M 

     end; 

    

  fun randomInt(r:INT):INT = 
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     let 

         val a = (mult(RANDOM_SEED,B)+1) mod M; 

     in 

         ((a div M1)*r) div M1  (* generate random number between 0 and r-1 *) 

     end; 

   

fun simulationTimer (rt) =  

       let 

          val currentTime = Time.toMilliseconds(Timer.checkRealTimer rt);  

          val IntTimeSeconds = Int.fromLarge currentTime;   

       in 

          IntTimeSeconds 

     end; 

  

fun currentTimeSimulation ():INTxINT =  

       let 

          val currentTime = Date.fromTimeLocal(Time.now());  

          val currentHour = Date.hour(currentTime); 

          val currentMinute = Date.minute(currentTime);   

       in 

          (currentHour,currentMinute) 

     end; 

 

fun idFound ({id,...}:NODE_RECORD1) = id=10; 

 

fun getPackets()  = (!packets); 

 

fun getPackets1()  = (!packets1); 

 

fun getPacketsCritical() = (!packetsCrit); 

 

fun getPacketsCritCount() = (!packetsCritCount); 

 

fun getCritical() = 

     let 

        val infileCrit=TextIO.openIn("criticalNodesTokens.txt"); 

        val message2 = REMOVED_NODE.input_ms(infileCrit); 

     in 

        packetsCrit := message2; 

        TextIO.closeIn(infileCrit); 

        () 

     end handle _ => (); 

 

fun getInputList() = 

     let 

        val infile=TextIO.openIn("nodeNeighborListTokens.txt"); 
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        val message = NEIGH_NODE_LIST.input_ms(infile); 

     in 

        packets := message; 

        TextIO.closeIn(infile); 

        () 

     end handle _ => (); 

 

fun getInputNPList() = 

     let 

            val infile=TextIO.openIn("nodePairTokens.txt"); 

            val message1 = NP.input_ms(infile); 

     in 

           packets1 := message1; 

          TextIO.closeIn(infile); 

        () 

     end handle _ => (); 

 

fun getCriticalCount() = 

     let 

        val infile=TextIO.openIn("criticalNodeCount.txt"); 

        val message2 = INT.input_ms(infile); 

     in 

        packetsCritCount := message2; 

        TextIO.closeIn(infile); 

        () 

     end handle _ => (); 

      

fun releaseOneNodePair (nplist):NPxNP_LIST = 

     let 

       val listLength = List.length(nplist); 

       val randomIndex = randomInt(listLength); 

       val npair = List.nth(nplist, randomIndex); 

       val newList = rm npair nplist;  

     in 

       (npair,newList) 

     end; 

      

fun releaseOneCriticalNode (rlist):REMOVED_NODExREMOVED_NODE_LIST = 

     let 

        val listLength = List.length(rlist); 

        val randomIndex = randomInt(listLength); 

        val remNode = List.nth(rlist, randomIndex); 

        val newList = rm remNode rlist;  

     in 

        (remNode,newList) 

     end; 
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 fun updateRecordList2 (recordList2,record2:NODE_RECORD2) =     

            let 

                fun newMember (recordList2,record2):BOOL =  (mem recordList2 

record2);    

                fun intializeR2 (recordList2,record2) =  

                let        

                    val target = #oid(record2); 

                    val r2 = getTarget2 

(target:ORPHAN_NODE,recordList2):NODE_RECORD2 handle notFound(1) => 

record2; 

               in  

                   if newMember(recordList2,record2)= true then  

{oid=0,odegree=0,nnDegreeProbList= [],nnDegreeTotal=0,newLink=0}  

              else r2 

              end;   

             val recordListMinusOldRecord = rm 

(intializeR2(recordList2,record2):NODE_RECORD2)  recordList2;  

        in 

             [intializeR2 (recordList2,record2)] ^^ recordListMinusOldRecord 

       end; 

 

fun updateStatus (r,status) = NODE_RECORD1.set_status r status; 

 

fun updateDegree(r,degree) = NODE_RECORD1.set_degree r degree; 

 

fun updateTimeStamp (r,timestamp) = NODE_RECORD1.set_ts r timestamp; 

 

fun determineCascade (nodeRecord:NODE_RECORD1):BOOL = 

     let 

        val currentThreshold = #threshold(nodeRecord); 

        val currentDegree = #degree(nodeRecord); 

     in 

        if (currentDegree >= currentThreshold) then true else false 

     end; 

 

fun determine_3_4(currentRecord:NODE_RECORD1):NODE_RECORD1 =  

             let   

                val currentNode = #id(currentRecord); 

                val currentDegree = #degree(currentRecord); 

                val currentThreshold = #threshold(currentRecord); 

              in 

                ( 

                   if currentDegree = 0  

                   then  

                      updateStatus(currentRecord,3) 
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                   else  

                      if (currentDegree >= currentThreshold) 

                      then  

                         updateStatus(currentRecord,4) 

                      else currentRecord   

                 ) 

            end; 

      

fun outputNodeRecord (outfile,nodeRecord3:NODE_RECORD1) =  

     let 

            val (currentHour,currentMinute) = currentTimeSimulation(); 

     in 

          (         

                     NODE.output(outfile,#id(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     NODE_STATUS.output(outfile,#status(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     NODE_DEGREE.output(outfile,#degree(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     NODE_THRESHOLD.output(outfile,#threshold(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     INT.output(outfile,#ts(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     INT.output(outfile,currentHour);  

                     TextIO.output(outfile,"\t"); 

                     INT.output(outfile,currentMinute);  

      

                     TextIO.output(outfile,"\t"); 

                     NEIGH_NODE_LIST.output(outfile,#neigh(nodeRecord3)); 

                      

                     TextIO.output(outfile,"\n") 

                

         ) 

     end; 

  

fun updateNeighList 

(outfile,neighborNodeRecord,newNeighList,newNeighDegree):NODE_RECORD1 =  

                 let 

                    val neighborListBefore = #neigh(neighborNodeRecord); 

                    val neighborNodeRecord1= NODE_RECORD1.set_neigh neighborNodeRecord 

newNeighList; 

                    val neighborNodeRecord2= NODE_RECORD1.set_degree 

neighborNodeRecord1 newNeighDegree; 

                    val currentNode = #id(neighborNodeRecord2); 

                    val neighborNodeRecord3= determine_3_4(neighborNodeRecord2); 
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                    val neighborNodeRecord4= updateTimeStamp 

(neighborNodeRecord3,simulationTimer(!rt)); 

                    val NeighNodeStatus = #status(neighborNodeRecord4); 

                    val neighborListAfter = #neigh(neighborNodeRecord4); 

                 in      

                            ( 

                               if NeighNodeStatus = 3 orelse NeighNodeStatus = 4  

                               then  

                                    ( 

                                       outputNodeRecord(outfile,neighborNodeRecord4);  

                                       neighborNodeRecord4 

                                     ) 

                               else  if neighborListAfter <> neighborListBefore 

                                       then  

                                       ( 

                                         outputNodeRecord(outfile,neighborNodeRecord4);  

                                         neighborNodeRecord4 

                                        ) 

                                        else neighborNodeRecord4 

                             ) 

                 end; 

      

fun intializeOutputNodeRecord (outfile,nodeRecord3:NODE_RECORD1) =  

     let 

          val (currentHour,currentMinute) = currentTimeSimulation(); 

     in 

      

     (         

                     NODE.output(outfile,#id(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     NODE_STATUS.output(outfile,#status(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     NODE_DEGREE.output(outfile,#degree(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     NODE_THRESHOLD.output(outfile,#threshold(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     INT.output(outfile,#ts(nodeRecord3)); 

                     TextIO.output(outfile,"\t"); 

                     INT.output(outfile,currentHour);  

                     TextIO.output(outfile,"\t"); 

                     INT.output(outfile,currentMinute);  

      

                     TextIO.output(outfile,"\t"); 

                     NEIGH_NODE_LIST.output(outfile,#neigh(nodeRecord3)); 

                   

                     TextIO.output(outfile,"\n") 
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          ) 

     end; 

 

 

fun closeFile(outfile) =  TextIO.closeOut(outfile); 

      

fun checkForProtection(node):BOOL =  

               if mem PROTECT_LIST node then true else false; 

 

fun removeNodeFromNNList 

(outfile,target:NEIGH_NODE,recordList:NODE_RECORD1_LIST):NODE_RECORD1 =     

               let                  

                   fun protectNode(neighNode:NODE,neighNodeList) = 

                   if  

                     checkForProtection(neighNode)  

                   then 

                     neighNodeList 

                   else 

                     rmall target (neighNodeList); 

                    

                    val neighborNodeRecord = (hd recordList):NODE_RECORD1; 

                    val neighNode = #id(neighborNodeRecord); 

                    val oldNeighList = #neigh(neighborNodeRecord); 

                    val neighList = protectNode(neighNode,oldNeighList); 

                    val neighDegree = length neighList; 

                    val neighNodeStatus = #status(neighborNodeRecord); 

               in 

                   ( 

                              (* only process neighbor list of active nodes *) 

                     if neighNodeStatus = 0 

                     then         

                             updateNeighList (outfile,neighborNodeRecord,neighList,neighDegree) 

                     else 

                             neighborNodeRecord  (* no change *) 

                   ) 

               end; 

 

fun traverseRecordList (_,_,nil) = nil  

      |   traverseRecordList (outfile,target,recordList) =       

             [removeNodeFromNNList(outfile,target,recordList)] ^^ traverseRecordList 

(outfile,target,(tl recordList)); 

 

fun computeNodeDegreeThreshold (node:NODE,nodeDegree:INT):INT =  

          let 
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              val nodeDegreeReal = Real.fromInt nodeDegree; 

              val nodeDegreeThresholdReal = nodeDegreeReal * NODE_THRESHOLD; 

              val nodeDegreeThreshold = Real.ceil nodeDegreeThresholdReal + nodeDegree; 

               

              val nodeThresholdProtect =   

                                        NODE_THRESHOLD +     NODE_THRESHOLD_PROTECT;  

              val nodeDegreeThresholdRealProtect = nodeDegreeReal * nodeThresholdProtect; 

              val nodeDegreeThresholdProtect = Real.ceil nodeDegreeThresholdRealProtect + 

nodeDegree; 

           in 

             (  

              if checkForProtection(node) = true 

             then  

                 nodeDegreeThresholdProtect 

             else 

             nodeDegreeThreshold 

           ) 

           end; 

 

fun computeNodeProfileRecordStep1 (outfile,nlist) =  

     let 

        val nodeDegree = length (tl nlist); 

        val node = hd nlist; 

        val r1 = { 

             id = (hd nlist):NODE,  

            neigh = (tl nlist):NEIGH_NODE_LIST, 

            degree = nodeDegree:NODE_DEGREE, 

            threshold = computeNodeDegreeThreshold(node,nodeDegree), 

            status = 0,ts=0 

             }; 

     in 

         intializeOutputNodeRecord(outfile,r1); 

         r1 

     end; 

 

fun  updateNodeProfileRecordStep1A (outfile,recordList) = 

     let 

        fun checkNull (recordList) =  

         if List.null recordList = false then  

         [computeNodeProfileRecordStep1 (outfile, hd recordList)] 

         else []; 

     in 

       if List.null recordList = true then []  

      else 

         computeNodeProfileRecordStep1 (outfile,hd recordList) ::   

(updateNodeProfileRecordStep1A (outfile,tl recordList)) 
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     end; 

 

fun updateNodeProfileRecordThreshold {id,neigh,degree,threshold,status,ts} =  

     {id = id,neigh=neigh,degree=degree,threshold = computeNodeDegreeThreshold(degree), 

     status=status,ts=0}; 

     

 fun insertRecord (newRecord:NODE_RECORD1,recordList:NODE_RECORD1_LIST ) = 

      ins_new recordList newRecord; 

  

fun removeRecord (target,rs) =     

     (*Find and remove the first instance of the target  

     Assumes that this function is used with the insertRecord function, the 

     insertRecord function adds the NEW record to the end of the recordList, thus the old re 

     record is the first occurence of target in the record list*) 

     let 

                       val r = getTarget (target,rs):NODE_RECORD1; 

     in 

                       rm r rs 

    end; 

      

fun traverseAndUpdateStatus (nil) = nil 

     |       traverseAndUpdateStatus (recordList) =     

     let 

        val targetRecord = hd recordList; 

        val neighList = #neigh(targetRecord); 

     in 

       ( 

         if List.null neighList = true then 

                  [updateStatus (targetRecord,3)] ^^ traverseAndUpdateStatus (tl 

recordList) 

        else   

                  [targetRecord] ^^ traverseAndUpdateStatus (tl recordList) 

     ) 

      end; 

 

fun recordUpdateForStatus_1 

(outfile,s,removedNodeList,recordList:NODE_RECORD1_LIST):REMOVED_NODExNO

DE_RECORD1_LISTxREMOVED_NODE_LIST  =        

               let    

                      val (removedNode,removedNodeListMinus) =  

                          releaseOneCriticalNode (removedNodeList); 

                      val targetRecord = getTarget(removedNode,recordList):NODE_RECORD1; 

                      val targetRecord1 = updateStatus(targetRecord,s); 

                      val targetRecord2 = updateTimeStamp (targetRecord1,simulationTimer(!rt)); 

                      val recordListMinus = removeRecord(removedNode, recordList); 

                      val newRecordList = insertRecord(targetRecord2,recordListMinus); 
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                      val updatedNeighLists = 

traverseRecordList(outfile,removedNode,newRecordList) 

               in    

                  ( 

                      outputNodeRecord(outfile,targetRecord2);     

                      (removedNode,updatedNeighLists,removedNodeListMinus) 

                  ) 

               end; 

fun updateNodeRecord 

(s:INT,rs:NODE_RECORD1_LIST,TPorphanNode:ORPHAN_NODE):NODE_RECORD1 

=        

               let     

                       val updatedRecord1= getTarget 

(TPorphanNode:ORPHAN_NODE,rs):NODE_RECORD1  

                       val updatedRecord2 = updateStatus (updatedRecord1,s); 

                       val updatedRecord3 = updateTimeStamp 

(updatedRecord2,simulationTimer(!rt)); 

                       val theNeighList = #neigh(updatedRecord3); 

                       val d = length theNeighList; 

                       val updatedRecord = updateDegree (updatedRecord3,d); 

                in 

                        updatedRecord 

               end; 

 

fun updateRemovedNodeAndDeleteFromNeighLists 

(outfile,targetRecord:NODE_RECORD1,recordList:NODE_RECORD1_LIST) = 

           let 

             val targetNode = #id(targetRecord); 

             val nodeStatus = #status(targetRecord); 

           in 

             ( 

              if nodeStatus = 3 orelse nodeStatus = 4   

              then 

                 (  

                   outputNodeRecord(outfile,targetRecord); 

                   closeFile(outfile); 

                   traverseRecordList(outfile,targetNode,recordList) 

                 ) 

              else 

                  recordList 

             ) 

            end; 

      

fun checkFor3_4(currentNode:NODE,recordListBefore:NODE_RECORD1_LIST):BOOL =  

             let   
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                  val currentRecord = getTarget 

(currentNode:NODE,recordListBefore):NODE_RECORD1; 

                  val currentDegree = #degree(currentRecord); 

                  val currentThreshold = #threshold(currentRecord); 

             in 

                ( 

                   if currentDegree = 0  

                   then  

                      true 

                   else  

                      if (currentDegree >= currentThreshold) 

                      then  

                         true 

                      else false 

                 ) 

            end; 

 

fun updateDB_Input_NR 

(outfile,s:INT,rs:NODE_RECORD1_LIST,newRecord:NODE_RECORD1):NODE_RECOR

D1_LIST=        

               let      

                       val newRecordNode = #id(newRecord); 

                       val newRecord = updateNodeRecord(s,rs,newRecordNode);  

                       val newRecordStatus = #status(newRecord); 

                       val newRecord1 = determine_3_4(newRecord); 

                       val recordListMinus = removeRecord(newRecordNode, rs); 

                       val newRecordList = insertRecord(newRecord1,recordListMinus); 

                       val newRecordList1 = updateRemovedNodeAndDeleteFromNeighLists 

(outfile,newRecord1,newRecordList); 

               in          

                       newRecordList1 

               end; 

 

fun updateDB_RecordList 

(recordList:NODE_RECORD1_LIST,newRecord:NODE_RECORD1): 

                                                                                                  NODE_RECORD1_LIST=        

               let              

                       val newRecordNode = #id(newRecord); 

                       val recordListMinus = removeRecord(newRecordNode, recordList); 

                       val newRecordList = insertRecord(newRecord,recordListMinus); 

               in          

                       newRecordList 

               end; 
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fun 

processNewLink(outfile,recordListBeforeUpdate:NODE_RECORD1_LIST,r2:NODE_REC

ORD2):NODE_RECORD1_LIST =        

               let        

                       val newLinkNode = #newLink(r2); 

                       val orphanNode = #oid(r2); 

                       val targetNodeRecord = getTarget            

(newLinkNode:NEIGH_NODE,recordListBeforeUpdate):NODE_RECORD1 

                       

                       val oldNeighList = #neigh(targetNodeRecord); 

                       val newNeighList = ins oldNeighList orphanNode; 

                       val newNeighDegree = #degree(targetNodeRecord) + 1; 

      

                       val updatedRecord = updateNeighList 

(outfile,targetNodeRecord,newNeighList,newNeighDegree); 

                       val updatedRecordList1 =     

updateDB_RecordList(recordListBeforeUpdate,updatedRecord);                   

               in 

                       updatedRecordList1       

               end; 

      

fun updateStatusRecord (target,rs,nodeStatus) =        

       let 

           val r = getTarget (target,rs):NODE_RECORD1; 

       in 

              updateStatus (r,nodeStatus) 

       end; 

 

fun  updateNodeRecordThreshold (recordList) = 

     if List.null recordList = true then [] else 

     [updateNodeProfileRecordThreshold (hd recordList)] ^^ updateNodeRecordThreshold(tl 

recordList); 

 

fun nnLinkProb (nnDegree:INT,nnDegreeTotal:INT):INT =  

     let 

     val nnDegreeReal = Real.fromInt nnDegree; 

     val nnDegreeTotalReal = Real.fromInt nnDegreeTotal; 

     val nnProbReal = (nnDegreeReal / nnDegreeTotalReal) * 100.00; 

     val nnProb = Real.trunc nnProbReal; 

     in 

     nnProb 

     end; 

  

fun nnDegreeTotal (nil,_):INT = 0 

        |     nnDegreeTotal (nnList:NEIGH_NODE_LIST,rs:NODE_RECORD1_LIST):INT = 

               let    
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                       val nn = hd nnList;           

                       val r = getTarget (nn:NEIGH_NODE,rs):NODE_RECORD1; 

                       val nnD = #degree(r); 

               in 

               if List.null nnList = false then         

                nnD + nnDegreeTotal (tl 

nnList:NEIGH_NODE_LIST,rs:NODE_RECORD1_LIST) 

               else 0 

               end; 

 

fun createNNProbList (nil,_,_) = nil 

        |     createNNProbList (nnList,rs,nnDTotal) = 

               let    

                       val nn = hd nnList;           

                       val r = getTarget (nn:NEIGH_NODE,rs):NODE_RECORD1 

                       val nnD = #degree(r); 

                       val nnProb = nnLinkProb (nnD,nnDTotal); 

                       val neighNodeStatus = #status(r); 

               in      

                       if neighNodeStatus =2 orelse neighNodeStatus = 0  

                       then  

                           [(nn,nnProb)] ^^ createNNProbList (tl nnList,rs,nnDTotal)          

                       else 

                          createNNProbList (tl nnList,rs,nnDTotal) 

               end; 

 

fun  newLink2 

(orphanNode,orphanNodeDegree,nnList:NEIGH_NODE_LIST,rs:NODE_RECORD1_LIST) 

= 

               let    

                       val nnDTotal = nnDegreeTotal (nnList,rs); 

                       val nnProbList = createNNProbList (nnList,rs,nnDTotal); 

               in      

              {oid = orphanNode,odegree = orphanNodeDegree, nnDegreeProbList = nnProbList, 

nnDegreeTotal = nnDTotal, newLink = 0} 

               end; 

     fun newLink1 (orphanNode:TEMP_ORPHAN_NODE,rs:NODE_RECORD1_LIST) =        

               let        

                       val r = getTarget 

(orphanNode:TEMP_ORPHAN_NODE,rs):NODE_RECORD1; 

                       val orphan = #id(r); 

                       val nnList = #neigh(r); 

                       val orphanDegree = #degree(r);             

               in 

                      newLink2 (orphan,orphanDegree,nnList,rs) 

               end; 
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fun buildNewLinkList2 (elementNode,elementCount,count) =     

               let 

                  val count = count + 1; 

               in  

                  ( 

                    if (count > elementCount) 

                    then 

                        nil 

                    else 

                        [elementNode] ^^ buildNewLinkList2(elementNode,elementCount,count) 

                   ) 

               end; 

 

 

 

fun buildNewLinkList1 (nil,_) = nil 

       |  buildNewLinkList1 

(elementList:NEIGH_NODE_PROB_LIST,currentNewLinkList:LIST) =     

          let 

             val elementNodeData = hd elementList; 

             val elementNode = #1(elementNodeData); 

             val elementCount = #2(elementNodeData); 

          in  

            buildNewLinkList2(elementNode,elementCount,0) ^^ buildNewLinkList1(tl 

elementList,currentNewLinkList) 

          end; 

 

 

fun updateNewLink (r,newLinkNode) =  

                 let 

                 val r1 = NODE_RECORD2.set_newLink r newLinkNode; 

                 in 

                 r1 

     end; 

      

fun selectNewLink (r:NODE_RECORD2):NODE_RECORD2xNODE = 

         let 

            val elementList = #nnDegreeProbList(r); 

            val possibleNewLinksList = buildNewLinkList1(elementList,[]); 

            val newLinkNode = List.nth(possibleNewLinksList, discrete(0, 

List.length(possibleNewLinksList) - 1)) 

         in 

            (updateNewLink (r,newLinkNode),newLinkNode) 

         end; 
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fun attackedNodePair(node,removedNodesList) = (mem removedNodesList node) 

      

fun getTempOrphan (npair:NP,status):TEMP_ORPHAN_NODE = 

     if (status = 1) then #1(npair) 

     else #2(npair); 

     fun buildNPList (nplist,npair:NP):NP_LIST = 

     nplist ^^ [npair]; 

      

fun buildRemList (node1,node2,remList,recordList):REMOVED_NODE_LIST =  

     let 

        val targetRecord1 = getTarget(node1:NODE,recordList):NODE_RECORD1; 

        val nodeStatus1 = #status(targetRecord1); 

        val targetRecord2 = getTarget(node2:NODE,recordList):NODE_RECORD1; 

        val nodeStatus2 = #status(targetRecord2); 

     in 

       ( 

         ( 

         if (nodeStatus1 = 3) orelse (nodeStatus1 = 4) orelse (nodeStatus1 = 1)  

       then  

          ins_new remList node1 

       else  

         remList 

        ); 

             ( 

      if (nodeStatus2 = 3) orelse (nodeStatus2 = 4) orelse (nodeStatus2 = 1)  

       then  

          ins_new remList node2 

       else  

         remList 

      

         ) 

       ) 

     end; 

      

fun makeRemovedNodeList2 

(node,m:REMOVED_NODE_LIST):REMOVED_NODE_LIST = ins_new m node; 

     fun createUpdateRemovedNodeList (nil,_) = nil 

       |  createUpdateRemovedNodeList 

(recordList1:NODE_RECORD1_LIST,updateRemovedNodeList) =     

           let 

               val record1 = (hd recordList1); 

           in    

              if (#status(record1) = 3) orelse (#status(record1) = 4) then 

                [#id(record1)] ^^ updateRemovedNodeList ^^ createUpdateRemovedNodeList (tl 

recordList1,updateRemovedNodeList)  

              else 
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               createUpdateRemovedNodeList (tl recordList1,updateRemovedNodeList)  

           end; 

      

fun recordUpdateForStatus_4 

(outfile,s,node,recordList:NODE_RECORD1_LIST):NODE_RECORD1_LIST  =        

               let    

                      val targetRecord = getTarget(node,recordList):NODE_RECORD1; 

                      val targetRecord1 = updateStatus(targetRecord,s); 

                      val targetRecord2 = updateTimeStamp (targetRecord1,simulationTimer(!rt)); 

                      val recordListMinus = removeRecord(node, recordList); 

                      val newRecordList = insertRecord(targetRecord2,recordListMinus); 

                      val updatedNeighLists = traverseRecordList(outfile,node,newRecordList) (* 

remove from neighbor lists *) 

               in    

                  ( 

                      outputNodeRecord(outfile,targetRecord2);     

                      updatedNeighLists 

                  ) 

               end; 

     

fun checkForNewLinkCascade(outfile,s,node,recordList:NODE_RECORD1_LIST): 

                                                                                                     NODE_RECORD1_LIST =  

                 let 

      

                   in 

                     (  

                     if checkFor3_4(node,recordList) = true    (* returns updated record *) 

                     then 

                       recordUpdateForStatus_4 (outfile,s,node,recordList)  (* Cascade as result of 

new link *) 

                     else 

                       recordList   (* no change *) 

                     ) 

                 end; 

      

fun processAndSelectNewLink 

(outfile,orphanNode:TEMP_ORPHAN_NODE,recordListBefore:NODE_RECORD1_LIST): 

     TEMP_ORPHAN_NODExNODExNODE_RECORD1_LIST = 

         let              

             fun checkNewLink 

(outfile,recordListBefore,updatedNR2:NODE_RECORD2):NODE_RECORD1_LIST 

=  

              let 

              val newLinkNode = #newLink(updatedNR2); 

              val orphanNode = #oid(updatedNR2); 

              in 
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                 if newLinkNode = orphanNode  

                 then 

                   recordListBefore 

                 else 

                   processNewLink(outfile,recordListBefore,updatedNR2) 

                end; 

      

fun newLinkSelection(orphanNode,recordListBefore): 

                              TEMP_ORPHAN_NODExNODExNODE_RECORD1_LIST=  

                 let 

                     val nr2_1 = newLink1(orphanNode,recordListBefore); 

                     val (updatedNR2,newLinkNode) = selectNewLink(nr2_1)  handle Discrete =>  

                         ({oid = orphanNode,odegree = 0, nnDegreeProbList = [], nnDegreeTotal = 0, 

newLink = orphanNode},orphanNode); 

      

      

      

                     val updatedList = checkNewLink (outfile,recordListBefore,updatedNR2); 

                     val updatedList1 = 

checkForNewLinkCascade(outfile,4,newLinkNode,updatedList );   (* check for cascade as 

result of newLink *)         

                 in 

                       (orphanNode,newLinkNode,updatedList1)  

                 end;     

        in     

                (   

                  if   checkFor3_4(orphanNode,recordListBefore) = true 

                  then 

                     (orphanNode,orphanNode,recordListBefore)  (* No Change *) 

                  else 

                     newLinkSelection(orphanNode,recordListBefore)     (* RecordList1 with new 

link added due to being selected *) 

                  ) 

       end; 

      

fun updateDB_Input_N 

(s:INT,rs:NODE_RECORD1_LIST,nodeForUpdate):NODE_RECORD1_LIST =        

               let      

                       val newRecord = updateNodeRecord(s,rs,nodeForUpdate);  

                       val newRecordNode = #id(newRecord); 

                       val newRecordStatus = #status(newRecord); 

                       val recordListMinus = removeRecord(newRecordNode, rs); 

                       val newRecordList = insertRecord(newRecord,recordListMinus); 

               in        

                       newRecordList 

               end; 
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fun node3_4(node1,recordList):BOOL =  

     let 

        val targetRecord = getTarget(node1:NODE,recordList):NODE_RECORD1; 

        val nodeStatus = #status(targetRecord); 

     in 

        ( 

        if (nodeStatus = 3) orelse (nodeStatus = 4) orelse (nodeStatus = 1) 

        then (true)  

        else (false) 

        ) 

     end; 

      

fun buildRemList1 (node,remList):REMOVED_NODE_LIST = ins_new remList node; 
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Appendix C 

Simulation Run Data File Identification 

 

 

Each CPN simulation run generates the following files: 

     File name: RCxxxy_6M_7018_Runz_SimResults.txt, one file per simulation run. 

 

     File-id = 1: identifies file for reference purposes  

Description: CPN simulation run output, audit trail of all changes that occur in one 

CPN simulation run. 

 

Data Format: One record per node. 

 

Column data at time t: Node-id, status, degree, capacity, timestamp(ms), real clock 

hour, real clock time (hour and minute), list of all neighbor nodes. 

 

     Filename Descriptors for file-id number 1 (as defined in Chapters III and IV):  

Run Class: xxx = (000, 005, 010, 015, 020, ...,050) representing attack classes (in 

order): (pre-attack, 0.5%, 1.0%, 1.5%, …, 5.0%). 

 

Additional Capacity: y = 1 indicates each node‟s capacity in simulation was 1.1 *pre-

attack node degree.  

 

6M 

Each simulation run was executed for 6 million CPN execution steps.  

 

7018 

Pre-Attack Autonomous System Number (ASN) for Rocketfuel router adjacency data. 

 

Run Type: z = 01, 02, 03, 04. 

 

In addition to the intermediate “processing files” generated through execution of the 

offline Microsoft Visual Basic routines that were developed specifically for this research, 

other significant data files associated with each simulation run included:  

 

 

File-id: 2. File name: NetworkProfile.txt 

Description: Collected at each simulation time interval, represents all current network 

connectivity states at time t. 

Storage interval: One file for each simulation run. 
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Data format: One record per time interval and node-pair type. 

Column data at time t: simulation time(ms), Information transfer, k1Count, k2Count, 

pk1, pk2, p(k1k2),file-id descriptors as defined for file-id number 1 above.  

 

File-id: 3. File name: ActiveNodes.txt 

Description: Active nodes at time t as defined in Chapter III (status = 0). 

Storage interval: One file for each time interval in each simulation run. 

Data format: One record per node-id. 

Column data: file-id descriptors, node-id, status, degree, simulation timestamp(ms), 

node neighbor list at time t. 

 

File-id: 4. File name: ActiveNodesWithNeighbors.txt  

Description: Active nodes with neighbors at time t as defined in Chapter III (status = 

0). 

Storage interval: One file for each time interval in each simulation run. 

Data format: One record per node-id and neighbor node-pair. 

Column data: file-id descriptors, node-id, neighbor node-id, node degree, simulation 

timestamp(ms). 

 

File-id: 5. File name: OrphanNodeProfile.txt  

Description: Orphan nodes at time t as defined in Chapter III (status = 0). 

Storage interval: One file for each time interval in each simulation run. 

Data format: One record per node-id. 

Column data: file-id descriptors, orphan node-id, status, pre-attack degree, oTime 

(time the node became orphaned). 

 

File-id: 6. File name: OrphanNodeNeighProfile.txt 

Description: Active nodes with neighbors at time t as defined in Chapter III (status = 

0).  Storage interval: One file for each time interval in each simulation run. 

Data format: One record per node-id and neighbor node-pair. 

Column data: file-id descriptors, orphan node-id, pre-attack orphan neighbor node-id, 

pre-attack node degree, oTime (time the node became orphaned). 
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Appendix D 

CPN Simulation Sub-Page Design Details 

 

 

CPN Sub-page Details 

Each I/O port on the CPN main page discussed in the previous section communicates 

with a CPN sub-page.  These sub-pages execute the core functionality of the simulation.  

This section presents the details of each sub-page. 

 

CPN Sub-Pages  - IntializeNodePairs, IntializeNodeNeighList 

As shown in Figure U.1 (IntializeNodePairs), place 1 triggers transition A to fire, 

transition A then reads a text file containing the pre-attack node pairs in CPN token format.  

Transition A creates a one CPN list (denoted as […]) of node pair tuples ([< 𝑛𝑖 , 𝑛𝑗 >]) 

representing the pre-attack router adjacencies; where 𝑛𝑖  is one node of the node pair and  𝑛𝑗  

represents the other.  Each neighbor node list in Figure D.2 (IntializeNodeNeighList) 

corresponds to one node‟s adjacencies.  Place 1 triggers transition A to retrieve from a text 

file a set of lists (each list is denoted as […]) stored in CPN token format.  Each list contains 

a network node with all other elements in the list representing its neighbor nodes as follows: 

[< 𝑛𝑖 , 𝑛𝑛𝑘 𝑖 >].   Where node 𝑖 = {0,1,2, … . , 𝑁}; N is the total number of pre-attack nodes, 

𝑛𝑖  is the node key for that list and 𝑛𝑛𝑘 𝑖  represents a neighbor node of  𝑖.  Each node 𝑘(𝑖) is 

the 𝑘𝑡  neighbor node of node 𝑖 with degree 𝑘 = {1,2,3, … . 𝐾} and where K is the degree of a 
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specific node.   Transition A creates a CPN list of these node-neighbor lists as formatted as 

follows: 

[ [< 𝑛𝑖 , 𝑛𝑛𝑘 𝑖 >, < 𝑛𝑖 , 𝑛𝑛𝑘+1 𝑖 >, … . , < 𝑛𝑖 , 𝑛𝑛𝑘+𝐾 𝑖 >  ], 

  [< 𝑛𝑖+1 , 𝑛𝑛𝑘 𝑖+1 >, < 𝑛𝑖+1, 𝑛𝑛𝑘+1 𝑖+1 >, … . , < 𝑛𝑖+1, 𝑛𝑛𝐾 𝑖+1 >  ],….., 

  [< 𝑛𝑖 , 𝑛𝑛𝑘 𝑖 >, < 𝑛𝑖 , 𝑛𝑛𝑘+1 𝑖 >, … . , < 𝑛𝑁 + 𝑁, 𝑛𝑛𝑘+𝐾 𝑁 >  ] ].   

An illustrative example of the list of neighbor lists on place 2 is as follows: 

 If place 1 contained 2 node lists: 

Node 1 with a degree of 3 and neighbor nodes, 6, 8, 77 and  

Node 4 with a degree of 2 and neighbor nodes 55, 43  

Then 

CPN list found on place 2 created by transition A would be represented as:  

[ [1,6,8,77], [2,55,l43]. ]. 
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Figure D.1 CPN IntializeNodePairs page 

Figure D.2. CPN IntializeNodeNeighList page 
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CPN Sub-Pages  - GetCriticalNodeList, IntializeNetworkDB 

Transition A shown in Figure D.3 (GetCriticalNodeList) is triggered by place 1 and it 

will input  critical node tokens from a text file stored in CPN token format and create a list of 

critical nodes on place 2 in the following format: [𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑖), 𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑖+1), 

…..,𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑁(𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 ))]; where 𝑁(𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) is the number of critical nodes as previously 

defined for each run class.  In Figure D.4 (IntializeNetworkDB), when there are tokens 

available on place 1A and 1B, transition A will fire and it creates the simulation output 

file(NetworkDB_NodeStatus).  This audit trail text file will be updated continuously by the 

simulation output function (to be defined later in this chapter) by adding an incremental tuple 

to the file whenever there is a change to a node‟s status, degree or neighbor nodes (ie. it 

records all changes to the networkDB node records). 

After the file has been initially created by transition A, it passes the token with the list 

of all pre-attack nodes and the associated neighbors to place 2.  Place 2 serves as temporary 

storage location, and eventually the tokens are passed to transition B.  Transition B will write 

the initial pre-attack node data (status = 0, timestamp = 0ms) to the output file.  Transition B 

will also create the initial pre-attack CPN record structure for each node and store it in the 

network DB and return it to the main page via place 3.  The network DB data structure is a 

list of cpn records with one record for each node. The sum of all the networkDB records 

represents the current global connectivity state of the network during the attack.  The 

networkDB node records will be used to implement node state changes and it is continually 

updated during the simulation.   
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Figure D.3. CPN GetCriticalNodeList page 

 

Figure D.4. CPN IntializeNetworkDB page 
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CPN Sub-Pages  - IntializeCriticalNodes, ReleaseNP 

The simulated attack is shown in Figure D.5 (IntializeCriticalNodes).  Place 1A 

(critical Nodes List) and place 1B (current list of network DB connectivity records) triggers 

transition A to fire creating an attacked node, randomly selected from the list of critical 

nodes.  Transition A also updates the network DB connectivity record for the newly 

designated attacked node. As previously defined, an attacked node is removed from the 

simulation and all communications with that node are halted.   Transition B then adds the 

chosen attacked node to the removed nodes list (place 1C).  The updated removed nodes list 

and network DB records are returned to the main page and are globally available to the 

simulation.  The removed nodes list in place 1C will be evaluated against the node-pair 

released in Figure D.6 (ReleaseNP) by the EvaluateNP page depicted in Figure D.6.  Place 1 

shown in Figure D.6 represents the current list of all node-pairs available to the simulation.  

Randomly and continuously as determined by the CPN simulation engine, place 1 will trigger 

transition A to fire and randomly select one node pair from the node pair list and return it to 

the main page via place 3 for further processing. 
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Figure D.5. CPN IntializeCriticalNodes page 

 

Figure D.6. CPN ReleaseNP page. 
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CPN Sub-Page  - EvaluateNP 

The CPN page for the EvaluateNP sub page is depicted in Figure D.7. This sub-page 

executes the core attack simulation processes.  Due to the complexity of this page Figures 

D.8 and D.9 are provided for further clarification.  As mentioned earlier, the release of node 

pairs represents an attempt by one router to communicate with one of its neighbors.  The 

“EvaluateNP” sub page continuously evaluates the node pairs released (communication 

attempts) and determines whether the communication is successful.  As shown in Figure D.7, 

one released node pair inputted is passed through transition F1 for evaluation.  This node pair 

is added to place 12.   Place 12 and the current set of removed nodes (place 9) triggers 

transition A.  Transition A divides the node pair into 2 nodes, one node is added to place 1A 

and the other node is added to place 1B.  Each node is subsequently evaluated as depicted in 

Figure D.8.   

Annotation “A” in Figure D.8 projects that each node is evaluated separately using 

the Boolean functions, attackedNodePair1 and attackedNodePair2.  The attackedNodePair1 

function returns true if node1 of the node pair is a member of the removed nodes list (place 

9) and attackedNodePair2 returns true if node 2 is a member of the removed nodes list.  After 

transition C has passed the results of each Boolean expression, the conditional statement on 

the arc to place 3 is evaluated.   

Reading from left to right, with T being true and F being false, Figure D.8 (annotation 

“A”) indicates that if attackedNodePair1 and attackedNodePair2 for both nodes is true then 

the token associated with that node pair is assigned a nodeStatus1 value of 3 indicating that 

both nodes have been removed from the simulation and the node pair should be discarded (to 

trash bin, place 4).  If either of the nodes is evaluated to be true, then the other node is 
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designated a temporary orphan and passed to place 6 for further processing.  This leads to the 

node pair being discarded and implementation of the temporary orphan recovery process as 

introduced in the formal definitions chapter of this dissertation.  And finally, if both nodes 

are not members of the current set of removed nodes list (place 9) then the node pair is added 

back to the list of active node pairs (place 5) and no further processing of that node pair 

occurs until it is re-released at random and evaluated again against the dynamic list of 

removed nodes.   Transition E2 of Figure D.8 is the CPN implementation of the temporary 

orphan recovery process mechanism and it is the focus of Figure D.9.   

 Once the node has been determined to be a temporary orphan and is placed on place 6 

as previously shown in Figure D.7, the temporary orphan recovery process must ascertain the 

disposition of this node.  At this juncture, temporary orphans will not be processed further if 

they are members of the PROTECTED_LIST.  This is a list of nodes that have been selected 

to be protected against the attack.  Therefore protected nodes are not candidates for removal 

and transition E1 will fire for all nodes on the protected list.  If the node is not on the 

PROTECTED_LIST then it is passed to transition E2 for further evaluation and potential 

removal from the simulated network connectivity.  As the implementation of transition E2 

(Figure D.9) continues, the CPN functions will evaluate the temporary orphans neighbor 

nodes, and attempt to establish a new link through preferential attachment.  After processing 

the new link and any subsequent overloaded or null-link orphans, the CPN functions will 

update the networkDB and return the updated networkDB and removed nodes list to the main 

page.  
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Figure D.7. CPN EvaluateNP page 
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Figure D.8. Evaluate NP processing summary 
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Figure D.9.CPN Transition E2 Processing Logic  
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Appendix E 

Network Connectivity Parameter Results by Run Type 
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Run Type 2 

 

Run Type 3 
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Run Type 4 
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Appendix F 

Network Connectivity Parameter Results by Attack Class 

 

 

Attack Class 0.5% 
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Attack Class 1.0% 

 

Attack Class 1.5% 
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Attack Class 2.0% 
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Attack Class 3.0% 

 

Attack Class 3.5%
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Attack Class 4.0%
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Attack Class 4.5% 

 

 

Attack Class 5.0% 
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Appendix G 

Network Connectivity Parameter Results by Attack Effect 

 

 

Attack Effect 1 - Attack Classes - 0.5% through 3.5%  
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Attack Effect 2 - Attack Classes - 4.0% through 5.0%  
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Appendix H 

Run Type 2 Results for Network Stability and Node-Pair Type Counts 

 

 

Ten run type 2 simulations are presented in this section.  These simulations 

represented the affects of the denial-of-service attacks against the pre-attack network.  These 
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Figure H.2. Run type 2, Node-pair Type 1-2 Counts, By Attack Class, first 5000 seconds 
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corresponding decrease in the number of node-pairs of type 1-2.  As shown in Figure H.2, 

there was also sudden decline in the number of node-pairs of type 1-2 in the first 300 to 400 
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seconds. Over the first 300 to 400 seconds, the number of node-pairs of type 1-2 decreased 

for all attack classes by 4.9% to 25.0% from the simulation‟s pre-attack conditions.  The 

node-pair count rate of decline during this period ranged from approximately 50 to 201 node-

pairs/sec.   

Behaviors after the first 400 seconds 

As shown in Figure H.1, attack classes 0.5% through 4.0% established a local 

minimum value at approximately 400 seconds.  This local minimum level decreased with an 

increase in attack severity.  After the local minimum value was established, the information 

transfer decreased for each attack class at a slower rate ranging from 0.01  to 0.03 bits/sec. 

This slow rate of decrease continued until each attack class encountered its terminal 

conditions.  

During this period of slower information transfer decline shown in Figure H.1, Figure 

H.2 depicts the corresponding decrease in the number of node-pairs of type 1-2.  As shown in 

Figure H.2, after the first 400 seconds, attack classes 0.5% through 4.0% declined over time 

at a significantly lower rate ranging from 24 to 33 node-pairs/sec.  This slower rate of node-

pair loss continued for each attack class until the terminal conditions for information transfer 

were met.   

Critical Threshold and Terminal Condition Behaviors 

Figures H.1 and H.2 did not exhibit a critical threshold.  For the information transfer 

data shown in Figure H.1, the most severe attack classes, 4.5% and 5.0%, met their terminal 

conditions the earliest.  Attack classes 3.0% and 4.0% were the next attack classes to meet 

their terminal conditions.  Attack classes 0.5% and 1.0% achieved the terminal conditions 
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latest.  The terminal conditions for the remainder of the attack classes varied and attack 

severity did not have a significant influence.  
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Appendix I 

Run Type 3 Results for Network Stability and Node-Pair Type Counts 

 

 

Ten run type 3 simulations are presented in this section.  These simulations 

represented the affects of the denial-of-service attacks against the pre-attack network.  These 

simulations represented protection strategy 2. 

  

Figure I.1. Network Stability – Run type 3, information transfer 
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            Figure I.2. Run type 3, Node-pair Type 1-2 Counts, By Attack Class, first 5000 seconds 

Behaviors in the first 400 seconds 

As shown in Figure I.1, all run type 3 attack classes experienced a sudden decline in 

information transfer in the first 300 to 400 seconds.  The information transfer for attack 

classes 4.5% rapidly declined and met its terminal conditions in the first 400 seconds.  It is 

shown in Figure I.1 that the information transfer loss for attack class 5.0% did not meet its 

terminal conditions until approximately 600 seconds.  In the first 400 seconds, the decrease 

in information transfer for attack class 5.0% was less pronounced than attack class 4.5%.  

With the exception of attack class 5.0%, the information transfer decrease in the first 400 

seconds experienced by all attack classes was influenced by the relative attack severity.  Over 

the first 400 seconds, the rate and magnitude of the information transfer loss increased with 

an increase in attack severity.  Over the first 400 seconds, information transfer decreased for 
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all attack classes by 3.4% to 25.1% from the simulation‟s pre-attack conditions.  The 

information transfer rate of decline during this period ranged from approximately 0.06 to 

0.41 bits/sec . 

Along with the information transfer decreases shown in Figure I.1 there was a 

corresponding decrease in the number of node-pairs of type 1-2.  As shown in Figure I.2, 

there was also sudden decline in the number of node-pairs of type 1-2 in the first 400 

seconds. Over the first 300 to 400 seconds, the number of node-pairs of type 1-2 decreased 

for all attack classes by 4.0% to 25.0% from the simulation‟s pre-attack conditions.  The 

node-pair count rate of decline during this period ranged from approximately 49 to 169 node-

pairs/sec.  Figure I.2 depicts that the loss of node-pairs by attack class varied.  Attack 

severity did not influence the loss of node-pairs. 

 

Behaviors after the first 400 seconds 

As shown in Figure I.1, attack classes 0.5% through 4.0% established a local 

minimum value at approximately 400 seconds.  This local minimum level decreased with an 

increase in attack severity.  After the local minimum value was established, the information 

transfer decreased for each attack class at a slower rate ranging from 0.01 to 0.04 bits/sec. 

This slow rate of decrease continued until each attack class encountered its equilibrium point.  

Attack classes 4.0% through 5.0% did not encounter an equilibrium point. 

During this period of slower information transfer decline shown in Figure I.1, Figure 

I.2 depicts the corresponding decrease in the number of node-pairs of type 1-2.  As shown in 

Figure I.2, after the first 400 seconds, attack classes 0.5% through 4.0% declined over time at 
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a significantly lower rate ranging from 8 to 19 node-pairs/sec.  This slower rate of node-pair 

loss continued until each of these classes encountered its equilibrium point. 

 

Critical Threshold, Terminal Condition and Equilibrium Behaviors 

Figures I.1 and I.2 did not exhibit a critical threshold.  As shown in Figure I.1, attack 

classes 0.5% through 3.5% encountered an equilibrium point after the initial 1,800 seconds.   

No equilibrium point occurred for attack class 4.0% which met its terminal conditions around 

1,300 seconds.  Attack classes 4.5% and 5.0% did not encounter an equilibrium point; they 

met their terminal conditions in the first 400 to 600 seconds.   The equilibrium point and 

level varied by attack class.   The equilibrium levels attack classes 0.5% through 3.5% 

occurred at approximately 200 node-pairs.  The minimum node-pair count for attack class 

4.0%, 4.5% and 5.0% at their terminal conditions was 330, 482 and 490 node-pairs 

respectively. 
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Appendix J 

Mutual Information Transfer Results by Attack Class 
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Attack Class 1.0 %  

 

Attack Class 1.5 %
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Attack Class 2.0 % 

 

Attack Class 2.5 % 
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Attack Class 3.0 % 

 

Attack Class 3.5 % 
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Attack Class 4.0 % 

 

Attack Class 4.5 % 
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Attack Class 5.0 % 
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Appendix L 

Node-Pair Type 1-2 Counts Results by Attack Class 

 

 

The Figures in this appendix section represent graphs that were not presented in Chapter V. 
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Attack Class 1.0% 

 

Attack Class 1.5% 
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Attack Class 2.0% 

 

Attack Class 2.5% 
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Attack Class 3.0% 

 

Attack Class 3.5% 
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Attack Class 4.0%  

 

Attack Class 4.5% 
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Attack Class 5.0% 
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Appendix L 

Information Transfer Loss Results by Run Type 

 

 

The data in this section represents the percent information transfer loss in the first 400 

seconds of each simulation.  Numbers in parenthesis indicate negative rates (loss). „*‟ 

indicates no data due to terminal condition already being met.    

Run Type 1 - Information Transfer Loss for the first 400 seconds 

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds 

Attack 

Class 

 Loss 

bits 

% Loss  Loss 

bits 

% Loss  Loss 

bits 

% Loss  Loss 

bits 

% Loss 

0.5% 0.2 12.7% 0.1 6.1% 0.1 3.7% 0.1 3.2% 

1.0% 0.4 24.5% 0.2 11.8% 0.1 7.9% 0.1 6.0% 

1.5% 0.5 34.4% 0.3 17.0% 0.2 11.3% 0.1 8.4% 

2.0% 0.3 19.6% 0.4 23.9% 0.2 15.7% 0.2 11.7% 

2.5% 0.8 49.8% 0.5 29.7% 0.3 19.6% 0.2 14.6% 

3.0% 1.1 71.6% 0.6 35.9% 0.4 23.7% 0.3 17.6% 

3.5% 1.3 83.1% 0.6 41.3% 0.4 27.3% 0.3 20.3% 

4.0% 1.4 92.6% 0.7 46.1% 0.5 30.7% 0.4 23.0% 

4.5% 1.5 96.2% 0.8 50.1% 0.5 33.4% 0.4 25.1% 

5.0% 1.5 96.2% 0.8 50.1% 0.5 33.4% 0.4 25.1% 
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Run Type 2 - Information Transfer Loss for the first 400 seconds 

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds 

Attack 

Class 

 Loss 

bits 

% Loss  Loss 

bits 

% Loss  Loss 

bits 

% Loss  Loss 

bits 

% Loss 

0.5% 0.0 0.2% 0.1 6.5% 0.1 4.4% 0.1 3.3% 

1.0% 0.1 9.1% 0.2 12.1% 0.1 8.1% 0.1 6.2% 

1.5% 0.0 0.0% 0.1 5.5% 0.2 11.8% 0.1 9.4% 

2.0% 0.3 16.1% 0.4 24.0% 0.2 16.0% 0.2 12.2% 

2.5% 0.0 0.0% 0.1 7.0% 0.3 20.5% 0.3 16.3% 

3.0% 0.1 6.4% 0.4 24.3% 0.4 24.2% 0.3 18.6% 

3.5% 0.2 11.7% 0.4 25.7% 0.4 27.8% 0.3 20.9% 

4.0% 0.0 0.0% 0.1 4.6% 0.2 12.7% 0.4 23.2% 

4.5% 0.0 2.9% 0.1 7.5% 0.5 30.2% 0.4 25.0% 

5.0% 0.0 0.0% 0.0 0.0% 0.1 4.2% 0.4 25.1% 

 

Run Type 3 - Information Transfer Loss for the first 400 seconds 

 
 

First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds 

Attack 

Class 

 Loss 

bits 

% Loss  Loss 

bits 

% Loss  Loss 

bits 

% Loss  Loss 

bits 

% Loss 

0.5% 0.0 0.0% 0.1 6.5% 0.1 4.5% 0.1 3.4% 

1.0% 0.0 0.0% 0.1 4.6% 0.1 8.1% 0.1 6.2% 

1.5% 0.0 0.0% 0.0 2.7% 0.2 11.5% 0.1 9.1% 

2.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 

2.5% 0.0 0.0% 0.1 9.5% 0.3 20.4% 0.2 15.8% 

3.0% 0.0 0.0% 0.1 4.5% 0.2 13.9% 0.3 18.1% 

3.5% 0.0 2.0% 0.1 8.0% 0.4 27.9% 0.3 21.4% 

4.0% 0.0 0.0% 0.1 3.7% 0.1 9.2% 0.4 23.2% 

4.5% 0.0 -0.3% 0.0 0.3% 0.1 6.4% 0.4 25.1% 

5.0% 0.0 0.0% 0.0 1.7% 0.1 4.4% 0.1 8.9% 
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Run Type 4 - Information Transfer Loss for the first 400 seconds 

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds 

Attack 

Class 

 Loss 

bits 

% Loss  Loss 

bits 

% Loss  Loss 

bits 

% Loss  Loss 

bits 

% Loss 

0.5% 0.0 0.0% 0.1 6.4% 0.1 4.4% 0.1 3.4% 

1.0% 0.0 0.0% 0.2 11.8% 0.1 8.1% 0.1 6.2% 

1.5% 0.0 0.0% 0.3 17.3% 0.2 12.5% 0.2 9.7% 

2.0% 0.0 1.3% 0.4 24.3% 0.3 17.3% 0.2 13.2% 

2.5% 0.0 0.4% 0.2 13.3% 0.3 20.8% 0.3 16.3% 

3.0% 0.0 3.0% 0.3 22.4% 0.4 24.4% 0.3 18.4% 

3.5% 0.1 8.0% 0.3 21.1% 0.4 27.9% 0.3 20.9% 

4.0% 0.2 15.7% 0.4 28.8% 0.5 31.0% 0.4 23.4% 

4.5% 0.2 10.8% 0.3 20.9% 0.5 32.7% 0.4 25.1% 

5.0% 0.0 0.0% 0.0 -0.8% 0.0 1.2% 0.4 25.1% 
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Appendix N 

Rate of Information Transfer Loss Results by Run Type 

 

 

The data in this section represents the rate of information transfer loss of each simulation.  

Numbers in parenthesis indicate negative rates (loss). „*‟ indicates no data due to terminal 

condition already being met.  Each cell represents bits/sec at time t. 

 Run Type 1 – Rate of Information Transfer Loss 

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

First 100 (0.20) (0.38) (0.54) (0.31) (0.78) (1.12) (1.30) (1.45) (1.50) (1.43) 

100 to terminal conditions (0.03) (0.03) (0.02) (0.02) (0.01) (0.00) (0.00) 0.01  * * 

 

Run Type 2 – Rate of Information Transfer Loss 

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

First 400 (0.06) (0.11) (0.19) (0.21) (0.32) (0.36) (0.41) (0.35) (0.47) (0.37) 

400 to terminal conditions (0.03) (0.04) (0.04) (0.03) (0.03) (0.02) (0.01) (0.01) * * 

 

Run Type 3 – Rate of Information Transfer Loss 

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

First 400 (0.06) (0.13) (0.18) 0.00 (0.31) (0.32) (0.41) (0.30) (0.37) (0.13) 

400 to 3200 (0.02) (0.04) (0.04) (0.06)  (0.02) (0.01) (0.01) (0.01) * * 

3200 to terminal conditions (0.00) 0.00  0.00  0.00  0.00  0.00  0.00  * * * 

 

Run Type 4 – Rate of Information Transfer Loss 

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

First 400 (0.06) (0.12) (0.19) (0.26) (0.33) (0.37) (0.42) (0.45) (0.51) (0.06) 

400 to 3200 (0.01) 0.01  (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) * (0.01) 

3200 to terminal conditions 0.00  0.00  0.00  0.00  (0.00) 0.00  (0.00)   * * 
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Appendix N 

Node-pair type 1-2 Count Loss Results by Run Type 

 

 

The data in this section represents node-pair type 1-2 count loss of each simulation.  

Numbers in parenthesis indicate negative rates (loss). „*‟ indicates no data due to terminal 

condition already being met.  NP loss column represents the number of node-pairs.  

Run Type 1 – Node-pair type 1-2 Count Loss, First 400 Seconds 

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds 

Attack 

Class 
NP loss % loss NP loss % loss NP loss % loss NP loss % loss 

0.5% 0.0 0.0% 78.5 7.8% 56.7 5.6% 49.3 4.9% 

1.0% 273.0 27.1% 146.5 14.5% 103.7 10.3% 83.0 8.2% 

1.5% 380.0 37.7% 199.5 19.8% 138.7 13.7% 110.5 11.0% 

2.0% 288.0 28.5% 231.5 22.9% 159.7 15.8% 128.0 12.7% 

2.5% 449.0 44.5% 259.5 25.7% 181.7 18.0% 142.0 14.1% 

3.0% 519.0 51.4% 274.5 27.2% 194.3 19.3% 153.5 15.2% 

3.5% 539.0 53.4% 293.5 29.1% 208.0 20.6% 164.3 16.3% 

4.0% 534.0 52.9% 284.0 28.1% 201.7 20.0% 153.8 15.2% 

4.5% 530.0 52.5% 504.5 50.0% 336.3 33.3% 252.3 25.0% 

5.0% 531.0 52.6% 504.5 50.0% 336.3 33.3% 252.3 25.0% 
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Run Type 2 – Node-pair type 1-2 Count Loss, First 400 Seconds 

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds 

Attack 

Class 
NP loss % loss NP loss % loss NP loss % loss NP loss % loss 

0.5% 8.0 0.8% 72.0 7.1% 55.0 5.5% 42.8 4.2% 

1.0% 138.0 13.7% 137.5 13.6% 102.0 10.1% 82.8 8.2% 

1.5% 0.0 0.0% 96.0 9.5% 124.3 12.3% 101.3 10.0% 

2.0% 180.0 17.8% 221.5 22.0% 155.7 15.4% 126.3 12.5% 

2.5% 0.0 0.0% 120.0 11.9% 163.7 16.2% 127.8 12.7% 

3.0% 136.0 13.5% 229.0 22.7% 181.0 17.9% 145.0 14.4% 

3.5% 180.0 17.8% 239.0 23.7% 185.7 18.4% 146.5 14.5% 

4.0% 0.0 0.0% 91.0 9.0% 141.3 14.0% 135.0 13.4% 

4.5% 68.0 6.7% 132.5 13.1% 336.3 33.3% 252.3 25.0% 

5.0% 0.0 0.0% 5.5 0.5% 84.0 8.3% 252.3 25.0% 

 

Run Type 3 – Node-pair type 1-2 Count Loss, First 400 Seconds 

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds 

Attack 

Class 
NP loss % loss NP loss % loss NP loss % loss NP loss % loss 

0.5% 0.0 0.0% 68.5 6.8% 52.7 5.2% 40.5 4.0% 

1.0% 0.0 0.0% 72.0 7.1% 92.3 9.2% 73.0 7.2% 

1.5% 0.0 0.0% 57.0 5.6% 125.7 12.5% 96.8 9.6% 

2.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 

2.5% 0.0 0.0% 144.5 14.3% 163.3 16.2% 126.8 12.6% 

3.0% 0.0 0.0% 81.0 8.0% 141.0 14.0% 130.8 13.0% 

3.5% 59.0 5.8% 137.0 13.6% 176.0 17.4% 138.3 13.7% 

4.0% 0.0 0.0% 76.5 7.6% 121.7 12.1% 133.3 13.2% 

4.5% 2.0 0.2% 25.0 2.5% 100.7 10.0% 252.3 25.0% 

5.0% 0.0 0.0% 28.5 2.8% 85.7 8.5% 98.5 9.8% 

 

  



225 

 

Run Type 4 – Node-pair type 1-2 Count Loss, First 400 Seconds 

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds 

Attack 
Class 

NP loss % loss NP loss % loss NP loss % loss NP loss % loss 

0.5% 137.0 13.6% 74.5 7.4% 53.3 5.3% 40.8 4.0% 

1.0% 107.0 10.6% 133.0 13.2% 92.7 9.2% 71.8 7.1% 

1.5% 202.0 20.0% 188.0 18.6% 132.7 13.1% 100.8 10.0% 

2.0% 226.0 22.4% 230.0 22.8% 155.7 15.4% 118.3 11.7% 

2.5% 177.0 17.5% 243.5 24.1% 165.7 16.4% 134.0 13.3% 

3.0% 255.0 25.3% 255.5 25.3% 177.7 17.6% 138.3 13.7% 

3.5% 312.0 30.9% 266.5 26.4% 181.3 18.0% 141.0 14.0% 

4.0% 402.0 39.8% 263.0 26.1% 186.7 18.5% 147.3 14.6% 

4.5% 323.0 32.0% 241.5 23.9% 336.3 33.3% 252.3 25.0% 

5.0% -2.0 -0.2% 26.5 2.6% 112.7 11.2% 122.3 12.1% 
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Appendix O 

Node-pair Type 1-2 Count Loss Rate by Run Type 

 

 

The data in this section represents the rate of count loss of node-pair type 1-2 for each 

simulation.  Numbers in parenthesis indicate negative rates (loss). „*‟ indicates no data due to 

terminal condition already being met.   

Run Type 1 – Node-pair Type 1-2 Count Loss (node-pairs/sec) 

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

First 100 0.0  (273.0) (380.0) (288.0) (449.0) (519.0) (539.0) (534.0) (530.0) (518.0) 

100 to terminal 

conditions 
(38.3) (30.0) (33.0) (23.3) (28.3) (28.3) (29.0) (32.3) * * 

 

 

 

Run Type 2 – Node-pair Type 1-2 Count Loss (node-pairs/sec) 

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

First 400 (50.50) (87.93) (130.2) (137.2) (162.5) (168.5) (165.7) (161.2) (201.7) (126.1) 

400 to terminal 

conditions 
(24.04) (23.54) (24.75) (20.27) (23.43) (23.21) (21.23) (33.01) * * 
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Run Type 3 – Node-pair Type 1-2 Count Loss (node-pairs/sec) 

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

First 400 (49.0) (95.7) (126.0) 0.00 (160.5) (159.8) (169.6) (150.4) (134.4) (107.6) 

400 to 3200 (17.71) (19.03) (14.10) (31.90)  (8.46) (8.34) (6.31) (15.67) * * 

3200 to terminal 

conditions 
(0.12) (0.02) 0.03  0.00  0.00  0.00  0.02  * * * 

 

 

 

Run Type 4 – Node-pair Type 1-2 Count Loss (node-pairs/sec) 

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

First 400 (39.9) (77.6) (107.2) (123.2) (148.4) (141.7) (132.7) (127.0) (206.2) (139.0) 

400 to 3200 (16.7) (14.2) (9.9) (8.0) (8.3) (7.1) (8.1) (20.1) * * 

3200 to terminal 

conditions 
(0.1) (0.1) (0.0) (0.0) (0.1) (0.0) (0.0) * * * 
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Appendix P 

Attack Detection by Run Type 

 

 

Numbers in parenthesis indicate negative rates (loss).  

Run Type 1 – Attack Detection (All time in simulation seconds) 

Attack 
Class 

Terminal 

Condition 

Time 

Attack 

Start 

Time 

Attack 

End 

Time 

Attacked 
Nodes 

Average 

Attack 
Node 

Degree 

Attack 

Intensity   

(node/sec) 

Attack 
Time 

Detect 

Research 
Estimate 

  Percent 

Variance 

from 
Actual 

Attack 

Time 

0.5% 25,500 103 108 60 47 12.0 105 2% 
1.0% 2,850 64 91 124 41 4.6 65 2% 

1.5% 2,100 45 62 179 38 10.5 50 11% 

2.0% 2,500 74 114 241 35 6.0 75 1% 

2.5% 2,300 76 103 303 31 11.2 80 5% 
3.0% 1,750 42 76 363 29 10.7 45 7% 

3.5% 1,650 47 88 421 26 10.3 35 -26% 

4.0% 1,600 44 82 478 24 12.6 45 2% 
4.5% 90 45 89 544 22 12.4 50 11% 

5.0% 88 41 86 613 20 13.6 45 10% 

Average  4,043 58 90 333 31 10 60 3% 

Median 1,925 46 89 333 30 11 50 9% 
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Run Type 2 – Attack Detection (All time in simulation seconds) 

Attack 
Class 

Terminal 

Condition 

Time 

Attack 

Start 

Time 

Attack 

End 

Time 

Attacked 
Nodes 

Average 

Attack 
Node 

Degree 

Attack 

Intensity   

(node/sec) 

Attack 
Time 

Detect 

Research 
Estimate 

Percent 

Variance 

from 
Actual 

Attack 

Time 

0.5% 3,800 99 126 60 47 2.2 100 1.0% 
1.0% 3,350 70 126 124 41 2.2 75 7.1% 

1.5% 2,600 155 235 179 38 2.2 160 3.2% 

2.0% 2,800 65 169 241 35 2.3 65 0.0% 
2.5% 2,200 124 262 303 31 2.2 130 4.8% 

3.0% 2,100 54 213 363 29 2.3 55 1.9% 

3.5% 2,350 62 244 421 26 2.3 65 4.8% 

4.0% 1,300 153 363 478 24 2.3 155 1.3% 
4.5% 288 47 288 544 22 2.3 50 6.4% 

5.0% 350 71 350 613 20 2.2 80 12.7% 

Average  2,040 82 231 334 32 2.2 86 5.4% 

Median 2,275 71 240 333 30 2 78 9.9% 

 

Run Type 3 – Attack Detection (All time in simulation seconds) 

Attack 
Class 

Terminal 

Condition 

Time 

Attack 

Start 

Time 

Attack 

End 

Time 

Attacked 
Nodes 

Average 

Attack 
Node 

Degree 

Attack 

Intensity   

(node/sec) 

Attack 
Time 

Detect 

Research 
Estimate 

 Percent 

Variance 

from 
Actual 

Attack 

Time 

0.5% 25,000 126 157 60 47 1.9 125 (0.8%) 
1.0% 25,000 161 228 124 41 1.9 160 (0.6%) 

1.5% 25,000 166 261 179 38 1.9 165 (0.6%) 

2.0% 25,000 1,084 1,211 241 35 1.9 1,100 1.5% 
2.5% 25,000 100 259 303 31 1.9 100 0.0% 

3.0% 25,000 159 344 363 29 2.0 155 (2.5%) 

3.5% 25,000 56 276 421 26 1.9 55 (1.8%) 

4.0% 1,350 153 400 478 24 1.9 150 (2.0%) 
4.5% 348 58 348 544 22 1.9 70 20.7% 

5.0% 470 155 470 613 20 1.9 155 0.0% 

Average  409 107 409 579 21 1.9 113 10.3% 

Median 25,000 154 310 333 30 2 153 (1.0%) 
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Run Type 4 – Attack Detection (All time in simulation seconds) 

Attack 

Class 

Terminal 

Condition 

Time 

Attack 

Start 

Time 

Attack 

End 

Time 

Attacked 

Nodes 

Average 
Attack 

Node 

Degree 

Attack 

Intensity   

(node/sec) 

Attack 

Time 

Detect 

Research 
Estimate 

Percent  

Variance 
from 

Actual 

Attack 

Time 

0.5% 25,000 108 135 60 47 2.2 105 (2.8%) 

1.0% 25,000 124 181 124 41 2.2 125 0.8% 

1.5% 25,000 102 182 179 38 2.2 100 (2.0%) 
2.0% 25,000 82 192 241 35 2.2 80 (2.4%) 

2.5% 25,000 94 232 303 31 2.2 95 1.1% 

3.0% 25,000 52 213 363 29 2.3 50 (3.8%) 

3.5% 17,050 55 242 421 26 2.3 55 0.0% 
4.0% 1,450 53 258 478 24 2.3 50 (5.7%) 

4.5% 286 54 286 544 22 2.3 50 (7.4%) 

5.0% 384 105 384 613 20 2.2 115 9.5% 

Average  15,028 90 238 334 32 2.2 90 (0.7%) 

Median 25,000 88 223 333 30 2 88 (0.6%) 
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Appendix Q 

Attack Detection and Node-Pair Type 1-1 Counts Results by Run Type 

 

 

This data represents the counts of node-pair type 1-1 used for attack detection.  It depicts the 

first 200 seconds of each simulation as discussed in Chapter VI.   Blank cells indicate no data 

due to terminal condition already being met.  Each cell represents node-pair type 1-1 count at 

simulation time t. 

Run Type 1 – Attack Detection  

Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

0 36 36 36 36 36 36 36 36 36 36 

5 36 36 36 36 36 36 36 36 36 36 

10 36 36 36 36 36 36 36 36 36 36 

15 36 36 36 36 36 36 36 36 36 36 

20 36 36 36 36 36 36 36 36 36 36 

25 36 36 36 36 36 36 36 36 36 36 

30 36 36 36 36 36 36 36 36 36 36 

35 36 36 36 36 36 36 74 36 36 36 

40 36 36 36 36 36 36 319 36 36 36 

45 36 36 36 36 36 186 593 132 36 352 

50 36 36 360 36 36 471 761 428 414 698 

55 36 36 708 36 36 769 958 827 750 1033 

60 36 36 1080 36 36 993 1246 1087 1043 1287 

65 36 64 1204 36 36 1224 1505 1276 1285 1472 

70 36 176 1198 36 36 1482 1760 1542 1468 1649 

80 36 506 1194 250 356 1768 1834 1812 1770 1859 
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Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

85 36 680 1188 408 674 1752 1828 1892 1877 1933 

90 36 879 1180 567 1002 1746 1824 1886 1937 1983 

95 36 913 1176 751 1276 1736 1818 1883 
  

100 36 925 1170 907 1475 1728 1812 1880 
  

105 214 927 1164 1111 1607 1718 1812 1868 
  

110 497 933 1162 1310 1601 1708 1802 1866 
  

115 497 929 1158 1448 1593 1696 1790 1854 
  

120 485 935 1158 1446 1583 1684 1786 1854 
  

125 483 941 1158 1442 1571 1676 1786 1848 
  

130 481 943 1160 1440 1559 1662 1776 1836 
  

135 481 942 1156 1440 1547 1658 1774 1834 
  

140 481 942 1156 1432 1545 1652 1766 1832 
  

145 481 941 1150 1430 1535 1646 1762 1818 
  

150 481 935 1148 1428 1525 1643 1752 1810 
  

 

Run Type 2 – Attack Detection 

Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

0 36 36 36 36 36 36 36 36 36 36 

5 36 36 36 36 36 36 36 36 36 36 
10 36 36 36 36 36 36 36 36 36 36 

15 36 36 36 36 36 36 36 36 36 36 

20 36 36 36 36 36 36 36 36 36 36 
25 36 36 36 36 36 36 36 36 36 36 

30 36 36 36 36 36 36 36 36 36 36 

35 36 36 36 36 36 36 36 36 36 36 
40 36 36 36 36 36 36 36 36 36 36 

45 36 36 36 36 36 36 36 36 36 36 

50 36 36 36 36 36 36 36 36 56 36 

55 36 36 36 36 36 50 36 36 82 36 
60 36 36 36 36 36 84 36 36 116 36 

65 36 36 36 46 36 134 90 36 146 36 

70 36 36 36 161 36 196 162 36 166 36 
75 36 106 36 247 36 244 234 36 190 36 

80 36 174 36 335 36 304 322 36 233 52 

85 36 240 36 425 36 348 396 36 267 54 

90 36 324 36 485 36 402 462 36 303 62 
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Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

95 36 424 36 555 36 459 522 36 331 62 

100 58 476 36 641 36 491 604 36 353 66 

105 150 546 36 703 36 521 672 36 373 70 

110 220 616 36 771 36 571 734 36 409 80 

115 310 690 36 833 36 643 801 36 439 86 

120 387 785 36 909 36 672 857 36 469 88 

125 483 879 36 964 38 725 933 36 507 102 

130 499 907 36 1053 72 781 995 36 553 108 

135 507 907 36 1091 134 828 1029 36 581 116 

140 509 911 36 1171 180 872 1085 36 591 128 

145 509 914 36 1225 244 937 1147 36 631 138 

150 509 919 36 1261 302 985 1189 36 669 142 

155 509 922 36 1325 338 1043 1253 80 697 156 

160 509 925 110 1387 401 1093 1285 154 749 158 

165 520 926 180 1435 461 1165 1317 200 775 170 

170 521 927 238 1453 495 1210 1345 287 797 182 

175 521 928 302 1453 545 1268 1393 335 855 198 

180 521 931 350 1454 615 1334 1433 385 889 214 

185 521 932 406 1459 661 1405 1463 445 913 220 

190 521 936 489 1462 701 1465 1493 497 959 236 

195 524 941 566 1465 759 1539 1535 541 1008 268 

200 529 942 628 1468 820 1595 1598 591 1043 300 

155 36 36 36 36 36 36 36 36 36 36 
160 36 36 36 36 36 36 36 36 36 36 
165 36 36 36 36 36 36 36 36 36 36 
170 36 36 36 36 36 36 36 36 36 36 
175 36 36 36 36 36 36 36 36 36 36 
180 36 36 36 36 36 36 36 36 36 36 
185 36 36 36 36 36 36 36 36 36 36 
190 36 36 36 36 36 36 36 36 36 36 
195 36 36 36 36 36 36 36 36 36 36 
200 36 36 36 36 36 36 36 36 36 36 

 

Run Type 3 – Attack Detection 

Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

0 36 36 36 36 36 36 36 36 36 36 
5 36 36 36 36 36 36 36 36 36 36 

10 36 36 36 36 36 36 36 36 36 36 

15 36 36 36 36 36 36 36 36 36 36 
20 36 36 36 36 36 36 36 36 36 36 

25 36 36 36 36 36 36 36 36 36 36 

30 36 36 36 36 36 36 36 36 36 36 

35 36 36 36 36 36 36 36 36 36 36 
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Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

40 36 36 36 36 36 36 36 36 36 36 
45 36 36 36 36 36 36 36 36 36 36 

50 36 36 36 36 36 36 36 36 36 36 

55 36 36 36 36 36 36 60 36 36 36 

60 36 36 36 36 36 36 76 36 42 36 
65 36 36 36 36 36 36 102 36 50 36 

70 36 36 36 36 36 36 126 36 50 36 

75 36 36 36 36 36 36 156 36 52 36 
80 36 36 36 36 36 36 174 36 66 36 

85 36 36 36 36 36 36 191 36 72 36 

90 36 36 36 36 36 36 233 36 78 36 

95 36 36 36 36 36 36 271 36 84 36 
100 36 36 36 36 78 36 289 36 102 36 

105 36 36 36 36 124 36 317 36 102 36 

110 36 36 36 36 172 36 337 36 106 36 
115 36 36 36 36 206 36 385 36 118 36 

120 36 36 36 36 234 36 421 36 122 36 

125 133 36 36 36 298 36 475 36 124 36 
130 199 36 36 36 357 36 501 36 136 36 

135 273 36 36 36 401 36 525 36 148 36 

140 341 36 36 36 443 36 559 36 160 36 

145 431 36 36 36 497 36 584 36 164 36 
150 476 36 36 36 557 36 636 62 180 36 
155 500 36 36 36 587 50 686 98 196 78 
160 503 78 36 36 645 124 714 155 200 120 
165 505 132 93 36 669 192 766 229 232 152 
170 507 190 139 36 713 244 808 265 260 186 
175 511 240 187 36 749 300 846 331 298 214 
180 512 300 257 36 815 348 894 379 326 238 
185 515 364 295 36 867 404 952 431 346 265 
190 515 420 333 36 921 480 996 467 364 287 
195 517 474 383 36 964 522 1028 494 390 303 
200 518 542 443 36 1014 566 1070 532 430 347 
155 36 36 36 36 36 36 36 36 36 36 
160 36 36 36 36 36 36 36 36 36 36 
165 36 36 36 36 36 36 36 36 36 36 
170 36 36 36 36 36 36 36 36 36 36 
175 36 36 36 36 36 36 36 36 36 36 
180 36 36 36 36 36 36 36 36 36 36 
185 36 36 36 36 36 36 36 36 36 36 
190 36 36 36 36 36 36 36 36 36 36 
195 36 36 36 36 36 36 36 36 36 36 
200 36 36 36 36 36 36 36 36 36 36 
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Run Type 4 – Attack Detection 

Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

0 36 36 36 36 36 36 36 36 36 36 

5 36 36 36 36 36 36 36 36 36 36 

10 36 36 36 36 36 36 36 36 36 36 

15 36 36 36 36 36 36 36 36 36 36 

20 36 36 36 36 36 36 36 36 36 36 

25 36 36 36 36 36 36 36 36 36 36 

30 36 36 36 36 36 36 36 36 36 36 

35 36 36 36 36 36 36 36 36 36 36 

40 36 36 36 36 36 36 36 36 36 36 

45 36 36 36 36 36 36 36 36 36 36 

50 36 36 36 36 36 50 36 68 54 36 

55 36 36 36 36 36 76 112 172 126 36 

60 36 36 36 36 36 113 180 240 190 36 

65 36 36 36 36 36 141 232 306 244 36 

70 36 36 36 36 36 161 297 384 332 36 

75 36 36 36 36 36 199 329 448 400 36 

80 36 36 36 58 36 235 399 526 440 36 

85 36 36 36 94 36 283 453 584 535 36 

90 36 36 36 152 38 333 511 648 573 36 

95 36 36 36 196 72 371 543 734 647 36 

100 36 36 76 224 134 407 585 782 717 36 

105 78 36 120 262 180 443 663 869 753 42 

110 160 36 193 320 232 497 715 911 799 46 

115 242 36 239 378 296 551 785 987 865 52 

120 314 38 301 453 336 583 835 1061 927 54 

125 399 102 383 493 395 666 881 1097 969 58 

130 499 170 437 559 455 690 903 1157 1005 72 

135 499 244 497 633 495 760 959 1217 1037 78 

140 499 300 579 691 545 846 1002 1261 1078 84 

145 501 364 647 747 615 900 1054 1301 1102 90 

150 503 428 725 827 651 961 1106 1329 1158 108 
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Time 
(sec) 

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

155 503 530 793 899 699 1007 1136 1366 1190 114 

160 505 596 871 977 757 1081 1182 1392 1230 124 

165 505 670 949 1041 819 1151 1210 1436 1268 130 

170 505 756 1031 1117 868 1215 1260 1489 1330 132 

175 505 869 1144 1197 924 1293 1326 1517 1377 140 

180 505 903 1208 1285 976 1331 1388 1561 1433 152 

185 505 903 1210 1402 1044 1393 1441 1619 1463 168 

190 505 903 1210 1454 1102 1500 1485 1652 1499 172 

195 505 903 1210 1456 1158 1553 1515 1684 1527 188 

200 521 903 1214 1460 1226 1639 1561 1728 1553 194 
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Appendix R 

Attack Detection and Node-Pair Type 1-1 Counts Results for Fraction Changed by Run Type 

 

 

This data represents the fraction change in counts of node-pair type 1-1 from the pre-attack 

state.  This data was used for attack detection.  It depicts the first 200 seconds of each 

simulation as discussed in Chapter VI.   Blank cells indicate no data due to terminal 

condition already being met. Each cell represents the increase in the number of node-pairs of 

type 1-1 of the previous number of node-pairs at the previous time.   

Run Type 1 – Attack Detection (fraction change of node-pairs from previous time interval) 

Time 
(sec) 

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

35 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 

40 0.0 0.0 0.0 0.0 0.0 0.0 7.9 0.0 0.0 0.0 

45 0.0 0.0 0.0 0.0 0.0 4.2 15.5 2.7 0.0 8.8 

50 0.0 0.0 9.0 0.0 0.0 12.1 20.1 10.9 10.5 18.4 

55 0.0 0.0 18.7 0.0 0.0 20.4 25.6 22.0 19.8 27.7 

60 0.0 0.0 29.0 0.0 0.0 26.6 33.6 29.2 28.0 34.8 

65 0.0 0.8 32.4 0.0 0.0 33.0 40.8 34.4 34.7 39.9 

70 0.0 3.9 32.3 0.0 0.0 40.2 47.9 41.8 39.8 44.8 

75 0.0 9.0 32.2 1.3 0.0 48.1 50.1 45.8 45.3 47.6 

80 0.0 13.1 32.2 5.9 8.9 48.1 49.9 49.3 48.2 50.6 
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Time 
(sec) 

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

85 0.0 17.9 32.0 10.3 17.7 47.7 49.8 51.6 51.1 52.7 

90 0.0 23.4 31.8 14.8 26.8 47.5 49.7 51.4 52.8 54.1 

95 0.0 24.4 31.7 19.9 34.4 47.2 49.5 51.3 
  

100 0.0 24.7 31.5 24.2 40.0 47.0 49.3 51.2 
  

105 4.9 24.8 31.3 29.9 43.6 46.7 49.3 50.9 
  

110 12.8 24.9 31.3 35.4 43.5 46.4 49.1 50.8 
  

115 12.8 24.8 31.2 39.2 43.3 46.1 48.7 50.5 
  

120 12.5 25.0 31.2 39.2 43.0 45.8 48.6 50.5 
  

125 12.4 25.1 31.2 39.1 42.6 45.6 48.6 50.3 
  

130 12.4 25.2 31.2 39.0 42.3 45.2 48.3 50.0 
  

135 12.4 25.2 31.1 39.0 42.0 45.1 48.3 49.9 
  

140 12.4 25.2 31.1 38.8 41.9 44.9 48.1 49.9 
  

145 12.4 25.1 30.9 38.7 41.6 44.7 47.9 49.5 
  

150 12.4 25.0 30.9 38.7 41.4 44.6 47.7 49.3 
  

 

Run Type 2 – Attack Detection (fraction change of node-pairs from previous time interval) 

Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 

60 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 1.3 0.0 

65 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 2.2 0.0 

70 0.0 0.0 0.0 0.3 0.0 2.7 1.5 0.0 3.1 0.0 

75 0.0 0.0 0.0 3.5 0.0 4.4 3.5 0.0 3.6 0.0 

80 0.0 1.9 0.0 5.9 0.0 5.8 5.5 0.0 4.3 0.0 

85 0.0 3.8 0.0 8.3 0.0 7.4 7.9 0.0 5.5 0.4 

90 0.0 5.7 0.0 10.8 0.0 8.7 10.0 0.0 6.4 0.5 

95 0.0 8.0 0.0 12.5 0.0 10.2 11.8 0.0 7.4 0.7 
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Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

100 0.0 10.8 0.0 14.4 0.0 11.8 13.5 0.0 8.2 0.7 

105 0.6 12.2 0.0 16.8 0.0 12.6 15.8 0.0 8.8 0.8 

110 3.2 14.2 0.0 18.5 0.0 13.5 17.7 0.0 9.4 0.9 

115 5.1 16.1 0.0 20.4 0.0 14.9 19.4 0.0 10.4 1.2 

120 7.6 18.2 0.0 22.1 0.0 16.9 21.3 0.0 11.2 1.4 

125 9.8 20.8 0.0 24.3 0.0 17.7 22.8 0.0 12.0 1.4 

130 12.4 23.4 0.0 25.8 0.1 19.1 24.9 0.0 13.1 1.8 

135 12.9 24.2 0.0 28.3 1.0 20.7 26.6 0.0 14.4 2.0 

140 13.1 24.2 0.0 29.3 2.7 22.0 27.6 0.0 15.1 2.2 

145 13.1 24.3 0.0 31.5 4.0 23.2 29.1 0.0 15.4 2.6 

150 13.1 24.4 0.0 33.0 5.8 25.0 30.9 0.0 16.5 2.8 

155 13.1 24.5 0.0 34.0 7.4 26.4 32.0 0.0 17.6 2.9 

160 13.1 24.6 0.0 35.8 8.4 28.0 33.8 1.2 18.4 3.3 

165 13.1 24.7 2.1 37.5 10.1 29.4 34.7 3.3 19.8 3.4 

170 13.4 24.7 4.0 38.9 11.8 31.4 35.6 4.6 20.5 3.7 

175 13.5 24.8 5.6 39.4 12.8 32.6 36.4 7.0 21.1 4.1 

180 13.5 24.8 7.4 39.4 14.1 34.2 37.7 8.3 22.8 4.5 

185 13.5 24.9 8.7 39.4 16.1 36.1 38.8 9.7 23.7 4.9 

190 13.5 24.9 10.3 39.5 17.4 38.0 39.6 11.4 24.4 5.1 

195 13.5 25.0 12.6 39.6 18.5 39.7 40.5 12.8 25.6 5.6 

200 13.6 25.1 14.7 39.7 20.1 41.8 41.6 14.0 27.0 6.4 

155 13.7 25.2 16.4 39.8 21.8 43.3 43.4 15.4 28.0 7.3 

160 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

165 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

170 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

175 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

180 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

185 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

190 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

195 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Run Type 3 – Attack Detection (fraction change of node-pairs from previous time interval) 

Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

55 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 

60 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.2 0.0 

65 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.4 0.0 

70 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.4 0.0 

75 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.4 0.0 

80 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.8 0.0 

85 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 1.0 0.0 

90 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0 1.2 0.0 

95 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 1.3 0.0 

100 0.0 0.0 0.0 0.0 1.2 0.0 7.0 0.0 1.8 0.0 

105 0.0 0.0 0.0 0.0 2.4 0.0 7.8 0.0 1.8 0.0 

110 0.0 0.0 0.0 0.0 3.8 0.0 8.4 0.0 1.9 0.0 

115 0.0 0.0 0.0 0.0 4.7 0.0 9.7 0.0 2.3 0.0 

120 0.0 0.0 0.0 0.0 5.5 0.0 10.7 0.0 2.4 0.0 

125 2.7 0.0 0.0 0.0 7.3 0.0 12.2 0.0 2.4 0.0 

130 4.5 0.0 0.0 0.0 8.9 0.0 12.9 0.0 2.8 0.0 

135 6.6 0.0 0.0 0.0 10.1 0.0 13.6 0.0 3.1 0.0 

140 8.5 0.0 0.0 0.0 11.3 0.0 14.5 0.0 3.4 0.0 

145 11.0 0.0 0.0 0.0 12.8 0.0 15.2 0.0 3.6 0.0 

150 12.2 0.0 0.0 0.0 14.5 0.0 16.7 0.7 4.0 0.0 

155 12.9 0.0 0.0 0.0 15.3 0.4 18.1 1.7 4.4 1.2 

160 13.0 1.2 0.0 0.0 16.9 2.4 18.8 3.3 4.6 2.3 

165 13.0 2.7 1.6 0.0 17.6 4.3 20.3 5.4 5.4 3.2 

170 13.1 4.3 2.9 0.0 18.8 5.8 21.4 6.4 6.2 4.2 

175 13.2 5.7 4.2 0.0 19.8 7.3 22.5 8.2 7.3 4.9 

180 13.2 7.3 6.1 0.0 21.6 8.7 23.8 9.5 8.1 5.6 

185 13.3 9.1 7.2 0.0 23.1 10.2 25.4 11.0 8.6 6.4 
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Time 

(sec) 
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

190 13.3 10.7 8.3 0.0 24.6 12.3 26.7 12.0 9.1 7.0 

195 13.4 12.2 9.6 0.0 25.8 13.5 27.6 12.7 9.8 7.4 

200 13.4 14.1 11.3 0.0 27.2 14.7 28.7 13.8 10.9 8.6 

 

Run Type 4 – Attack Detection (fraction change of node-pairs from previous time interval) 

Time 
(sec) 

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

50 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.9 0.5 0.0 

55 0.0 0.0 0.0 0.0 0.0 1.1 2.1 3.8 2.5 0.0 

60 0.0 0.0 0.0 0.0 0.0 2.1 4.0 5.7 4.3 0.0 

65 0.0 0.0 0.0 0.0 0.0 2.9 5.4 7.5 5.8 0.0 

70 0.0 0.0 0.0 0.0 0.0 3.5 7.3 9.7 8.2 0.0 

75 0.0 0.0 0.0 0.0 0.0 4.5 8.1 11.4 10.1 0.0 

80 0.0 0.0 0.0 0.6 0.0 5.5 10.1 13.6 11.2 0.0 

85 0.0 0.0 0.0 1.6 0.0 6.9 11.6 15.2 13.9 0.0 

90 0.0 0.0 0.0 3.2 0.1 8.3 13.2 17.0 14.9 0.0 

95 0.0 0.0 0.0 4.4 1.0 9.3 14.1 19.4 17.0 0.0 

100 0.0 0.0 1.1 5.2 2.7 10.3 15.3 20.7 18.9 0.0 

105 1.2 0.0 2.3 6.3 4.0 11.3 17.4 23.1 19.9 0.2 

110 3.4 0.0 4.4 7.9 5.4 12.8 18.9 24.3 21.2 0.3 

115 5.7 0.0 5.6 9.5 7.2 14.3 20.8 26.4 23.0 0.4 
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Time 
(sec) 

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0% 

120 7.7 0.1 7.4 11.6 8.3 15.2 22.2 28.5 24.8 0.5 

125 10.1 1.8 9.6 12.7 10.0 17.5 23.5 29.5 25.9 0.6 

130 12.9 3.7 11.1 14.5 11.6 18.2 24.1 31.1 26.9 1.0 

135 12.9 5.8 12.8 16.6 12.8 20.1 25.6 32.8 27.8 1.2 

140 12.9 7.3 15.1 18.2 14.1 22.5 26.8 34.0 28.9 1.3 

145 12.9 9.1 17.0 19.8 16.1 24.0 28.3 35.1 29.6 1.5 

150 13.0 10.9 19.1 22.0 17.1 25.7 29.7 35.9 31.2 2.0 

155 13.0 13.7 21.0 24.0 18.4 27.0 30.6 36.9 32.1 2.2 

160 13.0 15.6 23.2 26.1 20.0 29.0 31.8 37.7 33.2 2.4 

165 13.0 17.6 25.4 27.9 21.8 31.0 32.6 38.9 34.2 2.6 

170 13.0 20.0 27.6 30.0 23.1 32.8 34.0 40.4 35.9 2.7 

175 13.0 23.1 30.8 32.3 24.7 34.9 35.8 41.1 37.3 2.9 

180 13.0 24.1 32.6 34.7 26.1 36.0 37.6 42.4 38.8 3.2 

185 13.0 24.1 32.6 37.9 28.0 37.7 39.0 44.0 39.6 3.7 

190 13.0 24.1 32.6 39.4 29.6 40.7 40.3 44.9 40.6 3.8 

195 13.0 24.1 32.6 39.4 31.2 42.1 41.1 45.8 41.4 4.2 

200 13.5 24.1 32.7 39.6 33.1 44.5 42.4 47.0 42.1 4.4 
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Appendix T 

Attack Detection and Node-Pair Type 1-1 Counts Results for First 300 Seconds by Run Type 

 

 

These Figures represent the change in counts of node-pair type 1-1 from the pre-attack state.  

This data was used for attack detection.  It depicts the first 300 seconds of each simulation as 

discussed in Chapter VI.    

Run Type 1 – Attack Detection – Node-Pair Type 1-1 Counts, First 300 seconds 
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Run Type 2 – Attack Detection – Node-Pair Type 1-1 Counts, First 300 seconds 

    

Run Type 3 – Attack Detection – Node-Pair Type 1-1 Counts, First 300 seconds 
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Run Type 4 – Attack Detection – Node-Pair Type 1-1 Counts, First 300 seconds 
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Appendix T 

Network Connectivity Parameter Efficiency Results by Attack Effect 

 

 

NCP Efficiency is described in Chapter VI.   An efficiency term for NCP was 

developed for this research.  The relative stability during the simulation was represented as:  

𝑁𝐶𝑃(𝐸𝑓𝑓[𝑟𝑡])𝑡 =
 𝑁𝐶𝑃 𝑡

𝑎𝑐 𝑛
𝑎𝑐 0

 𝑁𝐶𝑃𝑡=0
𝑎𝑐 𝑛
𝑎𝑐 0

.  Where the attack classes, 𝑎𝑐𝑛represents 𝑛 attack classes 

as previously defined and 𝑟𝑡 =  1,2,3,4 .  For example, the NCP efficiency of run type 1 at 

time 𝑡 is represented as the sum of all network connectivity parameter values at time 𝑡  for all 

attack classes from 𝑎𝑐0 to 𝑎𝑐𝑛  with the same run type divided by the sum of the network 

connectivity parameter values at the pre-attack time for each attack class with the same run 

type.  In the remainder of this chapter, the research will consider to groups of attack classes 

based on the attack effect.  The efficiencies will be presented for attack classes 0.5% to 3.5% 

(n = 7 for attack effect 1) and 4.0% through 5.0% (n = 3, for attack effect 2). 
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NCP Efficiency for Attack Effect 1 – Attack classes 0.5% to 3.5% 

 

NCP Efficiency for Attack Effect 2 – Attack classes 4.0%, 4.5% and 5.0% 
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Appendix U 

Information Transfer and Node-Pair Type Efficiency Results by Attack Effect 

 

 

The attack class influence on the simulations discussed previously led this research to 

segregate the attack results into 2 classifications.  Simulations executed against attack classes 

0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0% and 3.5% were classified as attack effect 1.  The 

remaining 3 most severe attack classes, 4.0%, 4.5% and 5.0%, were classified as attack effect 

2.   

As shown in Chapter V, each attack effect 1 simulation: 1) experienced an 

equilibrium point for run type 3 and 4 simulations, 2) achieved a distinct local minimum 

influenced by attack severity for all run types, 3) stabilized at these local minima at a 

relatively constant value for significant period of time before the terminal conditions were 

achieved.  Attack effect 2 simulations experienced relatively rapid network degradation 

without exhibiting any of the trends observed in the attack effect 1 simulations.  The local 

minima, terminal conditions and equilibrium point were previously defined.   

This section will discuss the implications on network stability of protecting a node 

based on its membership in a specific node-pair type, type 1-2.  As previously discussed, if 

one of the two nodes in a node-pair is protected then it cannot be removed from the network 

during the attack simulations.  The preservation of these node-pairs will selectively protect 

the overall network stability from cascading node failures.  
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Node-pair and Information Transfer Efficiency 

This research employed a relative measure to study changes in the network‟s 

connectivity during the simulated denial-of-service attacks.  The relative measure to study 

the network stability was denoted as information transfer efficiency.  The relative measure 

used for analysis of node-pair type behaviors was denoted node-pair efficiency.  Node-pair 

and information transfer efficiency considers post attack stability relative to pre-attack 

stability.  Each was computed for attack effect 1 and attack effect 2 simulations.  The relative 

stability for information transfer for each simulation was represented as:  

𝐼 𝐸𝑓𝑓[𝑟𝑡] 𝑡 =
 𝐼 𝑡

𝑎𝑐 𝑛
𝑎𝑐 0

 𝐼 𝑡=0
𝑎𝑐 𝑛
𝑎𝑐 0

                                                                                              

The relative node-pair counts for each simulation were represented as: 

 𝑁𝑃 𝐸𝑓𝑓[𝑟𝑡] 𝑡 =
 𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑛𝑜𝑑𝑒 −𝑝𝑎𝑖𝑟𝑠  𝑡

𝑎𝑐 9
𝑎𝑐 0

 𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑛𝑜𝑑𝑒 −𝑝𝑎𝑖𝑟𝑠  𝑡=0
𝑎𝑐 9
𝑎𝑐 0

                                                                     

Where 𝐼 is the information transfer and there exists 𝑛 attack classes, 𝑎𝑐𝑛 ; 𝑟𝑡 =  1,2,3,4  

represents the 4 run types.   For attack effect 1, 𝑛 = 7 and for attack effect 2, 𝑛 = 3.  

Network connectivity parameter (NCP) efficiency results can be found in the appendix.  

The efficiency terms represent the proportion of either NP or I remaining after the 

attack at time 𝑡.   Efficiencies below 1 indicate a decrease in information efficiency (node-

pair count) for the combined attack class data and efficiencies greater than 1 indicate an 

increase in information transfer (node-pair count) efficiency for the combined attack class 

data.  The pre-attack efficiencies at 𝑡 = 0 were equal to one.  
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Attack Effects – Network Protection 

Each run type shown in Figure U.1 represents the cumulative behaviors of 10 

simulation runs, 7 for attack effect 1 and 3 for attack effect 2.  Attack effect 1 simulation 

executions are depicted in Figures U.1a and b.  As shown in Figures U.1a and b, the network 

degradation for run types 3 and 4 were greatly reduced and the network stabilized at an 

equilibrium point.  There was no equilibrium for run types 1 and 2.  The data for run types 3 

and 4 in Figures U.1a and b indicates that the network was protected from further 

degradation. The network stability stabilized at approximately 50% for run type 4 as opposed 

to complete degradation observed in run types 1 and 2.  It shows the protection affect of 

protection strategies 2 and 3 for run types 3 and 4 respectively.  The counts shown in Figure 

U.1b were consistent with the changes in information transfer stability shown in Figure U.1a.  

Figure U.1b indicates that the network stabilized at the same time as the node-pair type 1-2 

counts stabilized. The efficiency analysis for attack effect 2 is presented in Figures U.1c and 

d.  There was no protection effect for the most severe attacks. 
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Figure U.1. Average information transfer and node-pair type efficiency by Attack effect 1 

and 2 and run type, 10 simulations for each run type, a and b) attack effect 1, information 

transfer and node-pair type 1-2 counts respectively, c and d) attack effect 2, information 

transfer and node-pair type 1-2 counts respectively.  
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