
Eastern Michigan University
DigitalCommons@EMU

Master's Theses and Doctoral Dissertations Master's Theses, and Doctoral Dissertations, and
Graduate Capstone Projects

11-23-2009

A model to study cyber attack mechanics and
denial-of-service exploits over the internet's router
infrastructure using colored petri nets
Lawrence M. Healy

Follow this and additional works at: http://commons.emich.edu/theses

Part of the Digital Communications and Networking Commons

This Open Access Dissertation is brought to you for free and open access by the Master's Theses, and Doctoral Dissertations, and Graduate Capstone
Projects at DigitalCommons@EMU. It has been accepted for inclusion in Master's Theses and Doctoral Dissertations by an authorized administrator of
DigitalCommons@EMU. For more information, please contact lib-ir@emich.edu.

Recommended Citation
Healy, Lawrence M., "A model to study cyber attack mechanics and denial-of-service exploits over the internet's router infrastructure
using colored petri nets" (2009). Master's Theses and Doctoral Dissertations. 218.
http://commons.emich.edu/theses/218

http://commons.emich.edu?utm_source=commons.emich.edu%2Ftheses%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses?utm_source=commons.emich.edu%2Ftheses%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/etd?utm_source=commons.emich.edu%2Ftheses%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/etd?utm_source=commons.emich.edu%2Ftheses%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses?utm_source=commons.emich.edu%2Ftheses%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=commons.emich.edu%2Ftheses%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://commons.emich.edu/theses/218?utm_source=commons.emich.edu%2Ftheses%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-ir@emich.edu

A Model to Study Cyber Attack Mechanics and Denial-of-Service Exploits

over the Internet‟s Router Infrastructure using Colored Petri Nets

Dissertation

Submitted to the College of Technology

Eastern Michigan University

By Lawrence M. Healy

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Dissertation Committee:

Mary Brake, Ph.D., Dissertation Chair

Peter Stephenson, Ph.D., Norwich University

Elsa Poh, Ph.D.,

Ann Christiansen Remp, Ph.D.,

Andrew Ross, Ph.D.

November 23, 2009

ii

© COPYRIGHT BY

LAWRENCE M. HEALY

2009

All Rights Reserved

iii

ACKNOWLEDGEMENTS

First and most important, I thank my wife for her constant support during the peaks and

valleys of this major life milestone. I can always count on her to keep me focused. Her

patience and motivational support have been the foundation of my success. I would like to

express my gratitude for the time and efforts of my dissertation committee. They have

provided instrumental guidance during my transition into a researcher and scholarly writer.

My research has benefited from the editorial support of Dr. Ann Remp and Dr. Mary Brake. I

want to thank them both for helping me present my ideas in a concise and appropriate manner.

Their patience and time have been instrumental in the presentation of my research. I also

would like to thank Dr. Peter Stephenson for his mentorship. Often, his advice and forethought

have enabled my thought processes in a fruitful direction. Peter has fed my intellectual

curiosities with the seeds of ideas that have grown into this dissertation. I would also like to

thank Dr. Andrew Ross and Dr. Elsa Poh, for undertaking the time-consuming task of reading,

editing, and providing useful advice on ways to improve my research.

 The process of earning a doctorate at my stage in life can be a delicate balancing act

between family, financial, and research responsibilities. I would to thank my Mom for

providing me with a foundation of self-confidence and self-worth required to attempt and

succeed at this difficult task. In addition, I thank Norwich University Applied Research

Institutes (NUARI), specifically Phil Susmann and Eric Braman, for enabling the mechanisms

that have provided valuable financial support of this worthwhile academic endeavor. I

appreciate their patience and support over the past few years.

iv

ABSTRACT

The Internet‟s router infrastructure, a scale-free computer network, is vulnerable to

targeted denial-of-service (DoS) attacks. Protecting this infrastructure‟s stability is a vital

national interest because of the dependence of economic and national security transactions on

the Internet. Current defensive countermeasures that rely on monitoring specific router traffic

have been shown to be costly, inefficient, impractical, and reactive rather than anticipatory.

To address these issues, this research investigation considers a new paradigm that relies

on the systemic changes that occur during a cyber attack, rather than individual router traffic

anomalies. It has been hypothesized in the literature that systemic knowledge of cyber attack

mechanics can be used to infer the existence of an exploit in its formative stages, before severe

network degradation occurs. The study described here targeted DoS attacks against large-scale

computer networks. To determine whether this new paradigm can be expressed though the

study of subtle changes in the physical characteristics of the Internet‟s connectivity

environment, this research developed a first of its kind Colored Petri Net (CPN) model of the

United States AT&T router connectivity topology.

By simulating the systemic affects of a DoS attack over this infrastructure, the

objectives of this research were to (1) determine whether it is possible to detect small subtle

changes in the connectivity environment of the Internet‟s router connectivity infrastructure that

occur during a cyber attack; and (2) if the first premise is valid, to ascertain the feasibility of

using these changes as a means for (a) early infrastructure attack detection and (b) router

infrastructure protection strategy development against these attacks.

Using CPN simulations, this study determined that systemic network changes can be

detected in the early stages of a cyber attack. Specifically, this research has provided evidence

v

that using knowledge of the Internet‟s connectivity topology and its physical characteristics to

protect the router infrastructure from targeted DoS attacks is feasible. In addition, it is

plausible to use these techniques to detect targeted DoS attacks and may lead to new network

security tools.

vi

TABLE OF CONTENTS

List of Tables ... x

List of Figures ...xi

Chapter I: Introduction ... 1

Problem Statement .. 4

Research Statement ... 8

Research Contributions ... 9

Terminologies ... 10

Organization of the Dissertation .. 16

Chapter II: Foundations .. 17

Cyber Attacks ... 17

Complex Networks ... 22

Attack Vulnerabilities ... 26

Network Connectivity Stability ... 32

Topology Based Protection ... 35

Theoretical Rational Summary .. 36

Chapter III: Formal Definitions ... 39

Node State Data Structures ... 39

Topology Based Node Protection .. 48

Simulated Attack Definition .. 49

Computational Foundations .. 56

Chapter IV: Model and Simulation Design .. 62

Simulation Strategy .. 62

vii

Foundational Assumptions .. 64

CPN Model and Simulation Language .. 65

General Research Simulation Design .. 72

Simulation Runs ... 78

Network Connectivity State Computations .. 85

Research CPN Model and Simulation Execution ... 88

Chapter V: Results .. 97

Model and Simulation Validation and Consistency ... 98

The Relationship between NCP and I .. 108

Node-pair and Information Transfer Correlations .. 109

Network Stability by Run Type ... 112

Attack Detection ... 120

Network Protection ... 122

Chapter VI: Discussion .. 124

Research Summary ... 124

Theoretical Implications of this Research .. 127

Practical Implications of this Research .. 130

Limitations ... 132

Chapter Summary ... 133

Chapter VII: Conclusions ... 134

Research Relevance .. 134

Attack Detection and Network Protection Application .. 135

Future Work ... 136

viii

Summary .. 138

References ... 139

Appendix ... 152

 A CPN Declarations ... 153

 B CPN Function Code ... 156

 C Simulation Run Data File Identification.. 174

 D CPN Simulation Sub-Page Design Details .. 176

 E Network Connectivity Parameter Results by Run Type ... 188

 F Network Connectivity Parameter Results by Attack Class 191

 G Network Connectivity Parameter Results by Attack Effect 197

 H Run Type 2 Results for Network Stability and Node-Pair Type Counts 199

 I Run Type 3 Results for Network Stability and Node-Pair Type Counts 203

 J Information Transfer Results by Attack Class ... 207

 K Node-pair Type 1-2 Counts Results by Attack Class .. 213

 L Information Transfer Loss Results by Run Type .. 219

 M Information Transfer Rate Loss Results by Run Type .. 222

 N Node-pair type 1-2 Count Loss Results by Attack Class 223

 O Node-pair Type 1-2 Counts Rate Loss by Run Type ... 226

 P Attack Detection by Run Type .. 228

 Q Attack Detection and Node-Pair Type 1-1 Counts Results by Run Type 231

 R Attack Detection and Node-Pair Type 1-1 Counts Results for Fraction Changed

 by Run Type.. 237

 S Attack Detection and Node-Pair Type 1-1 Counts Results for First 300 Seconds

 by Run Type.. 243

ix

 T Network Connectivity Parameter Efficiency Results by Attack Effect 246

 U Information Transfer and Node-Pair Type Efficiency Results by Attack Effect 248

x

LIST OF TABLES

Table Page

3.1. Node state transition for Figure 3.1 ... 40

3.2. Network connectivity terms used in the research computations 57

3.3. Pre-attack simulation baseline connectivity ... 59

4.1. Simulation runs denoting critical node removal proportions .. 75

4.2. Protection strategy .. 81

4.3. Overloaded orphan node profile in Figure 4.8 ... 84

4.4. Main CPN page transitions and associated sub-pages .. 91

4.5. Summary of CPN places in Figure 4.11 .. 93

5.1. Run type 1 simulations, entropy at total collapse at I = 0 ... 107

5.2. Run type 1, potential attack markers for attack detection, node-pair counts having

strong negative correlation with information transfer

 for the first 500 seconds .. 110

5.3. Run type 1, potential attack markers for network protection, node-pair counts having

strong positive correlation with information transfer

 for the first 500 seconds .. 111

5.4. Attack detection percent variance, actual versus inferred... 121

5.5. Network protection, equilibrium and network stability recovery for run type 4 123

6.1. Cyber attack mechanics hypothesis and this dissertation ... 128

xi

LIST OF FIGURES

Figure Page

1.1. Information transfer (I) versus time curve showing descriptive research terms. Terms

 that depict network degradation are shown in a) and terms showing network

recovery as a result of network protection are shown in b) 12

1.2. Node connectivity example ... 14

2.1. Error and attack tolerance study taken from (Crucitti et al. 2003b) 29

2.2. Error and attack tolerance over the Internet (scale-free), taken from (Albert, Jeong, and

Barabasi 2000) .. 30

3.1. Node state diagram for the CPN simulations ... 41

3.2. Pre-attack network example of message path hops over small region 53

3.3. Attacked network example at some point after attack, message path change and

fragmentation .. 54

3.4. Illustrative example of network fragmentation over time ... 55

3.5. Pre-attack network degree distribution .. 60

3.6. Pre-attack network rank/frequency plot (log-log scale).. 60

4.1. Node-pairs and network connectivity model ... 63

4.2. Colored Petri Net example, before transition “A” fires .. 68

4.3. Colored Petri Net example, after transition “A” fires once .. 69

4.4. Colored Petri Net example, after transition “A” fires a second time............................. 70

4.5. Summary of simulation process information flow ... 73

4.6. Summary of the node interactions during the simulation ... 77

4.7. Simulation execution strategy ... 79

4.8. Communication attack simulation example ... 83

4.9. POP backbone and access router architecture example .. 87

xii

4.10. United States AT&T router backbone (layer 0)

 taken from (Spring, Mahajan, and Wetherall 2002) Image from: NASA‟s

Visible Earth Project http://visibleearth.nasa.gov ... 88

4.11. CPN main page ... 90

4.12. CPN main page flow functionality .. 95

5.1. Run type 1, information transfer versus nodes removed fraction over time 100

5.2. Run type 1, connectivity parameter versus nodes removed fraction over time 101

5.3. Run type 1, fraction of all nodes removed versus simulation time 102

5.4. Run type 1, network connectivity parameter versus simulation time 104

5.5. Run type 1, avg. entropy versus avg. degree, combined runs, 50 sec. intervals 106

5.6. Run type 1, NCP and information transfer, 10 combined simulations 109

5.7. Run type 1, network stability, information transfer versus time 114

5.8. Run type 1, node-pair type 1-2 counts versus time .. 115

5.9. Run type 4, network stability, information transfer versus time 118

5.10. Run type 4, node-pair type 1-2 counts versus time .. 118

5.11. Attack detection, descriptive statistics over 40 simulation runs 122

http://visibleearth.nasa.gov/

 I. INTRODUCTION

For the first time, Colored Petri Net (CPN) modeling and simulation techniques have

been used to simulate targeted denial-of-service attacks over the Internet‟s router

infrastructure. Cyber attacks were simulated against historic datasets collected over a

specific time period using actual Internet router connectivity. The simulation was used to

study changes in the Internet‟s connectivity state during a targeted denial-of-service (DoS)

attack. Using scale-free network theory, this research sought to determine whether there is

strong evidence that underlying network-wide attack markers exist. During the formative

stages of a targeted denial-of-service exploit against a large-scale computer network these

attack markers might be used to study cyber attack mechanics. Attack markers, as will be

discussed, are subtle changes in Internet‟s connectivity during an attack.

Large-scale cyber attacks against the Internet‟s router infrastructure could lead to

significant disruptions in global commerce as well as impede national security objectives.

The Internet‟s router infrastructure is responsible for facilitating all communications over the

Internet. A router is a special purpose computer on a network that is responsible for passing

information between computers or other routers. Using routers, information is passed along

a path from the original source computer to its ultimate destination computer. The Internet‟s

router infrastructure is composed of thousands of connected routers that pass information

around the world. The actual number of routers is dynamic because during normal Internet

operations, routers are added and removed to adjust for changes in user demand, normal

router failures, and maintenance periods.

Malicious attacks that impede robust and reliable Internet communications are

becoming an ever-increasing problem. Over the last five years, computer vulnerabilities and

2

exploits have grown significantly and do not show any sign of slowing down. A 2008 FBI

computer crime survey (Richardson 2008) reported that from 2004 to 2008, 45% to 55% of

the organizations surveyed reported at least one occurrence of an unauthorized use of their

computer systems. In addition, they found that over that same period, 25% of all security

incidents were classified as denial-of-service attacks.

A denial-of-service attack generates large volumes of Internet messages over a short

period of time. This traffic flood is aimed at one or many target destinations over a network.

As a result of this onslaught of Internet traffic, the target(s) becomes overloaded and suffers

severe service degradation. During a DoS attack, authorized users are denied access to

computer systems (Douligeris and Mitrokotsa 2004; Olalekan 2008; Peng, Leckie, and

Ramamohanarao 2007a). Denial-of-service attacks are a common tool used by Internet

attackers to achieve malicious objectives (Cheol-Joo et al. 2007; Douligeris and Mitrokotsa

2004; Mirkovic and Reiher 2004; Olalekan 2008; Peng, Leckie, and Ramamohanarao 2007b;

Richardson 2008) .

Two types of targets have been exploited by this mode of attack: enterprise and

infrastructure. At the enterprise level, the target is usually specific commercial enterprise

networks such as Microsoft. The primary objective is to severely disrupt communications

within a few specific web sites on that network. At the infrastructure level, where the

primary objective is service degradation over an entire large-scale network connecting many

networks and web sites, the attacker seeks to disrupt normal information flow between the

routers that facilitate network-wide communication. Prior to 2002, enterprise level networks

were the primary targets for DOS attacks. Since 2002, the targets have also included the

Internet‟s global router infrastructure (Cheung 2006; Dirk et al. 2004; Mizrak et al. 2006;

3

Olalekan 2008; Peng, Leckie, and Ramamohanarao 2007b). This shift signals a possible

change in attacker motivations with potentially more far-reaching and dangerous impacts

(Borchgrave et al. 2001; Mizrak et al. 2006).

Distinguishing between normal and malicious activity over the Internet is very

difficult (Casey 2002; Casey 2004; Rattray 2001b). Denial-of-service attacks often involve

multiple targets spread over a large-scale network. In its formative stages, a denial-of-

service attack may appear in the network‟s system logs as normal but heavy Internet traffic.

The DoS attack may not emerge as a threat to a network‟s availability until it has caused

significant damage. One key reason for this detection latency is that cyber attack detection is

a reactive process. It relies on the time-consuming and tedious examination of individual

network router communication packets. This assessment is performed locally on a small

portion of the network without a complete understanding of the potential broader network-

wide ramifications of an attack. Often, the overall extent of the network-wide damage is not

recognized until there is widespread and significant network connectivity instability.

A potentially more efficient technique for large-scale network-wide assessments is

postulated by Stephenson and Prueitt (Stephenson 2006; Stephenson and Prueitt 2005). They

argue that cyber attack mechanics over large-scale computer networks can be studied during

the attack‟s formative stages through subtle changes in the network‟s environment. To prove

the potential feasibility of their approach, the research in this dissertation developed a novel

Colored Petri Net (CPN) model of the Internet‟s router connectivity and emulated targeted

denial-of-service attacks against this simulated router infrastructure. The baseline data for

this research simulation were extracted from Rocketfuel Internet maps collected by the

University of Washington (Alderson et al. 2005; Rocketfuel: An ISP topology mapping

4

engine n.d.; Spring et al. 2004). Specifically, the simulation was based on a snapshot of the

United States AT&T router backbone infrastructure consisting of 11,800 routers.

This research studied connectivity changes between individual adjacent routers

during the denial-of-service attack simulation. At pre-determined time intervals during the

simulated attack, the changes in individual router connectivity characteristics were

aggregated into a network-wide connectivity state. Subtle changes in the overall network-

wide connectivity states were studied for relevant patterns of behavior during the attack

simulation. The techniques used in this research are a novel approach for studying networks

under denial-of-service attack.

The simulations in this investigation have uncovered subtle fluctuations in the

connectivity environment of the baseline data during the earliest stages of a simulated denial-

of-service attack. The approach used in this research may lead to the development of

Internet-wide security tools to prevent and anticipate DoS attacks against the Internet‟s router

connectivity infrastructure.

A. Problem Statement

Over the past decade, scale-free networks have been discovered among biological,

social, and technological communication systems (Alderson et al. 2005; Barabasi and Albert

2002; Boccaletti et al. 2006; Michalis, Petros, and Christos 1999). Empirical research has

shown that the router connection activity of the Internet‟s infrastructure behaves as predicted

by scale-free network theory (Barabasi and Albert 2002; Barabasi, Ravasz, and Vicsek 2001;

Dorogovtsev and Mendes 2002; Gallos 2005; Michalis, Petros, and Christos 1999; Newman

2003). Empirical studies have shown that the Internet‟s communication infrastructure is

5

dependent upon a relatively few centralized, highly connected routers (critical nodes) that

may be vulnerable to targeted denial-of-service attacks (Albert, Jeong, and Barabasi 2000;

Barabasi and Albert 2002; Boccaletti et al. 2006; Cohen 2000, 2001; Crucitti, Latora, and

Marchiori 2004; Gallos 2005; Latora and Marchiori 2005; Motter and Lai 2002; Olalekan

2008; Salla 2005; Sun et al. 2007; Wu et al. 2007).

In scale-free computer networks of over 4,000 nodes, systemically removing as little

as 5 percent of the network‟s most connected routers, via targeted denial-of-service attacks,

initiates a rapid cascading degradation of the network‟s global connectivity (Barabasi and

Albert 2002; Cohen 2001; Gallos et al. 2006; Holme et al. 2002a; Lai, Motter, and Nishikawa

2004; Motter and Lai 2002; Wang et al. 2008). This cascaded degradation occurs as “…

traffic is rerouted to bypass malfunctioning routers, eventually leading to an avalanche of

overloads on other routers that are not equipped to handle extra traffic. The redistribution of

the traffic can result in a congestion regime with a large drop in the performance” (Crucitti,

Latora, and Marchiori 2004). Identifying cascaded denial-of-service attacks in their

formative stages is a difficult task but is critical for impeding the cascading router failures

(Cheetancheri et al. 2006; Cohen 2001; Dobson et al. 2007; Douligeris and Mitrokotsa 2004;

Latora and Marchiori 2005; Lee et al. 2008; Lu et al. 2007; Motter 2004; Motter and Lai

2002; Peng, Leckie, and Ramamohanarao 2007a; Tsunoda et al. 2008; Wang et al. 2008).

The Internet‟s vulnerable router infrastructure along with identity concealment

techniques (such as IP spoofing and packet redirection) and the extremely large volume of

router-to-router communication messages have made identification of an attack on the

Internet‟s core operations extremely difficult (Douligeris and Mitrokotsa 2004; Haggerty,

Shi, and Merabti 2005; Lee et al. 2008; Mizrak et al. 2006; Mizrak, Savage, and Marzullo

6

2008; Peng, Leckie, and Ramamohanarao 2007a; Toby and Jun 2009; Tsunoda et al. 2008).

Evidence of real world attacks dependent upon the application of cascading failures have not

been cited in the literature. However, it is highly probable that an undetected attack that

maliciously modifies the Internet‟s router tables could lead to extreme traffic congestion,

sub-optimal message routing decisions and significantly lowered network throughput

(Chakrabarti 2002; Cheol-Joo et al. 2007; Hussain, Heidemann, and Papadopoulos 2003;

Markopoulou et al. 2008; Mirkovic and Reiher 2004; Olalekan 2008; Peng, Leckie, and

Ramamohanarao 2007a).

 Commercial transactions, the nation‟s critical physical infrastructures and national

security have a profound dependence on the Internet‟s infrastructure. Individuals with

hostile intent have ready access to easy-to-use malicious tools. Rapidly changing technology

and the ever-increasing occurrence of system vulnerabilities present a significant threat to the

nation‟s information infrastructure. The attackers may be malicious hackers, organized

crime, terrorists or nation states (Adkins 2001; U. S. House 2005; U. S. Office of Science and

Technology Policy 2006). Attack objectives may include (1) espionage against sensitive and

poorly defended data in government and industry, (2) financial and identity fraud, (3) theft of

financial or identity assets, (4) disruption of normal communications over Internet‟s router

infrastructure, (5) coordinated physical and cyber attacks that hinder emergency response

dependent upon Internet communications, (6) industrial process control of critical physical

infrastructure such as the electrical grid, (7) terrorist targets such as chemical plants, (8)

global financial transactions involving billions of dollars, and (9) offensive information

warfare aimed at military targets connected to the Internet‟s infrastructure (U. S. Office of

Science and Technology Policy 2006).

7

The Internet was designed to achieve openness in a research-driven environment. The

openness of a collaborative research-driven environment is at odds with the objectives of

most security audit functionalities. Investigation of network security incursions and network

protective measures are severely inhibited by the Internet‟s inherent design assumptions,

including (1) the user community would be trustworthy and not seek to obfuscate identity or

manipulate the Internet‟s communication mechanisms for malicious purposes, (2) high-speed

traffic and performance requirements were essential and therefore any attempts at significant

tracking would be too costly in terms of system performance criteria, and (3) due to the large

volume of packets in a relatively short timeframe, storage of packet information was not

viable (Lipson 2002).

 As previously discussed in this chapter, the Internet‟s router infrastructure is

vulnerable to denial-of-service attacks. This vulnerability magnifies the aforementioned

threat to the national information infrastructure. It is in the national interest to deter,

uncover, and prosecute perpetrators. Tracking and investigating individual router

communications attacks are costly, inefficient, and impractical (Casey 2002; Casey 2004;

Mizrak, Savage, and Marzullo 2008; Rattray 2001a; Stephenson and Prueitt 2005). Solving

the problem of attack detection, attribution, infrastructure protection, effective

countermeasures, and attack retribution requires a new paradigm. This paradigm must rely on

the systemic changes that occur during a cyber attack, not the individual changes (Mizrak et

al. 2006; Overill 2007; Papadimitratos and Haas 2002; Stephenson 2006; Stephenson and

Prueitt 2005). The problem addressed by this research is to determine whether this new

paradigm can be expressed though the study of subtle changes in the degree distribution of

the Internet‟s connectivity environment. Specifically, can these subtle changes be classified

8

as attack markers? Can these attack markers be used to detect and protect the Internet‟s

router infrastructure from targeted denial-of-service attacks?

B. Research Statement

The first objective of this research was to develop a novel, first-of-its-kind Colored

Petri Net (CPN) model of a large-scale regional (United States) Internet router connectivity

topology. Using this model as the basis for the investigation of the systemic effects of

targeted DoS attacks against the simulated Internet router infrastructure, the objectives of this

research were to (1) determine whether it is possible to detect small subtle changes (attack

markers) in the connectivity environment of the Internet‟s router connectivity infrastructure

that occur during a cyber attack, and (2) if the first premise is valid, to ascertain the

feasibility of using these changes as a means for (a) early infrastructure attack detection and

(b) router infrastructure protection strategy development against these attacks. This

investigation found strong evidence that attack markers exist and that they are quantifiable

through common statistical characteristics of the network‟s connectivity topology.

9

C. Research Contributions

Basic Internet research will benefit from this novel model and simulation using

Colored Petri Nets. The research simulation led to the formulation of the foundational

justification for a unique approach to the study of denial-of-service cyber attacks. This

dissertation has enhanced the body of knowledge in the application of attack modeling and

simulation through the following contributions:

1. Provides evidence that attack markers that represent subtle changes in the Internet‟s

router connectivity topology can be used as a means to uncover denial-of-service attacks

against the Internet‟s router infrastructure.

2. Shows that the techniques presented in this research provide a feasible way to detect a

cyber attack in its earliest stages.

3. Presents a plausible and scientifically sound approach for the study of cyber attack

mechanics that will provide the basis for future development of practical Internet security

tools.

4. Offers a unique quantifiable approach for illuminating attack markers as changes to the

degree distribution during a targeted denial-of-service attack.

5. Enhances the scope of applications for Colored Petri Net (CPN) modeling and simulation

of concurrent and complex network communications.

6. Develops the preliminary feasibility for future experimental research to empirically

support Stephenson and Pruiett‟s theory of cyber attack mechanics (Stephenson 2006;

Stephenson and Prueitt 2005).

10

D. Terminologies

The following definitions are necessary for understanding this dissertation. All node

states will be formally defined in Chapter III of this dissertation. These and other terms will

be further defined as needed later in this document.

adjacent node. An adjacent node is a node that has a direct communication link with another

node (1-hop). It is often referred to as a neighbor node.

attack marker. An attack marker represents subtle changes in a scale-free network‟s

connectivity that can be used to indicate a cyber attack‟s existence. Network connectivity

corresponds to any physical characteristic of the network that facilitates inter-nodal

communications. Here, network connectivity is represented by the number of node-pairs of

type 1-1 and 1-2. The rationale for this selection will be presented in Chapter V. The terms

attack marker and changes in the number of node-pairs of types 1-1 and 1-2 will be used

interchangeably in this document. Node-pair types are defined below.

critical threshold. As shown in Figure 1.1, the critical threshold represents the point in time

during the simulation when the network connectivity stability rapidly degrades in a short

period towards the terminal condition.

degree. A node‟s degree is the number of direct links between one node and all of its

neighbor nodes. A node with “k” number of links is referred to as a k-degree node. The

degree of a node is a rough measure of its connectivity. Figure 1.2 illustrates a simple

network connectivity example. In Figure 1.2, the circles represent nodes, node “A” has a

degree of 3 and node “B” has a degree of 4. A link between two nodes is represented by a

line between the nodes. The term “degree” is used interchangeably with the term node

degree.

11

degree distribution. The degree distribution of a network is the probability that a randomly

selected node from a network is a k-degree node. The probability of k-degree node is

𝑝 𝑘 =
𝑛(𝑘)

𝑛
; where n is the number of nodes in the network and n(k) is the number of k-

degree nodes. The distribution for all k-degree nodes in a network is one commonly used

measurement for the network‟s overall connectivity.

equilibrium point and level. As shown in Figure 1.1, during the simulation the equilibrium

point is encountered; at this point in time, the network‟s connectivity stability recovers to a

constant equilibrium level for the remainder of the simulation‟s execution.

12

Figure 1.1. Information transfer (I) versus time curve showing descriptive research terms.

Terms that depict network degradation are shown in A and terms showing network recovery

as a result of network protection are shown in B.

a)

b)

13

mutual information transfer (I). Mutual information transfer is used in this research to

measure relative network connectivity stability. Mutual information transfer (I) is the

relative reduction in node connectivity uncertainty between two randomly selected nodes in

the network (Cover and Thomas 2006). The reduction in uncertainty can be thought of as an

increase in relative information (knowledge) transfer between any 2 randomly selected

nodes. This increase in information leads to an increased likelihood that the two nodes will

communicate as a node-pair. Node-pairs are defined below. From the network-wide

perspective used in this research, mutual information transfer is the average reduction in

uncertainty between 2 randomly selected nodes in the network at time 𝑡. Therefore, the

average likelihood of connectivity between any two randomly selected nodes in the network

ranges from very high (when I=2) to non-existent (when I = 0). The pre-attack network‟s

information transfer value was 1.56, indicating that there was a relatively high likelihood for

node-pair connectivity. The terms mutual information transfer and information transfer will

be used interchangeably in this dissertation.

link. A link represents communication established with an adjacent node. One node may

have multiple links. The number of links for a node is denoted as “k”.

local minimum. As shown in Figure 1.1, this represents the point in time early in the

simulation that the network connectivity stability has degraded to its lowest level before the

critical threshold has been encountered.

14

A B

Figure 1.2. Node connectivity example

network connectivity parameter (NCP). This network connectivity stability measure is used

to determine the relative extent of the overall network‟s fragmentation. The terms network

connectivity parameter and connectivity parameter will be used interchangeably in this

dissertation.

network connectivity stability. As defined by this research investigation, it is the ability for

network-wide connectivity as measured by the mutual information transfer and network

connectivity parameter. The terms network connectivity stability and network stability will be

used interchangeably in this dissertation.

node. In this research, a node is an entity in a network that represents a router. The terms

node and router will be used interchangeably in this dissertation. A network can have more

than one node, and the network‟s size is represented by the number of nodes.

15

node degree. The number of neighbor node links for any a specific node. A node with k

neighbor links is said to have a node degree of k.

node-pair type. For each simulation, routers were represented as nodes. Two adjacent

(neighbor) routers as mapped through the router tables were depicted as node-pairs. All

active node-pairs were classified into groups by determining the node degree of each node in

the node-pair. These groups were called node-pair types. Each active node-pair was

classified during the simulations at 50-second time intervals. All node-pair types were

determined by combining the degree of each node in the pair. For example, if one node in a

node-pair had a degree of 1 and the other node had a degree of 2, then this node-pair type

was classified as type 1-2. The syntax for each node-pair type designation is (1) position 1

represents the node degree of the first node in the node-pair, (2) position 2 represents the

node degree of the second node in the node-pair, and (3) position 1 in the node-pair type

must always be less than or equal to position 2. Certain specific node-pair types were used as

attack markers and will be presented in Chapter V, Section C.

power law degree distribution. Power laws are expressed in the form y x
a
; where x and y

is the variables of interest, „a‟ is constant, and indicates that the two variables have a

proportional relationship. The power law polynomial relationship exhibits scale invariance;

that is, the scaling coefficient (a) is constant. Another property of power law relationships is

that a plot of log y versus log x (log-log plot) is linear. The slope of the resulting line for the

log-log plot of y = x
a
 is a constant value of „a‟. In terms of scale-free networks, the

probability of any node in the network having k number of links is: 𝑝 𝑘 ∝ 𝑘−𝛾 ; where 𝛾 is

the constant scaling coefficient. It has been empirically determined that the scaling

coefficient is between 2 and 3 for most “real world” networks (Barabasi and Albert 2002).

16

terminal condition. As shown in Figure 1.1, this represents the point in time during the

simulation when the network-wide connectivity no longer exists. This occurs when the

information transfer is less than zero and the network connectivity parameter is

approximately 2.

E. Organization of the Dissertation

Foundational theories used by this research are discussed in Chapter II. Chapter III

contains formalisms and terminologies used in this research. Chapter IV presents the CPN

model design, its assumptions, and subsequent simulation details. Chapters V and VI discuss

the results of the simulations and their relevance to real world router attacks. The

conclusions are given in Chapter VII along with recommendations for further study.

17

CHAPTER II. FOUNDATIONS

This chapter will discuss the relevant background literature. The first section

addresses cyber attacks. This is followed by a discussion of complex network theory. Then

this chapter presents the literature support for the vulnerability of scale-free networks.

Relevant network stability considerations are then addressed. This chapter concludes by

covering network topology-based router protection strategies and summarizes the theoretical

rationale used in this research.

A. Cyber Attacks

The background for the study of cyber attacks using the network‟s environment is

presented in this section. This is followed by a discussion of attack modeling strategies. It

concludes with a discourse on Internet infrastructure attack techniques.

1) Theory of Cyber Attack Mechanics.

Cyber attack mechanics have been studied extensively (Albert, Jeong, and Barabasi

2000; Chakrabarti 2002; Cohen 2001; Convery, Cook, and Franz 2004; Crucitti et al. 2004;

Dirk et al. 2004; Douligeris and Mitrokotsa 2004; Gallos et al. 2006; Jung-Ying et al. 2008;

Lai, Motter, and Nishikawa 2004; Lu et al. 2007; Mirkovic and Reiher 2004; Motter and Lai

2002; Peng, Leckie, and Ramamohanarao 2007a; Salla 2005; Shannon et al. 2006; Sun et al.

2007; Ziviani et al. 2007). The literature supports the proposition that the Internet‟s

connectivity topology exhibits fractal (self-similar) properties relative to geographic

population centers (Caldarelli, Marchetti, and Pietronero 2000; Chakraborty et al. 2004;

Lakhina et al. 2002; Yook, Jeong, and Barabasi 2002). It may be plausible that the scale-free

connectivity behaviors observed over the Internet are in some manner a manifestation of the

18

Internet‟s fractal connectivity topology (Stephenson 2006). One novel approach that may

provide a foundational premise for anomaly detection over the Internet is known as the

“Theory of Cyber Attack Mechanics” (Stephenson and Prueitt 2005). Using a unique set of

foundational concepts and formalisms, Stephenson and Prueitt (2005) theorize that it may be

possible to identify a cyber attack‟s origin by observing traffic disruptions in the Internet‟s

fractal connectivity. As related to network communication connectivity and very large

computer networks (such as the Internet), Stephenson and Prueitt (2005) argue that cyber

attack detection using the network‟s environment is plausible (Stephenson 2006; Stephenson

and Prueitt 2005).

During a cyber attack, the theory defines halting conditions as a set of specific

network conditions that exist when the network‟s stability becomes totally degraded and

network connectivity ceases. Stephenson and Prueitt (2005) propose that halting conditions

may be observable through disruptions in the Internet‟s traffic mechanisms as identifiable

events (attack markers). The “Theory of Cyber Attack Mechanics” leads Stephenson (2006)

to postulate that the halting conditions brought on by the aforementioned disruptions in the

Internet‟s fractal connectivity may be a result of an underlying violation of the Internet‟s

preferential attachment linking rules and these violations may possibly be observable as

event markers (attack markers). Empirical studies found in the literature support their

hypothesis, suggesting that disruptions in normal Internet traffic patterns can be observed

(Liljenstam et al. 2002; Yegneswaran, Barford, and Ullrich 2003).

Stephenson and Prueitt‟s (2005) hypothesis states that “The interaction between cyber

attack space and fractal network space results in event markers that may anticipate the

existence of a cyber attack. Because „attack markers‟ are complex, they may result in

19

„halting conditions‟ within the network. These halting conditions can be represented formally

and the source of the cyber attack may be deduced”. The attack simulations in this research

sought to uncover subtle variations in the network‟s connectivity patterns. These

“ambiguities” were represented as changes in specific physical characteristics of the

network‟s topology.

2) Attack Model Considerations.

A variety of attack modeling approaches can be found throughout recent literature

(Albert, Jeong, and Barabasi 2000; Convery, Cook, and Franz 2004; Crucitti, Latora, and

Marchiori 2004; Crucitti et al. 2004; Dirk et al. 2004; Gallos et al. 2006; Li et al. 2008;

Motter 2004; Motter and Lai 2002; Olalekan 2008; Ole Martin Dahl and Wolthusen 2006;

Wang and Rong 2009a, 2009b; Wang, Guan, and Lai 2009; Zhao et al. 2005). There are six

fundamental attributes that should be considered when modeling cyber attacks: (1)

consideration of the network‟s topology characteristics, (2) the attacker‟s system privileges,

(3) the network‟s trust model, (4) the type of probable exploits, (5) the attack motivations,

and (6) the attacker‟s specific knowledge of the target (Chakrabarti 2002; Jung-Ying et al.

2008; Olalekan 2008; Richardson 2008; Zhang et al. 2008).

When modeling Internet infrastructure attacks, it is commonly assumed that the

attacker has knowledge of a network‟s topology (Gallos et al. 2006; Wu et al. 2007; Zhang et

al. 2008). The attack scenarios used in the research simulations were based on scale-free

network theory. The rationale for developing attack scenarios against scale-free computer

network is that the literature indicates that the Internet‟s router connectivity topology behaves

like a scale-free network. Network topologies and their relevance to this research will be

discussed later in this chapter.

20

Specifically, this research studied changes in the network‟s degree distribution state

and its effects on information-theoretic measures of network connectivity stability. Scale-

free network theory and the foundations for the network stability measures will be discussed

later in this chapter. This research assumes the attacker has sufficient knowledge to

implement a denial-of-service attack against the Internet‟s most connected routers. This

research did not consider system privileges, trust model ramifications, or attacker

motivations.

3) Internet Router Infrastructure Attacks.

 Denial-of-service attacks against the Internet‟s infrastructure focus on the malicious

creation of message traffic congestion between routers. They also maliciously manipulate

the algorithms that are used to determine efficient message paths. These conditions create

communications havoc with the network‟s normal router traffic mechanisms, and this

eventually leads to severe service degradation (Chakrabarti 2002; Mizrak et al. 2006). There

are 3 types of infrastructure denial-of-service attacks (Chakrabarti 2002): 1) router table

“poisoning,” 2) router IP packet mistreatment, and 3) Domain Name System (DNS) hacking.

 A denial-of-service attack that targets specific router regions might employ packet

mistreatment and router table “poisoning” techniques to maliciously disrupt normal

communications. Router tables are stored on each router and are used to identify potential

paths between routers. They are essential to efficient path identification. Routers with

maliciously manipulated router tables broadcast false message routing information. This

leads to sub-optimal message routing and increased traffic congestion. Routing information

and user data are transmitted throughout the Internet in containers known as IP packets.

These packets secure the data‟s integrity and confidentiality. Packet mistreatment attacks

21

maliciously manipulate Internet packets. This technique can be used to disrupt normal traffic

patterns.

The Internet‟s efficient communication is dependent upon the availability of 13

Domain Name System (DNS) root servers located around the world. These 13 DNS root

servers form the Internet‟s backbone infrastructure. The Internet can sustain limited damage

concurrently to a few of these root servers without experiencing major service degradation

(Peng, Leckie, and Ramamohanarao 2007b). However, an attack that strategically cripples

the DNS infrastructure might severely limit global Internet communication (Cheung 2006).

In a DNS hacking attack, false entries are injected into the Domain Name System (DNS).

This leads to counterfeit IP address translation that compromises the integrity of the

Internet‟s web site authentication mechanisms. Attackers use domain hijacking techniques

along with DNS attacks to create bogus web sites that masquerade as legitimate. They funnel

large volumes of users to these bogus web sites. Placement of these sites in the same router

region could potentially overwhelm normal router communication mechanisms.

 One technique employed by an attacker to obfuscate the attack‟s source is IP spoofing

(Daniels 2002; Daniels and Spafford 2000; Tang and Daniels 2005). This is accomplished

using IP packet modifications. During a denial-of-service attack, attackers inject falsified

return address information into all IP packets used in the attack. Large volumes of these

packets are funneled to the target destination. Normally after initial communications are

established, the destination host returns a confirming message back to the source. However,

when IP spoofing techniques are used, these confirmation messages are invalid and the

system generates large volumes of “host unreachable” messages. These “host unreachable”

messages and other residual router messages generated during an attack are called

22

“backscatter” (Peng, Leckie, and Ramamohanarao 2007a; Shannon et al. 2006). The effect

of a denial-of-service attack is magnified by the large volumes of “backscatter” messages

sent over the Internet‟s router infrastructure. “Backscatter” will cause extreme message

traffic congestion over the router infrastructure. The infrastructure may become an indirect

victim of a denial-of-service attack originally targeted against an enterprise network

(Douligeris and Mitrokotsa 2004; Haggerty, Shi, and Merabti 2005; Lee et al. 2008; Paxson

2001; Peng, Leckie, and Ramamohanarao 2007a; Shannon et al. 2006; Tsunoda et al. 2008).

B. Complex Networks

Complex networks have been discovered among biological, social, and technological

communication systems (Albert and Barabasi 2002; Jamakovic, Uhlig, and Theisler 2007;

Newman 2003). Scale-free networks are complex networks with heterogeneous node

connectivity and power law degree distribution. The World Wide Web (Albert, Jeong, and

Barabasi 1999; Ravi et al. 2000), metabolic pathways (Jeong et al. 2000), and many social

networks (Aiello, Chung, and Lu 2000; Albert and Barabasi 2000; Barabasi and Albert 1999;

Redner 1998) have been cited as having scale-free characteristic behaviors. Researchers

have shown that the Internet is a scale-free network (Barabasi and Albert 2002; Boccaletti et

al. 2006; Donnet and Friedman 2007; Hamed et al. 2008; Michalis, Petros, and Christos

1999; Newman 2003; Siganos et al. 2003; Yook, Jeong, and Barabasi 2002). The remainder

of this section will cover complex network theory relevant to this research.

1) Network Connectivity.

A node‟s degree is the number of communication links established with adjacent

nodes called neighbor nodes. It is a fundamental component used to study network

23

connectivity. Two approaches dominate the study of complex network connectivity. Prior to

2000, it was thought that large-scale complex networks were connected randomly. The early

approach of Erdos and Renyi (ER); (1960) hypothesizes that complex network connectivity

is governed by an exponential degree distribution. The ER model of network connectivity

argued that each network node has an equal chance of forming a link with another node

regardless of its degree (Erdos and Renyi 1960).

Since 2000, the “Theory of Evolving Networks” has been the prevailing

conceptualization. This theory was originally postulated by Barabasi and Albert (BA) and

has been supported by strong empirical evidence (Barabasi and Albert 2002; Boccaletti et al.

2006; Dorogovtsev and Mendes 2002). They hypothesized that the connectivity of complex

networks is probabilistic and governed by power law degree distribution (Alderson et al.

2005; Barabasi and Albert 2002; Boccaletti et al. 2006; Costa et al. 2007; Dekker and Colbert

2008; Donnet and Friedman 2007; Michalis, Petros, and Christos 1999; Saffre et al. 2004).

Barabasi and Albert (2002) argue that the likelihood of one node establishing a new link with

a neighbor node is proportional to the degree of the neighbor node. Neighbor nodes with a

higher degree will be more likely to establish new links. This mechanism is known as

preferential attachment. Networks that exhibit power law degree distribution and follow

preferential attachment mechanisms are known as scale-free networks (Alderson et al. 2005;

Barabasi and Albert 2002; Costa et al. 2007; Newman 2003). Empirical studies have shown

that the Internet‟s router connectivity topology exhibits scale-free network behaviors (Albert,

Jeong, and Barabasi 2000; Barabasi and Albert 2002; Crucitti et al. 2003b; Motter et al.

2006; Newman 2003; Siganos et al. 2003). A scale-free network is defined as a complex

network that follows power law degree distribution regardless of network size (Barabasi and

24

Albert 2002; Boccaletti et al. 2006; Costa et al. 2007; Michalis, Petros, and Christos 1999;

Motter et al. 2006). Complex networks will be discussed in the next section. Power law

networks have a large number of nodes with a few links and a few nodes with many links. In

Figure 4 of Michalis, Petros, and Christos (1999), there is a depiction of power law degree

distribution using live Internet data collected from a network of 3530 nodes with 6432 links

in April 1998.

The power law degree distribution exhibited by the Internet‟s router infrastructure is

attributed to its preferential attachment mechanisms. Preferential attachment has been

studied extensively in the literature (Barabasi and Albert 2002; Boccaletti et al. 2006;

Dorogovtsev and Mendes 2002; Motter et al. 2006; Newman 2003; Qin et al. 2008; Saffre et

al. 2004; Sun et al. 2007; Wang et al. 2009; Zhang et al. 2008). Empirical studies have

shown that the Internet‟s router communication mechanisms behave by preferential

attachment rules (Barabasi, Ravasz, and Vicsek 2001; Saffre et al. 2004). In Figure 1 of

Jeong, Neda, and Barabasi (2003), there is a depiction of preferential attachment probabilities

in live Internet data collected from a network of 12,400 nodes with 13,445 links in 2000.

Preferential attachment behavior leads to a greater probability that most nodes in the network

will have a relatively few links that are connected to a small number of highly connected

nodes.

As a result of preferential attachment, scale-free networks exhibit heterogeneous

connectivity (Barabasi and Albert 2002). This connectivity topology has a few highly

connected nodes that follow a power law degree distribution. The heterogeneous nature of

the Internet‟s inter-nodal links is an essential characteristic of its robust and stable

communications (Barabasi, Albert, and Jeong 2000; Boccaletti et al. 2006; Costa et al. 2007;

25

Criado et al. 2006; Crucitti et al. 2003a; Dekker and Colbert 2008; Demetrius and Manke

2005; Dorogovtsev and Mendes 2002; Hu and Wang 2008; Motter et al. 2006; Sanchirico

and Fiorentino 2008; Wang et al. 2006; Wang et al. 2009; Zhang et al. 2008). The

heterogeneity of a network can be quantified (1) directly using a heterogeneity index (Hu

and Wang 2008) and (2) indirectly through measures such as its entropy (Demetrius and

Manke 2005; Gudkov and Montealegre 2008; Wang et al. 2006), mutual information transfer

(Leung and Chau 2007; Newman 2002; Piraveenan, Prokopenko, and Zomaya 2009; Sole

and Valverde 2004), and the network connectivity parameter (Cohen 2001). This research

studies network connectivity using the Internet‟s infrastructure‟s heterogeneity as a measure

of overall stability. Heterogeneity was measured through changes in the attacked network‟s

mutual information transfer and the network connectivity parameter. Entropy was used to

validate that the changes in the simulation reflected changes in heterogeneity.

2) Complex Networks and Emergence.

Researchers have shown that complex networks are governed by hidden mechanisms

(Boschetti et al. 2005; Cassey 2004; Crutchfield 1994; Rosen 1985). They showed that these

hidden mechanisms control macro-level network behaviors (such as changes in the degree

distribution) through many small micro-level rules of behavior. The interactions of these

mechanisms result in the emergence of patterns. These patterns are referred to as emergent

behaviors. Emergence has been defined as “a process that leads to the appearance of

structure not directly described by the defining constraints and instantaneous forces that

control a system…” (Crutchfield 1994). Emergence can only be detected indirectly through

subtle changes in a system.

26

These subtle random changes are often referred to as system “noise” (Ale and Kub

2003; Boschetti et al. 2005; Crutchfield 1994; Lazaroff and Snowden 2006; Rosen 1985).

Changes in the system “noise” and connectivity patterns generated by complex network

communications under attack can be observed through changes in its statistical mechanics

(Barabasi and Albert 2002; Boccaletti et al. 2006; Newman 2003). Specifically, this research

applied changes in degree distribution mechanisms under attack to study emergent network

connectivity patterns by distinguishing between random noise and systemic connectivity

behaviors. This research studied these systemic variations in scale-free network connectivity

during simulated denial-of-service attacks. The results of this examination may lead to a

feasible technique to indirectly detect emergent behaviors during a cyber attack.

C. Attack Vulnerabilities

Scale-free computer networks (such as the Internet) are extremely robust to routine

random errors yet are vulnerable to targeted attacks (Albert, Jeong, and Barabasi 2000;

Crucitti et al. 2004; Sun et al. 2007). To study this behavior, simulations differentiate

between cyber attacks and routine router errors using selective node (router) removal

techniques (Albert, Jeong, and Barabasi 2000; Crucitti et al. 2004; Crucitti et al. 2003b;

Holme et al. 2002b; Latora and Marchiori 2004b; Salla 2005; Sun et al. 2007). This section

presents the foundations for the attack simulation methodology used in this research.

27

1) Error and Attack Tolerance.

Error and attack tolerance of scale-free networks has been studied extensively.

(Dall'Asta et al. 2006; Gallos et al. 2006; Holme et al. 2002a; Lai, Motter, and Nishikawa

2004; Latora and Marchiori 2005; Moore, Ellison, and Linger 2001; Paxson 2001; Wang et

al. 2008; Wu et al. 2007; Yu, Chen, and Zhou 2008; Zhao et al. 2005). Using the techniques

found in these studies, this research simulated denial-of-service attacks. There are two

relevant attack simulation techniques depicted in this literature, node removal and link

removal (Dall'Asta et al. 2006; Gallos et al. 2006; Holme et al. 2002a; Lai, Motter, and

Nishikawa 2004; Latora and Marchiori 2005; Moore, Ellison, and Linger 2001; Paxson 2001;

Wang et al. 2008; Wu et al. 2007; Yu, Chen, and Zhou 2008; Zhao et al. 2005). A link‟s

weight measures the relative volume of message traffic flowing over it. In a link removal

approach, attacks are simulated through the removal of links based on their weight.

(Dall'Asta et al. 2006; Furuya and Yakubo 2008; Huang and Li 2007; Leung and Chau 2007;

Lopez 2007; Macdonald, Almaas, and Barabasi 2005; Wang and Rong 2009a, 2009b). In a

node removal approach, nodes are removed in the attack simulation based on their degree

(Dall'Asta et al. 2006; Gallos et al. 2006; Holme et al. 2002a; Lai, Motter, and Nishikawa

2004; Latora and Marchiori 2005; Moore, Ellison, and Linger 2001; Paxson 2001; Wang et

al. 2008; Wu et al. 2007; Yu, Chen, and Zhou 2008; Zhao et al. 2005). Since the literature

has indicated that node-removal techniques are commonly used to emulate denial-of-service

attacks, this research applied selective node removal techniques to simulate denial-of-service

attacks (Albert, Jeong, and Barabasi 2000; Crucitti et al. 2004; Holme et al. 2002a; Salla

2005; Sun et al. 2007; Wang et al. 2008).

28

The Internet‟s robust connectivity mechanisms seamlessly re-route traffic around

disturbances without affecting normal efficient communication (Cicic 2008; Labovitz et al.

2001; Markopoulou et al. 2008; Wang et al. 2006). Random router errors occur frequently

over the Internet (Cicic 2008; Labovitz et al. 2001; Markopoulou et al. 2008; Wang et al.

2006). The Internet was designed for efficient and robust communication in an error-prone

environment:

“From the early days of the Internet, the ability to tolerate loss of network

components has been one of the key goals in its design. Internet routers include

mechanisms that detect connectivity failures and topological changes, and convey this

information to their routing protocols. The protocols distribute the change

information network-wide, and the network gradually adopts the new routing paths

and converges to the new stable routing state” (Cicic 2008).

Therefore, effective Internet attack detection studies must be able to distinguish between

attack anomalies and routine router failures (Douligeris and Mitrokotsa 2004; Jung-Ying et

al. 2008; Mizrak et al. 2006; Olalekan 2008; Shannon et al. 2006).

Figures 2.1 and 2.2 illustrate the effects on network connectivity in attack simulations

that use a node removal strategy. Figure 2.1 was taken from Crucitti et al. (2003b) and Figure

2.2 was taken from Albert, Jeong, and Barabasi (2000) (annotations were added to these

figures). Both figures depict attack simulations against scale-free networks. Figure 2.1

presents network efficiency measurements in 20 simulation runs, 10 using an exponential (ER)

network and 10 using a scale-free (SF) network (Crucitti et al. 2003b).

29

Figure 2.1. Error and attack tolerance study taken from Crucitti et al. (2003b)

Each simulation started with a virtual network of 5,000 nodes and 10,000 links

(Crucitti et al. 2003b). Normal router errors are simulated as random removal of nodes

regardless of their degree. Attacks are emulated as selective removal of nodes with the

highest degrees. Starting at the node with the highest degree, the attack removal process

removes nodes, one at a time, from the network simulation in decreasing node degree order.

The proportion of the total number of nodes removed is plotted against changes in network

efficiency measures. It shows that the ER networks are not sensitive to small node removal

attacks. However, the scale-free network simulations show that selective node removal

attacks and routine router error can be distinguished from normal router failures.

30

Figure 2.2 results were derived from experiments on an Internet router network of

6,029 nodes and 12,200 links. The node removal strategy used in Figure 2.2 was similar to

the strategy used Figure 2.1. Figure 2.2 evaluates network connectivity using changes in

network diameter during attack experiments over the Internet (Albert, Jeong, and Barabasi

2000). In Figure 2.2, circles represent attacks, and squares represent normal random

failures. The network‟s diameter is the average shortest path for all possible paths in a

network (Albert, Jeong, and Barabasi 2000). It is a common method for measuring a

network‟s efficiency. The efficiency of the network decreases as the average shortest path

increases. As presented in Figure 2.2, attacks can be differentiated from routine router error

over the Internet‟s router infrastructure.

Figure 2.2. Error and attack tolerance over the Internet (scale-free), taken from Albert, Jeong,

and Barabasi (2000)

31

For the random error simulations representing routine failures, Figure 2.1 (both ER

and SF) and Figure 2.2 indicate that as the number of nodes removed increases the network

efficiency remains in a stable steady state. Under attack, it has been shown that scale-free

networks behave differently than ER networks. When the attacked nodes are removed in a

scale-free network, both network efficiency measures shown in Figure 2.1 (for the SF

network) and Figure 2.2 decrease dramatically. In scale-free networks, after as little as 2% of

the nodes are removed, the network‟s efficiency was reduced by more than 50%. Both

figures depict that denial-of-service attacks against scale-free networks are clearly

distinguishable from normal router errors.

2) Cascaded Failures.

Cascaded failures induced by removing a small number of highly connected nodes

from a scale-free network have been found to occur in complex technological, social,

biological, and economic networks (Crucitti, Latora, and Marchiori 2004). For example, the

electrical grid of the United States has been shown to be a scale-free network (Crucitti,

Latora, and Marchiori 2004; Dobson et al. 2007). Two major electrical outages in 1996 and

2003 were the result of a single relatively small outage event that cascaded the electrical

failures (Crucitti, Latora, and Marchiori 2004; Dobson et al. 2007). As previously discussed,

scale-free networks subjected to node removal attacks suffer early and rapid degradation in

network efficiency. Research studies show that an avalanche of cascading node failures is

responsible for this rapid decline in network efficiency (Cohen 2000, 2001; Crucitti, Latora,

and Marchiori 2004; Dobson et al. 2007; Huang, Lai, and Chen 2008; Huang and Li 2007;

Lai, Motter, and Nishikawa 2004; Moreno, Gomez, and Pacheco 2002; Motter 2004; Motter

and Lai 2002; Wang and Rong 2009a,2009b; Wu and Fang 2008; Xu and Wang 2005).

32

The cascading avalanche mechanism is well supported in the literature (Cohen 2000,

2001; Gallos 2005; Lai, Motter, and Nishikawa 2004; Lopez 2007; Motter and Lai 2002;

Wang et al. 2008). It has also been shown that increasing the link capacity of the network‟s

nodes slows down the avalanche‟s degradation of network performance (Crucitti, Latora, and

Marchiori 2004; Lai, Motter, and Nishikawa 2004; Motter and Lai 2002). The research of

this dissertation studied simulated DoS attacks by varying the speed and severity of the

cascading avalanche of node failures using targeted denial-of-service attacks. Crucitti et al.

(2004) describe the mechanism: “Cascading failures take place on the Internet, where traffic

is rerouted to bypass malfunctioning routers, eventually leading to an avalanche of overloads

on other routers that are not equipped to handle extra traffic. The redistribution of the traffic

can result in a congestion regime with a large drop in the performance”.

D. Network Connectivity Stability

As previously discussed in this chapter, network communication becomes irreversibly

degraded when a “halting condition” is encountered (Stephenson and Prueitt 2005). During

a cascaded failure, it has been observed that at some critical threshold (“halting condition”)

the network fragmentation rate dramatically increases and the network‟s connectivity is

totally destroyed (Barabasi and Albert 2002; Cohen 2001; Gallos 2005; Huang and Li 2007;

Moreno, Gomez, and Pacheco 2002; Motter 2004; Motter and Lai 2002; Wu et al. 2007; Wu

and Fang 2008). Percolation theory studies an attacked network‟s stability as it fragments

into increasingly smaller and isolated clusters (Cohen 2000, 2001; Dorogovtsev, Goltsev,

and Mendes 2008; Gallos 2005; Lopez 2007; Pietsch 2006; Zhao et al. 2005). Percolation

theory establishes the groundwork for further study of a network‟s physical statistics

33

undergoing a rapid decline in network stability. The research methods developed in this

dissertation applied the basic tenets of percolation theory to study network stability.

Researchers have found a direct relationship between the network‟s stability and its

heterogeneity (Wang et al. 2006). During a node removal attack, the network‟s connectivity

loses its heterogeneous nature, and information flow between nodes is restricted (Albert,

Jeong, and Barabasi 2000; Cohen 2001; Crucitti et al. 2004; Demetrius and Manke 2005;

Salla 2005; Sun et al. 2007; Wang et al. 2006). This degradation of network stability can be

quantified using (1) mutual information transfer (Lerner 2004; Piraveenan, Prokopenko, and

Zomaya 2009; Sole and Valverde 2004; Srivastav, Ray, and Gupta 2009), (2) global network

efficiency (Criado et al. 2006; Crucitti et al. 2003a; Latora and Marchiori 2001, 2004a), (3)

entropy (Gudkov and Montealegre 2008; Wang et al. 2006), (4) network connectivity

parameter, average node degree, and neighbor node degree (Cohen 2000, 2001; Dorogovtsev

and Mendes 2002; Gallos and Argyrakis 2007), (5) joint entropy (Boschetti et al. 2005;

Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004; Wang et al. 2006), (6)

heterogeneity index (Hu and Wang 2008), and (7) assortativeness (Newman 2002;

Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004). This research used

mutual information transfer and the network connectivity parameter to monitor the network‟s

fragmentation and loss of stability during the attack simulations. These two measures were

used to determine the extent of network stability degradation. This provided a way to

observe network stability degradation as a function of the heterogeneity changes catalyzed by

the simulated DoS attacks. The remainder of this section describes these two measures of

network stability.

34

1) Mutual Information Transfer.

Previous discourse indicates that communications over a complex network generate

system “noise.” Information theory studies the quantification of communications in a

“noisy” environment (Piraveenan, Prokopenko, and Zomaya 2009). The uncertainty of

Internet communications during a cyber attack can be studied using information theory

(Gudkov and Montealegre 2008; Piraveenan, Prokopenko, and Zomaya 2009; Sole and

Valverde 2004). Joint entropy is a measure of the average uncertainty of a network‟s inter-

nodal linking mechanisms (Boschetti et al. 2005; Mahadevan et al. 2005). It has been shown

to be a reliable measure of a network‟s link heterogeneity (Boschetti et al. 2005; Mahadevan

et al. 2005). Mutual information transfer is derived from the network‟s joint entropy. It is a

measure of the average uncertainty of information flow between 2 nodes (Boschetti et al.

2005; Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004; Wang et al.

2006). Studies have shown that the mutual information transfer is a relatively unbiased

statistic that accurately portrays the global inter-nodal information flow of a scale-free

network (Boschetti et al. 2005; Newman 2002). Mutual information transfer quantifies the

affects of network fragmentation during node removal attack (Boschetti et al. 2005;

Demetrius and Manke 2005; Lopez 2007; Piraveenan, Prokopenko, and Zomaya 2008;

Srivastav, Ray, and Gupta 2009).

2) Network Connectivity Parameter and Average Node Degree.

The network connectivity parameter (NCP) measures the physical extent of network

fragmentation (Cohen 2000, 2001; Dorogovtsev and Mendes 2002; Gallos and Argyrakis

2007). While mutual information transfer measures the stability of the network‟s information

flow, the network connectivity parameter measures the extent of the network‟s physical

35

fragmentation. As the parameter value approaches 2, the network‟s heterogeneity decreases.

Generally, if the parameter value is less than 2, the network is totally fragmented and is no

longer considered heterogeneous (Gallos and Argyrakis 2007). In addition to the NCP,

network connectivity stability is measured through changes in the network‟s average node

degree (Costa et al. 2007; Estrada, Higham, and Hatano 2009; Mahadevan et al. 2005; Wang

et al. 2006). Both the average node degree and the NCP are used in this research to monitor

network stability during the attack simulations.

E. Topology Based Protection

This section will present a few promising protection schemes that utilize topology

knowledge of scale-free network connectivity. One study divided a large heterogeneous

network into small clusters of nodes (Huang, Lai, and Chen 2008). Huang et al. (Huang,

Lai, and Chen 2008) examined a protection scheme based on inter-cluster shortest paths and

the “bridge” nodes between clusters. Huang et al. (2008) presented evidence that their

techniques might be able to halt a cascaded avalanche of node failures. Another method

examined changes to the average shortest path while individually removing select nodes from

the network (Latora and Marchiori 2005). The removed nodes that caused the greatest

damage to the shortest path were considered candidates for protection.

Wang and Rong (2008) studied the effects of changes to a node‟s link capacity to

estimate a breakdown probability for each network node (Wang and Rong 2009a). They

proposed protecting the nodes with the highest probability of breakdown. A low cost and

counterintuitive finding in two different studies suggests that protecting the nodes with the

36

lowest degrees may reduce the cascaded degradation effects (Motter 2004; Wang and Rong

2008; Wang et al. 2008). Another study determined a critical threshold for the network

connectivity parameter (Gallos and Argyrakis 2007). Gallos and Argyrakis (2007) proposed

protecting nodes below this threshold. One research examination found that using a “reverse

percolation” process to restore the power law properties of a network under attack was

proposed as a reactive mechanism to maintain network stability (Rezaei et al. 2007). Rezaei

et al. (2007) proposed that the network‟s connectivity robustness can be maintained during an

attack by monitoring the degree distribution and adding links to compensate for nodes

removed during the attack. Sekiyama and Araki (2007) investigate a similar network

recovery approach. They examined manipulation of the network‟s topology during an attack

to regenerate the network‟s connectivity infrastructure (Sekiyama and Araki 2007). It has

also been found that hiding network topology information can be an effective protection

technique (Gallos 2005; Gallos et al. 2007).

F. Theoretical Rationale Summary

This section summarizes the theoretical rationale for this study for the identification

of attack markers has been presented in this chapter. As shown in the literature, assortativity

is a summary measure of a network‟s link diversity (Newman 2002). The assortativity

coefficient for complex networks has been found in the range of −1 ≤ 𝑟 ≤ 1 . A perfectly

disassortative network (𝑟 = −1) signifies that all nodes are connected to nodes of a different

degree. A perfectly assortative network (𝑟 = 1) indicates that all node connections are

between 2 nodes of the same degree. Most networks are either predominant disassortative

(r<0) or assortative (r>0) (Newman 2002). The literature has shown that technological scale-

37

free networks, such as the Internet‟s router infrastructure, tend to exhibit primarily

disassortative behavior (Leung and Chau 2007; Newman 2002; Piraveenan, Prokopenko, and

Zomaya 2008, 2009).

The literature indicates that as the assortativity approaches zero and becomes

increasingly more positive, the network‟s heterogeneity and robustness decreases (Newman

2002; Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004). As the

heterogeneous behavior diminishes, the network‟s linking mechanism tends to become more

like an exponential (ER) network (Newman 2002; Piraveenan, Prokopenko, and Zomaya

2009; Sole and Valverde 2004). Previous discussion has shown that preferential attachment

is a probabilistic mechanism that favors link establishment with highly connected nodes.

Preferential attachment mechanisms are essential for the communication robustness found in

scale-free networks. It follows that as the assortativity of a scale-free network approaches

zero, its characteristic scale-free robustness also diminishes.

This research did not directly compute assortativity. However, researchers indicate

that assortativity and mutual information transfer exhibit an inverse relationship (Newman

2002; Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004). They show that

as a result of this relationship, assortativity can be observed indirectly through the mutual

information transfer. This in turn can be used to study the simulated attack and the network‟s

loss in heterogeneity. Entropy was also used to observe the simulated network‟s

heterogeneity loss.

The theoretical rationale presented in this chapter has shown background support for

this research investigation. This chapter has shown (1) the Theory of Cyber Attack

Mechanics that argues that during cyber attacks, emergent patterns of connectivity can be

38

indirectly identified through attack markers; (2) studies of the Internet‟s router infrastructure

vulnerabilities to targeted DoS attacks; (3) scale-free network theory; (4) error and attack

studies against scale-free networks; (5) cascading node failures as a result of targeted DoS

attacks; (6) mutual information transfer and the network connectivity parameter as a means

to measure the simulated attack connectivity stability and heterogeneity; and (7) recent

studies that seek to protect scale-free networks using knowledge of the physical

characteristics of the network. In Chapter III, the formalisms used to develop the attack

model and simulation developed in this research will be presented.

39

CHAPTER III. FORMAL DEFINITIONS

This chapter introduces the rudimentary formalisms developed to design the cyber

attack model and simulation for this research. Chapter IV will cover the design derived from

these formalisms. All simulation processes will also be discussed in Chapter V.

A. Node State Data Structures

The formal definitions developed in this chapter were derived from the node state

transitions summarized in Figure 3.1 and Table 3.1. The node state diagram shown in Figure

3.1 is described by the state transition matrix in Table 3.1. As shown in Table 3.1, the 6-

tuple (<AC, NR, TO, NL, OL, AN>) depicts a node‟s state as it is processed by the

simulation. Each term and associated values in the 6-tuple are defined in Table 3.1. As

depicted in Table 3.1, if the transition condition evaluates as true then the corresponding

tuple position is recorded as a “1” value, otherwise the value is “0”. Active nodes are

represented as states 𝑁𝑆0, 𝑁𝑆1, 𝑁𝑆2 with a 6-tuple value of “1” in position “AC”; otherwise

the value is “0”. If all positions are “0” then the node state is a null-link. In Figure 3.1 each

state is represented by a circle and the transition between states is depicted by a line between

the circles. The direction of the transition is indicated by the arrows on the lines. Inside each

node state circle of Figure 3.1 the corresponding 6-tuple values are shown. As depicted in

Table 3.1, the value at the intersection of a row (transition conditional) and column (current

state) indicates a new possible state. For example, a node in current state 𝑁𝑆0 will transition

to state 𝑁𝑆1, if and only if NP-Release is true. All node state changes are triggered by the

attack simulation clock ticks represented as 𝑡 ∈ 0,1,2,3, … . The remainder of this chapter

will formally define each node state and its corresponding data structures.

40

Table 3.1. Node state transitions for Figure 3.1

Condition

Current Node State

Description

6-

Tuple

NS0

NS1

NS2

NS3

NS4

NS5

NP-RELEASE = T Node is a member of a released node-

pair

NR = 1

NS1

NP-RELEASE = F Node is not a member of a released

node-pair

NR = 0

NS0

TEMP-ORPHAN = T Node is a temporary orphan TO = 1 NS2

TEMP-ORPHAN = F Node is not a temporary orphan TO = 0 NS0

NEW-LINK = T Node has an available neighbor NL = 1 NS5

NEW-LINK = F Node does not have an available

neighbor

NL = 0

 NS3

OVERLOAD = T Node link load has exceeded its link

capacity

OL = 1

 NS4

OVERLOAD = F Node link load has not exceeded its

link capacity

OL = 0

 NS0

ATTACKED = T Node is a critical node that has been

attacked

AN = 1

NS5

ATTACKED = F Node is not a critical node that has

been attacked

AN = 0

NS0

41

Figure 3.1. Node state diagram for the CPN simulations

42

1) Set of All Active Nodes.

At time 𝑡, a node is in the active state if it has not been removed from the simulation

during an attack. Pre-attack active nodes are all nodes present at time 𝑡 = 0.

𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑛𝑖
𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡) 𝑖 ∈ {0,1,2,3, … , 𝑀(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 1 } ; (1)

where 𝑀(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 is the number of active nodes at time 𝑡.

2) Set of All Node-Pairs.

At time 𝑡, the set of all node-pairs is the set of ordered pairs of two adjacent active

nodes, (𝑛𝑡
𝑖 , 𝑛𝑡

𝑗
), such that router (node) 𝑛𝑗

𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡) is a router table entry in router (node)

𝑛𝑖
𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡). A simulated communication attempt does not occur until the node-pair has been

randomly evaluated in the simulation stream. Each node-pair was released into the

evaluation using a linear congruential algorithm (Sedgewick 1983) and further randomized

by the CPN application engine. The simulated communication attempt process will be

described in the next chapter. A node-pair is defined as:

𝑝𝑦 (𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 = (𝑛𝑖 𝑡 , 𝑛𝑗 (𝑡)) 𝑛𝑖 𝑡 ∈ 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 , 𝑛𝑗 (𝑡) ∈ 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 , 𝑖 ≠ 𝑗, 𝑛𝑗 (𝑡) ∈ 𝐴𝑖 𝑡) ; (2)

𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑝𝑦
𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡) 𝑦 ∈ {0,1,2,3,… , 𝑄(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 1 } ; (3)

where

𝑃(𝑡)𝐴𝑐𝑡 𝑖𝑣𝑒 is the set of active node-pairs, (𝑛𝑖 𝑡 , 𝑛𝑗 (𝑡));

𝑄(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 is the number of active node-pairs at time 𝑡;

𝐴𝑖 𝑡 is the set of all neighbor nodes of node 𝑖.

The set of all neighbor (adjacent) nodes of node 𝑖 is:

𝐴𝑖 𝑡 = 𝑎𝑘 𝑡 𝑘 ∈ 0,1,2,3, … , 𝐾𝑖(𝑡) − 1 , 𝑎𝑘 𝑡 ∈ 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 ; (4)

43

Where 𝐾𝑖(𝑡) is the number of neighbor nodes of active node 𝑖, 𝑛𝑖 𝑡 , and referred to as the

degree of node 𝑖, that is the number of links for node 𝑖.

3) Attack Class.

During the simulation critical nodes are randomly attacked. For each simulation run,

an attack class was defined as the fraction of all nodes selected to be critical nodes. Critical

nodes are nodes that will be eventually attacked (removed) during the simulation. For each

simulation run there exists one and only one attack class. The attack classes used in this

research were supported by previous error and attack studies (Albert, Jeong, and Barabasi

2000; Cohen 2001; Crucitti et al. 2004; Guillaume, Latapy, and Magnien 2005; Motter and

Lai 2002; Salla 2005). The set of all attack classes is an ordered set such that:

𝐶 𝑡 = 0 = 𝑐𝑧 𝑐 ∈ ℝ, 𝑧 ∈ { 0,1,2,3, … (𝑧𝑚𝑎𝑥 − 1) , 𝑧𝑚𝑎𝑥 = 10}}; (5)

where

𝑧𝑚𝑎𝑥 = maximum number of attack classes used in this research.

𝑐0 = 0.05;

𝑐𝑧 = (𝑐𝑧−1 + 𝑐0);

∀𝑧 > 0, 𝑐𝑧 > 𝑐𝑧−1

4) Critical and Attacked Nodes.

Critical nodes for each simulation run are selected based on their degree. The set of

all node degrees (𝐾(𝑡 = 0)𝑂𝑟𝑑𝑒𝑟𝑒𝑑) is an ordered set of all unique active node degrees

(𝑘𝑖 𝑡 = 0). It is sorted from highest to lowest node degrees. Nodes corresponding to the

top 𝑐𝑧 ∗ 100 percent are specified critical nodes (𝑛𝑤 (𝑡 = 0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙). The set of all critical

nodes for attack class 𝑐𝑧 is:

𝑁𝑤(𝑡 = 0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑐𝑧) = 𝑛𝑤 𝑡 𝑤 ∈ 0,1,2,3,… , 𝑊𝑐𝑧
(𝑡 = 0) − 1 (6)

44

Where 𝑊𝑐𝑧
(𝑡 = 0) is the number of critical nodes.

From the set of critical nodes, attacked nodes were randomly selected at random simulation

times. The set of all unordered node degrees is defined:

𝐾(𝑡) = 𝐾𝑖 𝑡 𝑖 ∈ 0,1,2,3, … , 𝑀(𝑡 = 0)𝐴𝑐𝑡𝑖𝑣𝑒 − 1 (7)

The ordered set of all unique node degrees in the network at 𝑡 = 0, sorted from high to low

degree is:

𝐾(𝑡 = 0)𝑂𝑟𝑑𝑒𝑟𝑒𝑑 = 𝐾𝑖 (𝑡 = 0)

𝑖 ∈ {0,1,2,3, … 𝑀(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 1 },

(𝑘𝑖 > 𝑘𝑖+1)
 (8)

It follows that for all unique node degrees of attack class 𝑐𝑧 in one simulated network:

1. The number of critical nodes is:

𝑊𝑐𝑧
(𝑡 = 0) = (𝑐

𝑧
∗ 𝑀(𝑡 = 0)𝐴𝑐𝑡𝑖𝑣𝑒) (9)

2. The set of all of non-critical nodes is:

𝑁𝑔(𝑡 = 0)𝑁𝐶(𝑐𝑧) = 𝑛𝑔 𝑡 𝑔 ∈ 0,1,2,3, … , 𝑈𝑐𝑧
 𝑡 = 0 − 1 (10)

3. The number of all of non-critical nodes is:

𝑈𝑐𝑧
 𝑡 = 0 = 𝑀(𝑡 = 0)𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑊𝑐𝑧

(𝑡 = 0) (11)

4. The set of all attacked nodes at time 𝑡:

𝑁(𝑡)𝐴 = 𝑛𝑎 (𝑡)𝐴 𝑎 ∈ {0,1,2,3, … , 𝑀(𝑡 = 0)𝐴 − 1 , 𝑛𝑎 (𝑡)𝐴 ∈ 𝑁𝑤 (𝑡 = 0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑐𝑧) (12)

 where 𝑀(𝑡 = 0)𝐴 is the number of nodes randomly designated for attack.

5) Set of all Temporary Orphan Nodes.

A communications attempt is emulated by randomly releasing node-pairs into the

simulation stream for evaluation. During the node-pair evaluation process, one node in the

node-pair may be classified as a temporary orphan node. This indicates that the

communication attempt between the two nodes in the node-pair has failed. The criterion for

45

orphan node determination is defined below. The process designed to simulate

communication attempts will be discussed in Chapter IV. Once a node has become a

temporary orphan, the simulation will determine whether it can establish a new incremental

link with an existing neighbor node. If no other active neighbor nodes exist, then the

temporary orphan will become a permanent orphan. The permanent orphan has lost all

ability to communicate with other nodes and it will be added to the set of removed nodes.

Since no information flows to or from a permanent orphan, they do not contribute to the

network-wide information transfer value. Given the node-pair, (𝑛𝑖 𝑡 , 𝑛𝑗 (𝑡)), a temporary

orphan, 𝑛𝑟 𝑡
𝑇𝑂exists as a member of the set of all temporary orphan nodes:

𝑖𝑓 𝑛𝑖 𝑡 ∈ 𝑁 𝑡 𝑅 ∧ (𝑛𝑗 𝑡 ∉ 𝑁 𝑡 𝑅)) then 𝑛𝑗 𝑡 ∈ 𝑁 𝑡 𝑇𝑂 (13)

𝑖𝑓 𝑛𝑗 𝑡 ∈ 𝑁 𝑡 𝑅 ∧ (𝑛𝑖 𝑡 ∉ 𝑁 𝑡 𝑅)) then 𝑛𝑖 𝑡 ∈ 𝑁 𝑡 𝑇𝑂 (14)

Where 𝑁 𝑡 𝑅 is the set of all removed node and will be defined in (22).

The set of all temporary orphans is: 𝑁 𝑡 𝑇𝑂 = 𝑛𝑟 𝑡
𝑇𝑂 𝑟 ∈ 0,1,2,3, … , 𝑀(𝑡)𝑇𝑂 − 1 (15)

 Where 𝑀(𝑡)𝑇𝑂is the number of temporary orphan nodes at time 𝑡.

6) Set of all Null-Link Orphan Nodes.

If a temporary orphan node exists, then the temporary orphan node recovery process

will determine whether the orphan can establish a valid communication link with another

neighbor node. If the temporary orphan node has at least one active neighbor node, then a

new node-pair connection will be established using the preferential attachment mechanisms

discussed in Chapter II. If an active neighbor node does exist, then a new node-pair is

established and the orphan node is no longer an orphan and remains active. If there are no

other active neighbor nodes, then it will be classified as a null-link orphan node. Null-link

46

orphans are permanent orphans. Given the existence of temporary orphan node, 𝑛𝑡
𝑇𝑂 , then

the set of null-link nodes is defined as:

𝑛𝑟 𝑡
𝑇𝑂 ⇒ 𝑛𝑠 𝑡

𝑁𝑢𝑙𝑙 if and only if there are no active neighbor nodes for the temporary

orphan node 𝑛𝑟 𝑡
𝑇𝑂 , then the set of neighbor nodes for the temporary orphan node 𝑟 is:

𝐴𝑟 𝑡 = {};

𝑁(𝑡)𝑁𝑢𝑙𝑙 = 𝑛𝑠 𝑡
𝑁𝑢𝑙𝑙 𝑠 ∈ 0,1,2,3,… , 𝑀(𝑡)𝑁𝑢𝑙𝑙 − 1 , 𝑛𝑠 𝑡

𝑁𝑢𝑙𝑙 ∈ 𝑁(𝑡)𝑂 , 𝑛𝑠 𝑡
𝑁𝑢𝑙𝑙 ∉ 𝑁 𝑡 𝑇𝑂 (16)

Where 𝑀(𝑡)𝑁𝑢𝑙𝑙 is the number of null-link orphan nodes at time 𝑡.

7) Set of all Overloaded Orphan Nodes.

When a temporary orphan node, 𝑛𝑟 𝑡
𝑇𝑂 , has an active neighbor, a new incremental

node-pair is established. This incremental link is denoted as 𝑘𝑥(𝑡) to node 𝑥, 𝑛𝑥(𝑡) in the

new node-pair (𝑛𝑟 𝑡
𝑇𝑂 , 𝑛𝑥(𝑡)). When the incremental node-pair ((𝑛𝑡

𝑇𝑂 , 𝑛𝑡
𝑥)) is established,

the load on node 𝑥, 𝑛𝑥(𝑡), is incremented by one link. This additional load may exceed the

node‟s link capacity. If the link capacity of node 𝑛𝑥(𝑡) is exceeded, then node 𝑛𝑥(𝑡) is

transitioned to an overloaded orphan node, 𝑛𝑓 𝑡
𝑂𝐿 .

The overloaded orphans (𝑛𝑓 𝑡
𝑂𝐿) and null-link orphans (𝑛𝑠 𝑡

𝑁𝑢𝑙𝑙) are unavailable

for further communications and removed from the simulation. If the new incremental link

results in an overloaded orphan, then 𝑛𝑟 𝑡
𝑇𝑂 remains a temporary orphan and continues to

look for a valid link with one of its existing active neighbor nodes. When a valid link occurs,

that is, the new incremental link does not result in an overloaded node, then 𝑛𝑟 𝑡
𝑇𝑂 is

removed from the set of temporary orphans. The node transitions are described in the

previously presented Table 3.1 and Figure 3.1. The overloaded node occurs as follows:

1. The pre-attack link load of node 𝑛𝑥(𝑡):𝑘𝑥
𝐿𝑜𝑎𝑑 (𝑡=0)

= 𝐴𝑥(𝑡 = 0) (17)

47

 Where 𝐴𝑥(𝑡 = 0) is the number of pre-attack neighbor nodes of node 𝑥.

2. At time t, 𝑁𝑟(𝑡)𝑁𝑒𝑤𝐿𝑖𝑛𝑘 (𝑥) is the set of all temporary orphan nodes that have established

an incremental link to node 𝑛𝑥(𝑡) through the recovery process.

3. At time 𝑡 ′ , the additional link load due to the temporary orphan recovery process:

𝑘𝑥
𝐿𝑜𝑎𝑑 (𝑡 ′)

= (𝑘𝑥
𝐿𝑜𝑎𝑑 (𝑡)

+ 𝑀𝑟(𝑡)𝑁𝑒𝑤𝐿𝑖𝑛𝑘 (𝑥)); (18)

Where 𝑀𝑟(𝑡)𝑁𝑒𝑤𝐿𝑖𝑛𝑘 (𝑥) is the number of 𝑁𝑟(𝑡)𝑁𝑒𝑤𝐿𝑖𝑛𝑘 (𝑥) nodes for the entire simulation that

form a new incremental link with 𝑛𝑥(𝑡).

4. The capacity index (𝐿) for all active nodes is dependent upon the tolerance parameter.

The constant tolerance parameter (Motter 2004; Motter and Lai 2002; Wang and Rong

2009a, 2009b) used in this research was: 𝛿 = 0.1:

𝐿 = 1.0 + 𝛿 (19)

5. Total link capacity for node 𝑛𝑡
𝑥 :

 𝑘𝑥
𝐶 = 𝐿 ∗ 𝑘𝑥

𝐿𝑜𝑎𝑑 (𝑡=0)
 (20)

6. The set of overloaded orphan nodes that occur when a node‟s current load exceeds its

link capacity:

𝑁𝑓 𝑡 𝑂𝐿 = 𝑛𝑓 𝑡 𝑂𝐿 𝑓 ∈ 0,1,2,3, … , 𝑀(𝑡)𝑂𝐿 − 1 , (𝑘𝑥
𝐿𝑜𝑎𝑑 (𝑡)

> 𝑘𝑥
𝐶) ; (21)

 Where 𝑀(𝑡)𝑂𝐿 is the number of overloaded orphan nodes at time 𝑡.

8) Set of all Removed Nodes.

 Null-link and overloaded orphan nodes are added to the set of removed nodes. The

set of all removed nodes at time 𝑡 represents all nodes that are unable to communicate with

other nodes. The set of removed nodes is:

𝑁(𝑡)𝑅 = 𝑁(𝑡)𝑂 + 𝑁(𝑡)𝐴 (22)

𝑁(𝑡)𝑅 = 𝑛𝑓(𝑡) 𝑓 ∈ {0,1,2,3, … , 𝑀(𝑡)𝑅 − 1 } ; (23)

48

Where 𝑀(𝑡)𝑅 is the number of removed nodes at time 𝑡.

The set of all permanent orphan nodes is:

𝑁(𝑡)𝑂 = 𝑁(𝑡)𝑁𝑢𝑙𝑙 + 𝑁(𝑡)𝑂𝐿 (24)

Permanent orphans are unable to establish communications as a result of cascaded node

failures.

B. Topology Based Node Protection

This research has shown that targeted protection of pre-attack nodes based on node-

pair types is plausible. In the attack simulation, a protected node was a node that always

remained active. These protected nodes were not subjected to communication breakdown

during the simulated attacks. Protected nodes are defined as follows:

Given:

1. The set of protected node degrees:

𝐻𝑑(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 = 𝑑 (𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 𝑑 ∈ {0,1,2,3,… , 𝐼𝑑 (𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 − 1 } ; (25)

 Where 𝐼𝑑(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 is the number of node degrees designated for protection.

2. The set of protected nodes:

𝐻(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 = 𝑝 (𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 𝑝 ∈ {0,1,2,3, … , 𝐼(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 − 1 } ; (26)

 Where 𝐼(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 is the number of nodes designated for protection.

3. The set of attack marker node-pair types:

𝑉(𝑡)𝐴𝑀 = (𝑣1 𝑡 ,𝑣2 𝑡) (𝑣1 𝑡 , 𝑣2 𝑡) ∈ 𝑃(𝑡)𝐴𝑐𝑡 𝑖𝑣𝑒 ; (27)

4. Active node 𝑛𝑖 𝑡 has a node degree of 𝐾𝑖(𝑡) and node 𝑛𝑗 𝑡 has a node degree of 𝐾𝑗 (𝑡);

both nodes are members of node-pair 𝑝𝑦
𝐴𝑐𝑡𝑖𝑣𝑒 (𝑡)

49

It follows that at time 𝑡, if node 𝑖 has a degree that is a member of the set of protected node

degrees and node 𝑖 is a member of an attack marker node-pair that was designed for

protection, then node 𝑖 is also protected. This was defined as:

If (𝑛𝑖 𝑡 ∈ 𝐻𝑝(𝑡)𝐴𝑀) ∧ 𝐾𝑖 𝑡 ∈ 𝐻𝑑 𝑡 𝑃𝑟𝑜𝑡𝑒𝑐𝑡 then 𝑛𝑖 𝑡 ∈ 𝐻(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 ∧ (𝑛𝑖 𝑡) ∉ 𝑁(𝑡)𝑅 ; (28)

If node 𝑗 has a degree that is a member of the set of protected node degrees and node 𝑗 is a

member of an attack marker node-pair that was designed for protection then node 𝑗 is also

protected. This was defined as:

If (𝑛𝑗 𝑡 ∈ 𝐻𝑝(𝑡)𝐴𝑀) ∧ 𝐾𝑗 𝑡 ∈ 𝐻𝑑 𝑡 𝑃𝑟𝑜𝑡𝑒𝑐𝑡 then 𝑛𝑗 𝑡 ∈ 𝐻(𝑡)𝑃𝑟𝑜𝑡𝑒𝑐𝑡 ∧ (𝑛𝑗 𝑡) ∉ 𝑁(𝑡)𝑅 ; (29)

Node-pairs and active nodes were previously defined in Section A of this chapter. The

selection of nodes to be protected, node-pair types, and attack markers will be discussed in

Chapter IV.

C. Simulated Attack Definition

This research focused on DoS attacks. Stephenson and Prueitt define a taxonomy for

DoS attacks using cyber attack primes as attack descriptors (2005). The attack tuple (DoS)

described by Stephenson and Prueitt and relevant to this study was defined by their taxonomy

as:

<DOS, User_Err_Slf_Protect, User_Err_Misuse_Avl_Resc, Power_Disrupt,

Malicious_Code, Hack_Phys, Hack_Avl_Resc, Failure_DS_Comp, Dev_Flawed_Code,

Component_Failure, Admin_User_Priv, Admin_Hostile_Modify, Admin_Err_Commit,

Admin_Err_Omit>

50

For detailed explanations of each element, see Stephenson and Prueitt (2005). The remainder

of this section will formally represent a DoS attack as simulated in this research.

1) Cyber Attack States.

 An external stimulus (𝛽) is any entity that seeks to induce a denial-of-service attack

using the attack descriptors discussed above. An attack is defined as a network state change

incurred as a result of an external stimulus applied to normal network states:

𝛽 ∙ 𝑠𝑖 𝑖 ∈ 0,1,2, … . . , 𝑚 ⇒ 𝑠𝑘
𝑎 𝑘 ∈ 0,1,2, … . . , 𝑛 (30)

Given that 𝑡 ′ > 𝑡 and 𝑘′ > 𝑘 𝑡hen an external stimulus (𝛽) applied to a set of normal

network states ({ 𝑠𝑖}) results in a set of new attacked states ({𝑠𝑘
𝑎 }); 𝑖 = 𝑘 = 0 ⇔ pre-attack

network state. An attack state (𝑠𝑘
𝑎) is inferred when external stimulus is applied to a normal

network state resulting in an anomalous new state: 𝛽 ∙ 𝑠𝑖 ⇒ 𝑠𝑘
𝑎 . By convention this

research dissertation will represent 𝛽 ∙ 𝑠 ⇔ 𝛽 ∙ {𝑠}. The attack simulation process

definitions are defined below. All terminologies below have been previously defined in this

chapter.

2) Network State Transitions.

All node related terms were previously defined in Sections A and B of this chapter.

This section will present the state transition details that were discovered during this study.

Transition 1: A new attack state results when an external stimulus is applied to the set of

critical nodes.

𝛽 ∙ 𝑁𝑤 (𝑡 = 0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑐𝑧) ⇒ 𝑁(𝑡′)
𝐴 (31)

𝑁(𝑡′)𝐴 ⇒ 𝑠𝑘
𝑎 (32)

51

Transition 2: As a result of the attack state change in Transition 1:

1. The attacked nodes are removed from the set of active nodes.

𝑠𝑘
𝑎 ⇒ 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ; where 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑁(𝑡)𝐴 (33)

2. Cascaded failures lead to overloaded nodes that are removed from the set of active nodes.

𝑠𝑘
𝑎 ⇒ 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ; where 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑁(𝑡)𝑂𝐿

 (34)

3. Cascaded failures lead to null-link nodes that are removed from the set of active nodes.

𝑠𝑘
𝑎 ⇒ 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ; where 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − 𝑁(𝑡)𝑁𝑢𝑙𝑙

 (35)

4. Nodes are permanently orphaned the set of active node-pairs is altered.

 𝑁(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ⇒ 𝑃(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 ; (36)

 𝑃(𝑡′)𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 − (𝑁 𝑡′ 𝑅 ⊂ 𝑃 𝑡 ′ 𝐴𝑐𝑡𝑖𝑣𝑒) ; (37)

 𝑛𝑖 𝑡 ∨ 𝑛𝑗 𝑡 ∈ (𝑁 𝑡′ 𝑁𝑢𝑙𝑙 + 𝑁 𝑡′ 𝐴 + 𝑁 𝑡′ 𝑂𝐿); (38)

Transition 3: As a result of the network distortions depicted in Transition 2, the network‟s

stability is altered. The network‟s stability is monitored during the attack simulation. The

network‟s information transfer stability (𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘
𝐼) is a measure of the ability of

any two random nodes to communicate. The network‟s NCP stability

(𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑘
𝑁𝐶𝑃

) is the extent of the physical fragmentation of the network into

increasingly more isolated clusters.

 𝑠𝑖 ⇒ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 (39)

𝛽 ∙ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 ⇒ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘 (40)

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘 ⇒ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘
𝐼 + 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘

𝑁𝐶𝑃 (41)

Transition 4: Steep fluctuations in the network‟s stability as depicted in Transition 3 will

eventually lead to a set of halting conditions. Execution of the simulation is halted when the

52

“halting condition” is encountered. This is the stability threshold at which network

communications are completely degraded. The “halting condition” 𝐻 is Boolean.

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘 ⇒ 𝐻; (42)

𝑖𝑓𝑓 (𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘
𝐼 < 0 ∧ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑘

𝑁𝐶𝑃 < 2) (43)

3) Network Fragmentation.

Network fragmentation is one measure of the network‟s connectivity stability used in

this research. As previously discussed in Chapter II, it is a relative measure of the physical

extent of the network‟s breakup during the attack. As considered in this research, Figure 3.2

and Figure 3.3 depict an example connectivity fragmentation that occurs during an attack.

The circles represent nodes, and the numbers in the circles represent the node‟s degree. The

darker line shown indicates a specific message path. The path represented flows from its

source, through two intermediate nodes and then to its final destination. The finer lines

indicate links between neighbor nodes. These two figures represent a small area of network

activity and a single message path from the much larger overall network.

Figure 3.2 represents a small portion of the network before the attack has

commenced. It depicts normal operating conditions with no network fragments. Figure 3.3

depicts an attack on node B resulting in its removal from normal connectivity. When node B

is removed, a new path is formed and all nodes previously connected to node B break off into

smaller fragments. The fragment sizes vary and the number of fragments that occur is equal

to the degree of node B. Some fragments may have only one node; these nodes were

previously defined as orphan nodes. In Figure 3.3, the arrows point to the connectivity

fragments. As a result of the attack, connectivity between the source and the destination

requires an additional two intermediate nodes for completion.

53

Figure 3.2. Pre-Attack network example of message path hops over small region

54

Figure 3.3. Attacked network at some point after attack, message path change and

fragmentation

During the attack as the attacked nodes are removed, the cascading extent of the

network-wide fragmentation dominates all connectivity patterns. Eventually, the network‟s

stability is completely degraded. This progression is shown in Figure 3.4. Region A depicts

the network before the attack without fragmentation. Region B reflects some intermediate

snapshot over time and shows a partially degraded network. Region C represents the final

state of the network after it has been totally degraded. This total connectivity stability

degradation occurs because the network is predominant small isolated fragments of 2 nodes.

55

During this research, changes in the network‟s stability during the attack simulations

as indicated by the network‟s fragmentation were measured in controlled intervals. The

network stability changes were defined previously in this section during the discussion of

Transitions 3 and 4.

Figure 3.4. Illustrative example of network fragmentation over time

A

B

C

56

D. Computational Foundations

This section will discuss the foundational network connectivity definitions used in the

research computations. This will be followed by a discussion of the pre-attack data and

its descriptive statistics.

1) Network Connectivity Stability Computations.

The effects on network connectivity stability of the simulated denial-of-service (DoS)

attack were measured primarily using two indicators, mutual information transfer and the

network connectivity parameter. The network‟s mutual information transfer was used in this

research to represent the loss of information transmission capabilities during an attack. The

extent of the network‟s physical fragmentation was monitored using the network connectivity

parameter. Along with the information entropy, these two measures represent the network‟s

loss of heterogeneity during the simulated DoS attack. As previously discussed in Chapter II,

the link heterogeneity of a scale-free network is representative of its connectivity robustness

and stability. Table 3.3 presents the network connectivity terms used in the research

computations.

57

Table 3.2. Network connectivity terms used in the research computations

Term Definition

𝑘 Node degree.

𝑚(𝑘) Number of nodes with k-degree.

𝑚(𝑘1𝑘2) Total number of 𝑘1-degree nodes linked to 𝑘2-degree nodes.

𝑚 Total number of active links for the network.

𝑁 Total number of active nodes for the network.

𝑘𝑀𝑎𝑥 Maximum k-degree of the network.

𝜇(𝑘1𝑘2) Constant value, if 𝑘1 = 𝑘2 then 1 else 2; a weight assigned for joint

degree computation.

𝑝(𝑘) Probability that a node with k-degree node will establish a link;

𝑝 𝑘 =
𝑚(𝑘)

𝑛

𝑝(𝑘1𝑘2) Probability that a node with 𝑘1-degree node will establish a link with a

𝑘2-degree node; 𝑝 𝑘1𝑘2 = 𝜇(𝑘1𝑘2)
𝑚(𝑘1𝑘2)

2𝑚

All terms and their relevance in the equations below were previously discussed in Chapter II.

The computations used in this research are defined as follows:

Mutual Information Transfer (𝐼), relative to its joint entropy (Boschetti et al. 2005; Schreiber

2000; Srivastav, Ray, and Gupta 2009),

𝐼 = 𝑝(𝑘1𝑘2)𝑙𝑜𝑔2
𝑝(𝑘1𝑘2)

𝑝(𝑘1)𝑝(𝑘2)

𝑚
𝑘2=1

𝑚
𝑘1=1 (44)

Information Entropy (𝐻) (Gudkov and Montealegre 2008)

𝐻 = − 𝑝 𝑘 log2 𝑝(𝑘)𝑁−1
𝑘=1 (45)

58

Network connectivity parameter (𝕂) (Cohen 2001; Gallos and Argyrakis 2007)

𝕂 =
<𝑘2>

<𝑘>
 (46)

Average Node Degree (𝑘 𝑜𝑟 < 𝑘 >) (Mahadevan et al. 2005)

< 𝑘 > =
2𝑚

𝑛
 (47)

Average Neighbor Node Degree (𝑘 𝑛𝑛 𝑜𝑟 < 𝑘𝑛𝑛 >) (Mahadevan et al. 2005)

< 𝑘𝑛𝑛 > =
 𝑘𝑛𝑛

𝑘𝑀𝑎𝑥
𝑘=1

𝑚
 (48)

2) Pre-Attack Network Connectivity.

Table 3.3 depicts the pre-attack connectivity used in this study. Equations (44)

through (48) were used for the computations found in Table 3.3. The pre-attack state (𝑡 = 0)

depicted in Table 3.3 was the baseline condition for all simulated attacks. Previously cited

literature indicates that a scale-free network‟s scaling degree exponent is between 2 and 3.

Graphical analysis of its log-log plot for the degree (k) versus the frequency of each degree in

the network is commonly used to determine the degree exponent of a power law network.

Figure 3.5 and Figure 3.6 depict the degree distribution of the pre-attack network. The

degree distribution plot depicted in Figure 3.5 was consistent with the literature. The degree

exponent for the AT&T router infrastructure was found to be approximately 2.26 and

therefore exhibits power law degree distribution behavior. The baseline router infrastructure

used in this research represented a scale-free network. All values were consistent with the

literature previously cited (Albert, Jeong, and Barabasi 2000; Barabasi and Albert 2002;

59

Crucitti et al. 2004; Demetrius and Manke 2005; Mahadevan et al. 2005; Piraveenan,

Prokopenko, and Zomaya 2009; Sole and Valverde 2004; Wang et al. 2006).

Table 3.3. Pre-Attack simulation baseline connectivity

Term Definition Pre-Attack

Value

𝑚 Total links for the network 28,592

𝑁 Total nodes for the network 11,800

𝑘𝑀𝑎𝑥 Maximum k-degree of the network 68

𝑘 Average node connectivity degree for the network 4.8

k nn Average neighbor node connectivity degree for the network 15.8

𝑝(𝑘) Probability that a node with k-degree node will establish a

link: 𝑝 𝑘 = k−α . See Figure 4.22 and Figure 4.23.

𝛼 Scale Coefficient (Alpha) 2.26

𝐼 Mutual Information Transfer 1.56

𝐻 Information Entropy 1.48

𝕂 Network Connectivity Parameter 15.8

60

Figure 3.5. Pre-Attack network degree distribution

Figure 3.6. Pre-Attack network rank/frequency plot (log-log scale)

61

In this chapter, the formal definitions and foundational node representations were

discussed. Chapter IV will now depict the cyber attack model and simulation designed for

this research that was based on the definitions presented in this chapter.

62

CHAPTER IV. MODEL AND SIMULATION DESIGN

 This chapter discusses the attack model and simulation used in this research. As

previously discussed in Chapter I, it should be noted that routers are represented as nodes and

the links between the nodes represent router communication adjacencies as defined in their

router tables. Specific computer code, functions and declarations can be found in Appendix

A and Appendix B.

A. Simulation Strategy

A robust, reusable, automated model has been developed that simulates complex

scale-free computer network communication connectivity. The model simulates targeted

denial-of-service attacks. These attacks were simulated through random removal of the

network‟s most highly connected nodes. This research studied the resulting cascaded node

failures and their effects on network connectivity. Network communications between routers

was represented as node-pairs. Node-pair relationships under attack were studied.

The representation of network connectivity using node-pair relationships was

foundational to this research. The rationale for this conceptualization is consistent with the

basic algorithm for Internet message transmission. Over the Internet, a complete message

path, from its initial source to its ultimate destination, consists of consecutive multiple hops

between intermediate router pairs. As depicted in Figure 4.1, it is common to represent a

complete path as the sum of each of its individual intermediate router-to-router ordered pairs

(ordered because the path is one-way). The numbers shown in the circles represent router

numbers. Source and destination shown in the figure represent the original source and the

final destination. Figure 4.1 depicts 4 distinct communication paths in the following order:

63

(1) from the original message source to intermediate destination represented by router 1, (2)

from the intermediate source represented by router 1 to the next intermediate destination

represented by router 2, (3) from the intermediate source represented by router 2 to the next

intermediate destination represented by router 3, and (4) from the intermediate source

represented by router 3 to the final destination represented by router 4.

As a whole, the formation of these intermediate node-pairs over the entire message

path reflects router communication relationships of the network. This research used these

relationships to study targeted denial-of-service attacks over a scale-free computer network,

specifically the Internet‟s router infrastructure.

 Figure 4.1. Node-pairs and network connectivity model

The model and simulation of network connectivity presented in this research is

predicated upon an accepted modeling and simulation language known as Colored Petri Nets

(CPN). The characteristic connectivity patterns of a network were emulated using node-pairs

from a real network infrastructure. This research used the United States AT&T core

infrastructure node-pairs to develop the simulation‟s pre-attack state. Attacks against this

baseline were then simulated and anomalies in the distribution of these node-pairs were

studied. Changes in the underlying communication characteristics of the network, such as its

64

mutual information transfer, were also studied. The next section in this chapter introduces

the foundational assumptions used in this research to develop the model and simulation.

B. Foundational Assumptions

The following assumptions were made during the research simulations and all

subsequent data analysis:

1. This research does not introduce attack motivation theories or discussion.

2. The simulations were limited to scale-free computer network connectivity mechanisms as

related to preferential attachment and network traffic flow characteristic patterns.

3. The cyber attack was simulated in a virtual environment; there were no live Internet

experiments performed in this research. However, real Internet router adjacency data

were used to prime the pre-attack CPN simulations.

4. The CPN simulations were executed using the Microsoft Windows XP SP2 operating

system and CPNTools version 2.2.0.

5. This research was limited to large-scale (regional backbone) router connectivity

topologies and their degree distribution characteristic changes during a cyber attack.

6. This research assumes that the attacker has knowledge of the Internet‟s router

infrastructure and has identified critical routers. This knowledge will not be modeled.

7. Ordered node-pairs represent network connectivity relationships.

8. Network stability was considered a relative function of its ability to transfer information

and the extent of attack-induced physical connectivity fragmentation.

9. Network stability is a gradual degradation influenced by its node-pair connectivity

behaviors and multiple violations of preferential attachment theory.

65

10. Node removal attack modeling is the only method used to simulate an attack; link-based

attacks are not considered in this research.

11. All node-pairs are considered of equal weight (one link per node-pair). However, one

node may have multiple physical links to the same node.

C. CPN Modeling and Simulation Language

The modeling and simulation language for this research was Colored Petri Nets

(CPN) as realized through CPNTools (Kristensen, Christensen, and Jensen 1998). CPNs are

used to model and simulate a wide variety of industrial strength applications through virtual

representations (Kristensen, Christensen, and Jensen 1998). These include communication

protocols, audio/visual systems, operating systems, hardware designs, embedded systems,

software system designs and business process re-engineering. This research methodology

represented a unique application of CPNs.

1) CPN Syntax.

CPN model development may be done in both a graphical and textual programming

environment. The foundational building blocks of the CPN programming syntax are places,

tokens, arcs, colors, transitions, markings and guards. A place represents an environment

(such as a network router) and is assigned markings (token values) to portray the system state

(configuration) of that place. Tokens are computer bit strings (such as variable values) that

are transmitted across arcs (communication lines) to other places (routers). Communication

between 2 places is facilitated by transitions. Transitions are enabled so that tokens may be

passed between 2 places in the simulation. It is possible to transmit multiple tokens between

66

2 places sequentially or concurrently. Colors (programming declaration statements) provide

the essential data types for the information stored on the places.

Syntactically, places must be connected to transitions. Arcs connect places and

transitions and they allow state changes. The flow of tokens is controlled through arc

conditionals and transition guards. As transitions are enabled they execute model code and

control the information flow between places. For a contextual understanding, tokens will be

referenced as being moved between places. However, the actual underlying simulation

actions represented are state changes. When a transition between 2 places is enabled, the

tokens bound to these places are altered. This reflects a state change for both places.

2) An Illustrative Simulation Example.

A simple illustrative example of a CPN simulation is shown in Figure 4.2, Figure 4.3,

and Figure 4.4. In Figure 4.2, the “bindings” on place 1 consist of 2 tokens of the integer

data type (color). As shown in Figure 4.2, for each simulation clock tick, variable n is bound

to a randomly selected token passed from place 1. If the arc and “transition A” guard

conditional statements are true, then “transition A” is enabled. The token is bound to

variable n is passed to “transition A.” If one or both conditional statements evaluates to

false, then no token is passed. In this example, the value 5 is bound to variable n and is

passed to “transition A.”

 As depicted in Figure 4.2, as the token passes through “transition A,” if there is a

functional code object associated with the transition, it will be executed using any available

input tokens. Predicted upon the execution of the transition function, the tokens that are

input to the transition may be altered. The function output is then placed on all outbound

arcs from the transition. In this case, the input is token n with a value of 5 and the transition

67

computes n plus 10 for the output. The output of “transition A,” shown in Figure 4.2, is

bound to the token variable “a” and its value is 15. This token will be passed to place 2.

After the first few clock ticks, place 1 will have no more bindings, and place 2 will be bound

to 2 integer tokens with the values of 15 and 11 as computed by the function on “transition

A.” In this example it is assumed that the guard and arc conditional statements are true.

Therefore, 15 is the result of the first clock ticks, and it is followed by an output of 11 with

subsequent clock ticks. The results of the first 2 firings of “transition A” are depicted in

Figure 4.3 and Figure 4.4.

68

Figure 4.2. Colored Petri Net example, before transition “A” fires

69

Figure 4.3. Colored Petri Net example, after transition “A” fires once

70

Figure 4.4. Colored Petri Net example, after transition “A” fires a second time

71

3) Justifications for Modeling Language Selection.

Jensen (Jensen 1997, 1998), an international authority on Colored Petri Nets,

describes this modeling and simulation language. Kurt Jensen and his team at the University

of Aarhus in Denmark are major contributors to the development and use of CPN models.

They define the essence of the language as follows: “Colored Petri Nets provide a framework

for the construction and analysis of distributed and concurrent systems” (Kristensen,

Christensen, and Jensen 1998). Cyber attack interactions and router message transmissions

over a scale-free computer network are complex, concurrent, and distributed. Therefore, CPN

modeling is an ideally suited, mathematically proven virtual representation that may present

these complex systems in a controllable and analytical context (Jensen 1994, 1997, 1998;

Kristensen, Christensen, and Jensen 1998; Kristensen and Christensen 2004). Currently,

there are many tools for design, development, and simulation of Color Petri Nets (Jensen

1994, 1997, 1998; Kristensen, Christensen, and Jensen 1998; Kristensen and Christensen

2004). Jensen‟s team has developed an intuitive tool for CPN modeling and simulation (the

CPN Tool) that is used by more than 700 research organizations in over 70 different

countries (Wang et al. 2008). Their CPN Tool will be the foundational instrument used for

model development and simulation utilized in this research.

Advantages of CPN modeling and simulation as stated by the CPN group include (1)

an intuitive modeling language that allows for the flexibility and power of modern

programming languages as well as graphical representations of the model; (2) well-defined

semantics leading to unambiguous models of system behavior; (3) a flexible modeling

environment that can be used in a wide variety of complex industrial-strength applications;

(4) a modeling language consisting of a few powerful programming primitives; (5) a model

72

that exhibits true concurrency, not interleaving; (6) timed and probabilistic simulation

functionalities; and (7) a universally accepted formal analysis and verification of any derived

model (Wang et al. 2008).

D. General Research Simulation Design

During the simulation, as node-pairs are “released” into the simulation stream, nodes

are randomly “designated” for attack and undergo state changes as described in Chapter III.

This section will summarize the simulation flow and node state changes.

1) Simulation Design Information Flow.

Figure 4.5 depicts a summary of the information flow for this research design. The

pre-attack priming data were extracted from the Rocketfuel datasets (Spring et al. 2004).

They will be discussed in Section E. The raw Rocketfuel data were formatted as CPN tokens

by a series of offline Visual Basic routines specifically developed for this research. As

discussed in Chapter III, the network‟s connectivity state was represented as a function of its

node-pairings and statistical mechanics. As nodes were removed, the node-pairings changed

and eventually led to cascading node failures. The network went through a series of

intermediate node-pairings that influence network stability and its degree of fragmentation.

As the attacked nodes were removed from the connectivity state, the output generated was an

audit trail file that consisted of all changes to the network‟s node states. The network

fragmentation and connectivity degradation continued until the halting conditions were

encountered. The simulation was then terminated. These halting conditions were previously

discussed in Chapter II, Section A.

73

Figure 4.5. Summary of simulation process information flow

74

Through pre-simulation sensitivity analysis it was determined that 6 million CPN

execution steps was sufficient to encounter halting conditions for all attack scenarios in this

research. Each simulation run was implemented and halted after the same number of CPN

execution steps (6 million). The audit trail of node state changes and the distribution of

intermediate node-pairs were used as input to another set of offline Visual Basic routines.

These routines were specifically designed for this research. The offline computations

generated the relevant statistical mechanic data for research analysis.

2) Node Interactions.

The previous discourse presented the general flow of information in the simulation.

The core processes of the simulation were driven by node state changes. Node state data

were collected at pre-determined time intervals during the simulation. The intervals were

determined using significant changes in network stability. For each unique attack scenario,

from the set of critical nodes, attacked nodes were randomly “designated” by the simulation.

Critical and attacked nodes were previously defined in Chapter III. The number of critical

nodes does not exactly equal the top percent of all nodes as depicted in Table 4.1. Since

multiple nodes have the same degree, the number of critical nodes will be greater than the

percent of the total number of nodes. The total number of nodes in the pre-attack network

was 11,801.

75

Table 4.1. Simulation runs classes denoting critical node removal proportions

Run Class Top xx percent of nodes by

degree sorted in highest to

lowest degree order

(Critical Nodes)

Number of

Critical Nodes

Tolerance

Parameter

RC0051 xx = .50% 60 .10

RC0101 xx = 1.0% 124 .10

RC0151 xx = 1.5% 179 .10

RC0201 xx = 2.0% 241 .10

RC0251 xx = 2.5% 304 .10

RC0301 xx = 3.0% 363 .10

RC0351 xx = 3.5% 421 .10

RC0401 xx = 4.0% 478 .10

RC0451 xx = 4.5% 544 .10

RC0501 xx = 5.0% 613 .10

As depicted in Table 4.1, each individual attack scenario was represented as a run class. Each

attack scenario was initially applied against the same pre-attack network connectivity state

baseline. As shown in Figure 4.6, the initial pre-attack connectivity state was altered as

attacked nodes were removed from the simulation. This led to cascading node failures

which, in turn, generated multiple intermediate connectivity states. Each intermediate state

was the result of state changes of the network‟s nodes. During the simulation, one node in a

released node-pair attempted communication with the other node in the pairing. If one of the

2 nodes were determined to be a temporary orphan, then the temporary orphan recovery

process was engaged. This process either created a new communication node-pairing or it

generated a permanent orphan. The temporary orphan recovery process was defined earlier

in this dissertation in Chapter III, Section A.

76

As the number of permanent orphan nodes increased, the cascading affect was

magnified. This led to increasingly degraded network stability. The stability was measured

through its connectivity topology. The connectivity states were represented by the set of

active node-pairs, and their stability was computed using their degree distribution

characteristics. The network connectivity simulation continued to execute until the halting

conditions were encountered in the final state.

77

Figure 4.6. Summary of the node interactions during the simulation

78

E. Simulation Runs

1) General Strategy.

The overall process is summarized:

1. Extract Rocketfuel router adjacencies (node-pairs) for the pre-attack network

connectivity state and use this to prime the CPN attack simulation.

2. Execute the simulation against a set of attack classes with varying degrees of severity.

3. Extract the simulation audit trail for each simulation run.

4. For each simulation run, compute the global network connectivity measures discussed in

this chapter, such as mutual information transfer. This computation was performed

offline.

Figure 4.7 depicts the simulation run architecture and the simulation run strategy used

in this research. The Rocketfuel project extracted snapshots of selected autonomous systems

data from the Internet (Rocketfuel: An ISP topology mapping engine n.d.; Spring et al. 2004;

Spring, Mahajan, and Wetherall 2002). The extracted data consisted of backbone and access

router pairs. The data collection methods used in this research will be discussed later in this

chapter. The pre-attack state of this simulation was developed using one of the Rocketfuel

datasets. Specifically, this research simulation focused on the United States AT&T backbone

and access routers. Forty simulation runs representing 10 different attack scenarios were

implemented. For each attack scenario, there was a corresponding run class. A run class

represents an attack class and a protection class. The protection class for all runs is 1,

representing a link capacity of 1.1 for all nodes. Link capacities were discussed in Chapter

III. As shown previously in Table 4.1, the number of attacked nodes for each attack class

ranged from 0.5% to 5.0% of the total number of network nodes.

79

Figure 4.7. Simulation execution strategy

As shown in Figure 4.7, for each run class there were 4 simulation run types. Run

type 1 represented the network simulation with no protection. Run type 1 simulation runs

were executed first. Using these results, the protection strategies were developed. Table 4.2

depicts the nature of the nodes protected by each protection strategy. Node-1 is one node in

an active node-pair, and node-2 represents the other node. For instance, run type 2 identifies

80

all node-pairs where node-1 is of degree 1 and node-2 is of degree 2. For run type 2, all pre-

attack nodes with node-1 degree that are in a node-pair with a node-2 degree node were

protected. A protected node cannot be removed from the network by a cascaded node failure

or direct attack. Protection strategy development as an experimental treatment will be

discussed in Chapter VI. As shown in Table 4.2, run type 1 represented the network without

node protection, run type 2 is the network simulation using protection strategy 1, run type 3

protects the network simulation with protection strategy 2, and run type 4 implements

protection strategy 3. Protection strategy 3 was studied as an extension of protection strategy

2. The purpose was to observe the effects of increasing the number of nodes from 1009 to

1257. Protection strategy 0 depicted the simulations without any additional protections and it

was used as a baseline for the comparisons the other 3 protection strategies.

For example, as shown in Table 4.2, for all run type 4 simulations, node-pairs of type

1-2 found in the pre-attack network were protected by protecting one node in the node-pair.

A node-pair type 1-2 consists of two nodes, one with a degree of 1 and the other with a

degree of 2. The protected node for run type 4 was the node with a degree of 2 of all node-

pairs of type 1-2. The protection strategy protected individual nodes in specific node-pair

types. Only one of the nodes in the node-pair is protected. The protection determinations are

made using the pre-attack network only. Node-pair types were defined in Chapter I.

The network connectivity states for all run classes, except 0451 and 0501, were

computed at 50,000 ms (in real time) data collection intervals. Due to the severity of the

attacks in run classes 0451 and 0501, the network degraded at a very rapid rate, leading to a

limited volume of data points. Consequently, for these 2 run classes the data were collected

81

at 2,000 ms intervals. In Table 4.2, RC represented the set of all run classes: 𝑅𝐶 =

 0051, 0101, 0151,… 0501 and * indicates that the column is not applicable.

Table 4.2. Protection strategy

Protection

Strategy

Run

Classes

(Total =

10)

Run

Type

Degree

of

Node-1

Degree

of

Node-2

Protect

Number

of Nodes

to

Protect

Protected

% of all

Pre-

Attack

Nodes

0 RC 1 * * None None *

1 RC 2 1 2 Node-1 1009 8.5%

2 RC 3 1 2 and 3 Node-1 1257 10.7%

3 RC 4 1 2 Node-2 1009 8.5%

2) Simulated Attack, An Illustrative Example.

For clarification, Figure 4.8 presents a useful example. The following assumptions are

in place for this example:

1. Node-B is a member of the set of removed nodes.

2. Node-A is an active node.

3. Node-X is an available neighbor node for node-A.

4. Node-X is selected using preferential attachment to communicate with node-A.

5. Node-X becomes overloaded after forming a new link with node-A.

As shown in Figure 4.8, the router table node-pairs are the set of all node-pairs

𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 prior to the attack at 𝑡 = 0. It is static and assumes the router tables are not

refreshed during the simulation. All released node-pairs are randomly selected from this set

and released continuously throughout the simulation. A node-pair can be released more than

82

once. First, node-pair A-B is released; this represents a communication attempt based on the

router tables between Node-A and its neighbor Node-B. The simulation stream processes

determine whether Node-A and/or Node-B is a member of the set of removed nodes. The set

of removed nodes is dynamically changed as nodes are orphaned and attacked. If Node-B is

not a removed node, then the communication is successful and no other simulation actions

are taken.

In this example, Node-B is a removed node. This leads to Node-A becoming a

temporary orphan. The simulation stream process then selects a neighbor node of Node-A

using preferential attachment mechanisms. The previously failed communication attempt

will now be attempted using this newly selected node. In this example, Node-X is selected to

facilitate the previously failed communication with Node-B. This leads to additional link

load on Node-X. Before this communication is classified as successful, it must be

determined whether additional load on Node-X has exceeded its link capacity. Link capacity

was previously discussed in Chapter III. An example of this determination is depicted in

Table 4.3.

83

Figure 4.8. Communication attack simulation example

Table 4.3 depicts the connectivity profile of Node-X, before and after it was selected.

If the link capacity is exceeded, Node-X is an overloaded permanent orphan, the network

connectivity state is updated, and Node-X is added to the set of removed nodes. As a result,

node-A is again a temporary orphan. It must now find another neighbor to complete the

communication attempt. If all of its neighbors have been attacked or are permanent orphan

84

nodes, then Node-A will become a null-link permanent orphan. Then the network

connectivity state is updated and node-A is added to the set of removed nodes.

Table 4.3. Overloaded orphan node profile in Figure 4.8

Simulation Action Node
Neighbor Node

List
Degree Capacity

Before node-pair A-X

(communication attempt)

A

X

C,X,W,C

C,W,A,W,D

4

5

6

6

After node-pair A-X is incrementally

added to X (overloaded orphan node X)

A

X

C,X,W,C

C,W,A,W,D,A

4

6

6

6

If the link capacity of Node-X is not exceeded after the new communication with

Node-A, then the communication is successful and the network connectivity state is updated.

The network connectivity state is represented by the profiles of all active nodes and node-

pairs, 𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 and 𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 at 𝑡 > 0. All node connectivity states are stored in the CPN

record structure called networkDB. A node connectivity profile stores a dynamic record for

each node that includes its current degree and active neighbors and its current state. This

process is repeated for all released node-pairs until the simulation halting condition is

encountered. All node and node-pair states have been previously defined in Chapter III of

this dissertation.

85

F. Network Connectivity State Computations

The audit trail recorded all node state changes during each simulation run over

constant time intervals. This information was used to compute the network‟s temporal

stability and degree characteristics. For each simulation run, the audit trail collected all node

status (𝑛𝑡
𝑠) changes that denote a node‟s state. For each simulation run, the audit trail was

used to represent the connectivity and stability characteristics of the attacked network over

the life of the simulation. The status codes in the simulation were defined as:

1. Status = 0: node was considered active and a member of the set of active nodes

(𝑁(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒).

2. Status = 1: node was considered an attacked node and a member of the set of attacked

nodes (𝑁(𝑡)𝐴).

3. Status = 3: node was considered a Null-Link node and a member of the set of Null-Link

nodes (𝑁(𝑡)𝑁𝑢𝑙𝑙).

4. Status = 4: node was considered a overloaded node and a member of the set of

overloaded nodes (𝑁(𝑡)𝑂𝐿).

The audit trail output file recorded all node state changes and other node specific

information. The information collected was node-id, node status, node neighbor list, time of

change in milliseconds, and timestamp in user clock time hours and minutes. After each

simulation run was halted, this information was fed to a series of Visual Basic computational

routines. These routines were developed specifically for this research. At specific time

intervals, these routines computed the network‟s connectivity state, the extent of the

network‟s fragmentation, and its stability. Appendix C presents the all output files generated

for each simulation run.

86

1) Pre-Attack Data Collection Methodology.

Traceroute is a well-known computer network research tool that traces network

packets from their original source, through their intermediate paths and then to its ultimate

destination. It has been found to be an appropriate technique for collecting network path data

for studies of the Internet‟s topological characteristics (Leguay et al. 2007; Mahadevan et al.

2006; Mahadevan et al. 2005). Rocketfuel is a traceroute-based Internet topology mapping

tool developed at the University of Washington (Alderson et al. 2005; Donnet and Friedman

2007; Liljenstam, Liu, and Nicol 2003; Spring et al. 2004; Spring, Mahajan, and Wetherall

2002). From December 2001 to January 2002, the Rocketfuel team collected large volumes

of ISP-level traceroute path data representing the 10 distinguishable world-wide ISP router

infrastructures. These data provided the requisite router adjacency relationships needed to

model the pre-attack network state used in this research.

An illustrative example of the router connectivity architecture of the data collected by

the Rocketfuel project team is depicted in Figure 4.9. Each Internet Service Provider (ISP,

also known as an autonomous system [AS]) consists of multiple server regions referred to as

points-of-presence (POP). Each POP connects user and enterprise level servers. Three POP

regions are shown in Figure 4.9. Special purpose routers that connect the POP regions are

known as backbone and access routers. These routers facilitate large volumes of Internet

traffic within and between POPs. They also facilitate network traffic among the ISPs.

Figure 4.9 illustrates one ISP with 3 different points-of-presence depicted as POP-1,

POP-2, and POP-3. As shown in the system architecture example in Figure 4.9, backbone

routers (layer 0) connect each POP in the ISP. Access routers connect the enterprise (user)

level routers to each other and to the backbone routers. The actual number of access routers

87

in a POP varies. Most inter-POP communication travels through the backbone routers, and

most intra-POP traffic travels through the access routers. The pre-attack router adjacencies

used in this research simulation represent the backbone and access router communications of

the United States AT&T (ASN7018) ISP regional infrastructure. Figure 4.10 was taken from

Spring, Mahajan, and Wetherall (2002) and depicts a descriptive rendering of the for layer 0

(backbone) routers in this infrastructure.

Figure 4.9. POP backbone and access router architecture example

88

Figure 4.10. United States AT&T router backbone (layer 0) taken from (Spring, Mahajan,

and Wetherall 2002), Image from: NASA‟s Visible Earth Project http://visibleearth.nasa.gov

G. Research CPN Model and Simulation Execution

The CPN syntax was introduced earlier in this chapter. The main CPN page of this

simulation as depicted in Figure 4.11 represents the overall high level implementation

summary. All sub-pages interact with the main page through the standard input/output ports

provided in CPN Tools. The main page controls the overall flow of the simulation and the

evaluation of each node-pair. For reference and clarity purposes, all transitions and places

presented are assigned reference numbers. All CPN function code and color data

declarations can be found in appendices A and B of this dissertation. This section presents

the CPN main page and an overview of the model and simulation execution. The CPN sub-

pages associated with the main page and a more detailed level of granularity can be found in

Appendix D and Appendix E.

http://visibleearth.nasa.gov/

89

1) CPN Main Page.

As shown in Figure 4.11, transitions A1, A2, and A3 fire to initialize the CPN list

tokens found on places 4, 2, 3 respectively. All data structures were loaded with the pre-

attack node data. This occurs during the first few clock ticks of the simulation. The timing

of all CPN actions was controlled by the CPN simulation engine. Place 1 triggered transition

B to fire and transition B created a list of pre-attack network connectivity node records

(networkDB). The list was stored on place 6. This list of node records was implemented

using CPN record structures. During the simulation, the networkDB list was updated with

the current node states. The networkDB was used in transition D1 to evaluate each currently

released node-pair.

Transition C randomly designated critical nodes to be transformed into an attacked

node from the critical nodes list on place 3. As previously discussed in Chapter II, attacked

nodes are removed from all node communications, and they begin the cascaded failures of

their children nodes. Transition C updates the network DB record for critical nodes

randomly designated for attack. The transition also added the attacked node to the set of

removed nodes on place 7. This process continued throughout the simulation until all the

critical nodes were attacked. Node states and critical nodes were previously defined in

Chapter III.

The CPN list token on place 6 represented a list of records where each record (tuple)

represented one node‟s connectivity state at time. The node tuples were defined in Chapter

III, Section A. Continuously, at time 𝑡, as the simulation proceeded, transition D2 was

randomly fired to release node-pairs into the simulation stream. The release of node-pair

tokens into the simulation stream represented a single communication attempt between two

90

adjacent routers. When a node-pair was released it was added to place 5. Eventually it

triggered the random firing of transition D1.

Figure 4.11. CPN main page

As node-pairs were available on place 5, each node-pair was triggered transition D1

to fire. It executed a set of functions that evaluated each released node-pair. This process

was previously defined in Chapter III. As each transition in Figure 4.11 fired, the associated

sub-page took control of simulation execution. Each sub-page associated with a specific

transition rectangle is denoted on the transition in Figure 4.11. For example, when transition

D2 is enabled, it will shift control to sub-page “ReleaseNP.” Table 4.4 depicts the sub-pages

that interact with each transition on the main page shown in Figure 4.11.

START-B
1`1

INT

Place 6

All Nodes
Network DB

NODE_RECORD1_LIST

NP

NEIGH_NODE_LIST_LIST

Place 4

All Network

NodePairs

NP_LIST

[]

REMOVED_NODE_LIST

REMOVED_NODE_LIST

Place 1
Start

Network

Transition A3
Input

Critical Nodes List
GetCriticalNodeList

START-D

Transition A2
Input

Node Neighbor Lists

IntializeNodeNeighList

START-C

IntializeNodeNeighList
GetCriticalNodeList

Transition A1
Input NodePairs

IntializeNodePairsIntializeNodePairs

START-A

Transition B
Intialize

Network
Database

IntializeNetworkDBIntializeNetworkDB

Place 3
All

CriticalNodes

List

Place 2
All Network

Node Neighbor
Lists

Transition C

Update DB
Critical Nodes

IntializeCriticalNodesIntializeCriticalNodes

Transition D2
Release

One Random
Node Pair ReleaseNPReleaseNP

Transition D1

Evaluate Node Pairs

EvaluateNP

Place 7
All Removed

Nodes List

Place 5

OneNodePair
EvaluateNP

91

Table 4.4. Main CPN page transitions and associated sub-pages

Transition that Fires Control taken by sub-page

A1 IntializeNodePairs

A2 IntializeNodeNeighList

A3 GetCriticalNodeList

B IntializeNetworkDB

C IntializeCriticalNodes

D1 EvaluateNP

D2 ReleaseNP

2) Core Simulation Evaluation Algorithm.

Node states for each node will vary over the life of the simulation run. At any given

time, whenever a node-pair is released into the simulation stream, one of the two nodes may

potentially be an orphan node. The simulation stream is a set of processes that are used to

evaluate a node-pair and determine whether one of the nodes has been orphaned due to a

cascaded failure of its partner. Network connectivity states change as the attack proceeds

until the halting conditions are encountered. The halting conditions and network

connectivity metrics was previously defined in Chapter II. The pseudo-code for the

simulation is:

92

BEGIN /* Start simulation */

Initialize node-pair set; /* Transition A1 */

Initialize CPN data records; /* Transition B */

Initialize node neighbor set; /* Transition A2 */

Initialize Critical nodes set; /* Transition A3 */

/* Process 1 – Runs in parallel with Process 2*/

DO UNTIL Number of attack nodes = 0

Randomly designate one attacked node from critical node list; /* Transition

C */

Add to removed nodes set; /* Place 7 */

 LOOP

/* Process 2 – Simulation Stream - Runs in parallel with Process 1*/

DO UNTIL halting condition

Release one node-pair at random; /* Transition D2 */

/* Start Transition D1 */

Evaluate node-pair against removed nodes set;

If orphan node then

BEGIN

Update orphan set;

Add orphan to removed nodes set;

Update network connectivity state;

END

else

do nothing;

END IF

/* End Transition D1 */

LOOP

END.

93

3) CPN Main Page Flow.

Table 4.5 depicts a summary of the CPN places in Figure 4.11. The tokens that move

between places carry one of the following structures: (1) node-pairs, (2) CPN list of network-

DB records representing the current node states, and (3) nodes.

Table 4.5. Summary of CPN places in Figure 4.11

Reference in Figure 4.11 Description

Place-1 Token used to start the simulation.

Place-2 A list of list structures holding the neighbor node relationships as

described in detail in the appendix.

Place-3 The set of critical nodes, previously defined as 𝑁𝑤 (𝑡 =
0)𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝐶𝑧).

Place-4 The set of all node-pairs, previously defined as𝑃(𝑡)𝐴𝑐𝑡𝑖𝑣𝑒 .

Place-5 One released node-pair for evaluation, previously defined as

(𝑛𝑖 𝑡 , 𝑛𝑗 𝑡).

Place-6 Current state of the network represented as a list of networkDB

records, one per node. Defined as [<node-tuple1>, <node-

tuple2>, <node-tuple3>,…. <node-tupleN>], where <node-

tupleN> is defined as <node-id, node-status, [node-neighbor list],

timestamp, simulation real time>. [..] denotes a CPN list.

Place-7 The set of all removed nodes, previously defined as 𝑁(𝑡)𝑅 .

Figure 4.12 depicts the functionality of the transition D1 denoted Figure 4.11. It is

responsible for implementing process 2 in the previous paragraph. The token flow in this

transition is controlled as follows:

1. As depicted by the annotation box labeled “A,” as the node-pair was released into the

simulation stream, if one of the nodes (for example, NODE2) was a member of the

removed nodes set (Place 7), then the other node (NODE1) was transformed into a

temporary orphan.

94

2. At annotation “A,” if neither node was a member of the set of removed nodes (Place 7)

then the node-pair was returned to the set of all node-pairs (Place 4).

3. At annotation box labeled “B,” NODE1 attempted to establish a new link with an

available neighbor node through preferential attachment mechanisms. In this figure, the

new node is NODE3.

4. At annotation box labeled “C,” if link load of NODE3 did not exceed its link capacity

then the new node-pair was added to the set of node-pairs (Place 4).

5. At annotation “C,” else if NODE3 link capacity was exceeded then the communication

failed and NODE3 was transformed into an overloaded orphan. It was then added to the

set of removed nodes (Place 7). NODE1 executed steps 2 and 3 above until a successful

node-pair was established.

6. At annotation “B,” if no more neighbors existed for NODE1 in step 5 then NODE1 was

transformed into a null-link orphan and it was added to the set of removed nodes (Place

7).

95

Figure 4.12. CPN main page flow functionality

96

All CPN data type declarations are available in Appendix A and CPN function code

in Appendix B. This section has presented the top layer of the CPN model and simulation

execution algorithms. Simulation code and detailed description of the CPN sub-pages

discussed here can be found in Appendix A and Appendix B.

In this chapter the model and simulation design used in this research was introduced.

This chapter also covered the research simulation run strategies, data collection methodology

and the foundations. The results of the simulation runs defined in this chapter will now be

presented in Chapter V.

97

CHAPTER V. RESULTS

This chapter will present the execution results of the 40 simulation runs performed in

this research. For each of 4 run types, this research executed 10 simulations, one for every

attack class. Table 4.1 defined the simulation‟s execution parameters. Table 4.2 defined the

attack scenarios for the attack classes. The attack modeling and simulation techniques used in

this section were previously discussed in Chapter IV. As discussed earlier in Chapter II,

network stability was measured using information transfer (I) and the network connectivity

parameter (NCP). The terms terminal conditions, equilibrium and critical threshold used

later in this chapter were defined previously in Chapter I. Data were collected in 50-second

time intervals to highlight significant change in network stability as it related to the research

objectives. Simulation time represented real clock time.

As previously discussed in Section C of Chapter II, error and attack studies indicated

that node removals targeted at a scale-free network‟s most connected nodes led to systemic

degradation in network stability. The literature indicates that the extent of this degradation

was dependent upon the attack‟s severity (Albert, Jeong, and Barabasi 2000; Crucitti et al.

2004; Guillaume, Latapy, and Magnien 2005; Lai, Motter, and Nishikawa 2004; Salla 2005;

Wang et al. 2008). For this research, as shown in Table 4.1, attack severity was defined from

least to most severe attack classes as follows: 0.5%, 1.0%, 1.5%, …, 5.0%. The first section

in this chapter will show that the model and simulation were consistent with the relevant

literature. The next section will establish the reliability of the network stability results. This

chapter concludes by presenting data that support the foundational objectives of this research

investigation.

98

A. Model and Simulation Validation and Consistency

The simulation design was validated using 10 run type 1 simulations. Each simulation

collected data at 50-second real time intervals. This research investigation compared the

results of these executions with earlier research studies of scale-free computer networks.

This section will consider scale-free computer network: 1) error and attack studies, 2)

fragmentation, 3) communication robustness, and 4) heterogeneous linking characteristics.

1) Attack Severity – Error and Attack Studies.

This section will validate run type 1 simulation results against foundational error and

attack studies found in the literature. For each simulation run a critical threshold was

encountered. After this critical threshold there was a sudden and rapid decrease in network

stability. The existence of a critical threshold was supported in the scale-free computer

network error and attack studies found in the literature (Barabasi and Albert 2002; Cohen

2000, 2001; Dorogovtsev and Mendes 2002; Lopez 2007). The supporting evidence for this

assertion will be presented later in this chapter.

By varying the proportion of nodes removed during each simulation, this research

was able to systemically reduce the network connectivity stability. These results are shown

in Figure 5.1 and Figure 5.2 and were consistent with previous error and attack studies

(Albert, Jeong, and Barabasi 2000; Crucitti et al. 2004; Guillaume, Latapy, and Magnien

2005; Lai, Motter, and Nishikawa 2004; Salla 2005; Wang et al. 2008). As shown in Figure

5.1, Figure 5.2, and Figure 5.3, the fraction of nodes removed was represented as: 𝑓 =

𝑁𝑡
𝑅

𝑁𝑡=0
𝐴𝑐𝑡𝑖𝑣𝑒 ; where 𝑁𝑡

𝑅 and 𝑁𝑡=0
𝐴𝑐𝑡𝑖𝑣𝑒 were previously defined in Chapter III, Section A. As

discussed earlier, 𝑁𝑡
𝑅 reflected both nodes removed directly by the targeted attack as well as

99

nodes that were subsequently orphaned by cascaded failures. For reader clarity, the dotted

line in Figure 5.2 represents the previously cited NCP ≅ 2 cutoff.

Figure 5.1 and Figure 5.2 depicts changes in network stability relative to changes in

the proportion of nodes removed during the attack simulations. As shown in Figure 5.1 and

Figure 5.2, for each independent attack class the values of I and NCP decreased with an

increase in the fraction of nodes removed. As the fraction of nodes removed increased,

attack classes 0.5% through 4.0% established a local minimum at varying levels of I and

NCP. This local minimum was influenced by the attack severity. The local minimums for

each attack class shown in Figure 5.1 and Figure 5.2 decreased as the relative attack severity

increased. As shown in Figure 5.1 and Figure 5.2, attack classes 4.5% and 5.0% did not

establish a local minimum. Instead, both attack classes decreased at a relatively steady rate

towards the terminal conditions. The terminal conditions for these two attack classes was

achieved at 𝑓 ≅ 0.70.

Figure 5.3 depicts the change in the fraction of removed nodes for all 10 simulation

runs. Independent of attack class, it shows that the fraction of nodes removed increases as a

function of the simulation time. The rate and magnitude of this increase was influenced by

attack class severity. The fraction of all nodes removed and the rate of removal increased as

the attack class severity increased. As depicted in Figure 5.3, the rapid increase in the first

200 seconds was consistent with results that will be presented later in this chapter.

The local minimums established in Figure 5.1 and Figure 5.2 was consistent with the

sudden rate change shown in region A on Figure 5.3. For attack classes 0.5% through 4.0%

shown in Figure 5.1 and Figure 5.2, after the local minimum was established, I and NCP

remained relatively constant with an increase in the fraction of nodes removed. This trend

100

continued until each attack class encountered a critical threshold at 𝑓 ≅ 0.95. At 𝑓 ≅ 0.95,

I and NCP suddenly and rapidly decreased towards the terminal conditions. Terminal

conditions were previously discussed in Chapter III. The critical thresholds found in Figure

5.1 and Figure 5.2 was consistent with the critical thresholds presented later in this chapter.

Figure 5.1. Run type 1, information transfer versus nodes removed fraction over time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

I (bits)

f (Fraction Removed)

0.5% 1.0% 1.5% 2.0%

2.5% 3.0% 3.5% 4.0%

4.5% 5.0%

101

 Figure 5.2. Run type 1, connectivity parameter versus nodes removed fraction over time

Over the 10 simulations studied, on average approximately 2.85% of the total

removed nodes were nodes that were directly targeted for removal. As previously defined in

Chapter III, the total number of removed nodes is the sum of all nodes permanently orphaned

plus all nodes targeted for attack; 𝑁(𝑡)𝑅 = 𝑁(𝑡)𝑂 + 𝑁(𝑡)𝐴 . Therefore, the nodes removed in

Figure 5.1, Figure 5.2, and Figure 5.3 primarily reflect network changes due to cascading

node failures. Permanent orphans, attacked nodes, and cascaded failures were previously

defined in Section A of Chapter III. Cascaded nodes were previously defined as permanent

orphans (𝑁(𝑡)𝑂).

0

2

4

6

8

10

12

14

16

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

NCP

f (Fraction Removed)

0.5% 1.0% 1.5%
2.0% 2.5% 3.0%
3.5% 4.0% 4.5%
5.0%

Total Fragmentation (NCP=2)

102

 Figure 5.3. Run type 1, fraction of all nodes removed versus simulation time

The change in network stability shown in Figure 5.1, Figure 5.2, and Figure 5.3 were

consistent with previous scale-free attack studies (Albert, Jeong, and Barabasi 2000; Crucitti

et al. 2004; Guillaume, Latapy, and Magnien 2005a; Lai, Motter, and Nishikawa 2004; Salla

2005; Wang et al. 2008). These cascaded node failure trends were similar to those found by

other researchers (Cohen 2001; Huang and Li 2007; Motter 2004; Motter and Lai 2002; Wu

and Fang 2008). The next section will cover another characteristic of scale-free networks

under attack, network fragmentation.

2) Network Fragmentation.

For the 10 run type 1 simulations executed, Figure 5.4 depicts evidence of increasing

network fragmentation. As previously discussed in Chapter II, relative network

0.00

0.20

0.40

0.60

0.80

1.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

f

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%
2.0% 2.5% 3.0%
3.5% 4.0% 4.5%
5.0%

Region A

103

fragmentation can be measured using the network connectivity parameter (NCP). Higher

NCP values indicate less fragmentation. Equation (46) in Chapter III defines the network

connectivity parameter (NCP). Each attack class experienced similar rapid fragmentation in

the first 150 seconds. Attack classes 4.5% and 5.0% rapidly and completely fragmented into

isolated clusters in the first 150 seconds.

As shown in Figure 5.4, all run type 1 attack classes experienced a sudden decline in

network fragmentation in the first 100 seconds. The information transfer for attack classes

4.5% and 5.0 % rapidly declined and met their terminal conditions in the first 150 seconds.

The information transfer decrease in the first 100 seconds experienced by all attack classes

was influenced by the relative attack severity. Over the first 100 seconds, the rate and

magnitude of network fragmentation increased with an increase in attack severity.

Figure 5.4 depicts that attack classes 0.5% through 4.0% established a local minimum

value at approximately 200 seconds. This local minimum value decreased with an increase

in attack severity. After the local minimum was established, the network fragmentation level

for each attack class remained relatively constant over time. This level was maintained until

each attack class encountered its critical threshold. The attack severity influence on the

critical threshold time for attack classes 0.5% through 2.0% varied. Attack classes 2.5%

through 4.0% achieved their critical threshold earliest. The critical threshold time increased

with an increase in attack severity for attack classes 2.5% through 4.0%. The most severe

attack classes, 4.5% and 5.0%, did not project a critical threshold or local minimum.

104

 Figure 5.4. Run Type 1, network connectivity parameter vs simulation time

These results showed evidence of network fragmentation during the attack

simulations. This discovery was consistent with the literature (Albert, Jeong, and Barabasi

2000; Barabasi and Albert 2002; Cohen 2000, 2001; Crucitti et al. 2004; Wang, Guan, and

Lai 2009). The next section will cover the loss of heterogeneity that has been observed

during a connectivity attack that results in scale-free network communication destabilization.

3) Loss of Heterogeneous Linking.

One way to study network stability is through its heterogeneous linking behaviors. It

has been shown that as a scale-free network‟s heterogeneous connectivity decreases, its

communication robustness also decreases (Crucitti, Latora, and Marchiori 2004; Demetrius

and Manke 2005; Hu and Wang 2008; Sanchirico and Fiorentino 2008; Wang et al. 2006;

Wu and Fang 2008). Loss of heterogeneity and robustness can be measured indirectly

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NCP

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

5.0%

Total Fragmentation (NCP=2)

105

through changes in information transfer and entropy. This research studied variations in the

network‟s information transfer and information entropy during the simulated attacks. This

section will present these results and their validity.

a) Mutual Information Transfer Loss.

As previously discussed, assortativity is an indirect measure of a network‟s

heterogeneity. Scale-free and heterogeneous networks tend to be disassortative (r < 0)

(Piraveenan, Prokopenko, and Zomaya 2009; Sole and Valverde 2004). It has been shown

that positive information transfer values indicate assortative connectivity (r > 0) (Piraveenan,

Prokopenko, and Zomaya 2009; Sole and Valverde 2004). It has also been shown in the

literature that assortative connectivity is not heterogeneous and robust (Piraveenan,

Prokopenko, and Zomaya 2009; Sole and Valverde 2004). The results presented here

showed that the information transfer decreased significantly towards zero for all of the 10 run

type 1 simulations. During the simulated attacks, as the network connectivity changed the

information transfer decreased towards zero. It has been shown in the literature that this

behavior is indicative of a network with decreasing heterogeneity (Piraveenan, Prokopenko,

and Zomaya 2009; Sole and Valverde 2004). Results trends that support this assertion will

be presented later in this section.

b) Information Entropy Loss.

Information entropy was previously defined in Section D of Chapter III. Network

heterogeneity can be measured through its information entropy (Demetrius and Manke 2005;

Gudkov and Montealegre 2008; Wang et al. 2006). Researchers have found that the

heterogeneity decreases with a decrease in entropy (Gudkov and Montealegre 2008; Wang et

al. 2006). As shown in Figure 5.5, the combined data of these 10 simulations were used to

106

compute the average entropy and the average <k> for all run type 1 simulations. The data

were evaluated in 50-second time intervals.

Figure 5.5 depicts the average <k> plotted against its corresponding average entropy

for each run type 1 simulation. It shows a direct polynomial relationship between the

simulated average <k> and its average entropy. The relationship was statistically significant

at 𝛼 = 0.01. Table 5.1 depicts the change in entropy that was found at the terminal

condition for all run type 1 simulations. As shown in Table 5.1, the average decline in

entropy over the life of the simulation was 52.4%. Figure 5.5 and Table 5.1 were consistent

with Figure 2 found in Wang et al. (Wang et al. 2006).

Figure 5.5. Run type 1, avg. entropy versus avg. degree, combined runs, 50-second intervals

y = -0.2302x2 + 2.0486x - 3.03
R² = 0.9237

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5

Average
Entropy

Average <k>

107

Table 5.1. Run type 1 simulations, entropy at total collapse at I = 0

Attack

Class

Entropy at Terminal

Condition (I = 0)

Percent Entropy Change from

Pre-Attack Entropy of 1.48

0.5% 0.60 -59.5%

1.0% 0.65 -56.1%

1.5% 0.70 -52.7%

2.0% 0.69 -53.4%

2.5% 0.60 -59.5%

3.0% 0.59 -60.1%

3.5% 0.60 -59.5%

4.0% 0.85 -42.6%

4.5% 0.95 -35.8%

5.0% 0.87 -41.2%

10 Run

Average

0.71

+/- .13

-52.04%

+/- 0.09

As previously discussed in Section C of Chapter II, during a targeted node removal

attack, the literature indicates that as the network fragments over time the characteristic

scale-free heterogeneity diminishes. This can be reflected as a decrease in the network

connectivity parameter and entropy. The combined results of all run type 1 simulations

indicated 1) a Pearson correlation between NCP and the information entropy of 0.48 and 2) a

Pearson correlation of -0.69 between the information entropy and simulation execution time.

Both correlations were statistically significant at the 𝛼 = 0.1 level. Over the life of each

simulation, information entropy decreased as the network fragmented. This relationship was

consistent with the literature (Cohen 2001; Crucitti, Latora, and Marchiori 2004; Demetrius

and Manke 2005; Gudkov and Montealegre 2008; Motter and Lai 2002; Wang et al. 2006) .

This research has provided evidence that the information entropy, information

transfer, and the network connectivity parameter simulation data were consistent with the

relevant scale-free network literature. The information entropy, information transfer, and

network connectivity decreased over the life of each attack simulation. As previously

108

discussed in Chapter II, the literature indicates that these behaviors are indicative of a scale-

free network undergoing a significant loss of heterogeneity, communication robustness and

stability.

B. The Relationship between NCP and I

As previously discussed in Chapter III, information transfer (I) and the network

connectivity parameter (NCP) were used in this research to monitor the network‟s

connectivity stability. The relationship between the network connectivity parameter and

information transfer is presented in Figure 5.6. This relationship exhibited a strong positive

Pearson correlation of 0.90. The relationship was statistically significant at 𝛼 = 0.1. Since

this research has uncovered a strong correlation between information transfer and the

network connectivity parameter, for the remainder of this dissertation the discussion will be

limited to information transfer only. Additional network connectivity parameter data can be

found in Appendix E, Appendix F and Appendix G. The next section will present the

foundational investigation of node-pair relationships with this network performance

degradation.

109

Figure 5.6. Run type 1, NCP and information transfer, 10 combined simulations

C. Node-pair and Information Transfer Correlations

The relationship between node-pair types and network stability will be presented in

this Section. The combined results of 10 run type 1 simulations were utilized to compute

Pearson correlations between information transfer and the number of node-pairs by type.

The correlations were studied in 50-second time intervals over the first 500 seconds. This

research considered the relative strength of these correlations as a means to select specific

node-pair-types for further study. R
2
 of 0.8 indicated that the linear fit was significant.

During the first 500 seconds of the combined run type 1 simulations, node-pair types

that demonstrated potential to achieve the research objectives met these criteria: 1) a positive

y = 0.1024x + 0.0901
R² = 0.8125

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20

Information
Transfer

(Bits)

Network Connectivity Parameter

110

or negative correlation greater than 0.8 and 2) the relationship was statistical significant at

the α=0.1 level. This correlation cutoff provided a significantly strong enough correlation to

distinguish emergent patterns in the node-pair type counts.

Node-pair types represent the state of the network at a specific time. Information

transfer was previously shown in Chapter II to represent the stability of the network

connectivity. As the information transfer decreases, the network-wide connectivity stability

decreases, and the amount of information uncertainty between two randomly selected nodes

increased. If the number of certain node-pairs is strongly correlated with changes in the

information transfer, then the number of these node-pairs might indicate an attack‟s

existence.

Table 5.2 and Table 5.3 depict all correlations found above the correlation cutoff.

Both tables were sorted in decreasing order of correlation strength. Table 5.2 depicts node-

pair type correlations with a negative correlation with the information transfer (I). Table 5.3

presents node-pair type correlations with a positive correlation with the information transfer.

Table 5.2. Run type 1, potential attack markers for attack detection, node-pair counts having

strong negative correlation with information transfer for the first 500 seconds

Node-pair

Type

Degree of node1

in node-pair

Degree of node2

in node-pair

Counts having Strong

Negative Pearson

Correlation with I

1-1 1 1 -0.902

4-4 4 4 -0.832

1-56 1 56 -0.821

111

Table 5.3. Run type 1, potential attack markers for network protection, node-pair counts

having strong positive correlation with information transfer for the first 500 seconds

Node-pair Type Degree of node1

in node-pair

Degree of node2

in node-pair

Counts having Strong
Positive Pearson

Correlation with I

4-54 4 54 0.988

4-55 4 55 0.988

4-40 4 40 0.987

4-31 4 31 0.965

4-51 4 51 0.963

4-48 4 48 0.957

2-17 2 17 0.928

2-2 2 2 0.927

3-60 3 60 0.923

1-2 1 2 0.913

3-18 3 18 0.911

3-21 3 21 0.909

2-7 2 7 0.905

3-17 3 17 0.902

2-15 2 25 0.890

2-24 2 24 0.887

1-17 1 17 0.869

2-22 2 22 0.857

1-3 1 3 0.845

3-29 3 29 0.842

3-65 3 65 0.838

4-21 4 21 0.802

 This Pearson correlation analysis precipitated the selection of significant node-pair

types for further analysis, specifically node-pair type 1-2. Chapter VI will discuss the

selection criteria further. The correlation results were foundational in the development of

the simulation specifications for run types 2, 3, and 4. Run types 2, 3, and 4 simulation

112

results will be addressed later in this chapter. The next section will present the relationship

of the node-pair type 1-2 counts, attack class severity, and the protection schemes developed

in this research.

D. Network Stability by Run Type

Variations in information transfer and the number of node-pairs of type 1-2 over the

life of each simulation are covered by this section. The research results were derived from

40 simulation runs, 10 simulations for each of four run types. Run types were previously

defined in Table 4.2. The data were collected in 50-second time intervals over the life of

each simulation. The simulations used in this research were halted after 25,000 execution

seconds. Node-pair type counts were a determinant used in this feasibility study. The next

section will introduce the meaning of these node-pair types.

1) Node-pair Types.

This research classified all active node-pairs into groups by node degree composition.

This classification was performed for each simulation at 50-second time intervals. These

groups were called node-pair types. Each node-pair type was distinguished by a combination

of the degree of each node in the pairing. For example, if one node in a node-pair had a

degree of 1 and the other node had a degree of 2, then the node-pair type was classified as

type 1-2. The syntax for each node-pair type designation is: 1) position 1 represents the node

degree of the first node (𝑛𝑖(𝑡)) in the node-pair, 2) position 2 represents the node degree of

the second node (𝑛𝑗 (𝑡)) in the node-pair, and 3) position 1 in the node-pair type was always

be greater than or equal to position 2. The first (𝑛𝑖(𝑡)) and second node (𝑛𝑗 (𝑡)) in the node-

pair were previously defined in Section A of Chapter III.

113

During the attack simulation, as node-pairs were destroyed and new node-pairs were

established, the count of each node-pair type changed. These changes were monitored with

changes in the overall network‟s connectivity stability. During each simulation, this research

studied variations in the number of node-pairs of type 1-2 with changes in the information

transfer.

The influence of attack severity on the information transfer data shown in Figure 5.7

and Figure 5.9 were consistent with the node-pair loss shown in Figure 5.8 and Figure 5.10,

respectively. Therefore attack severity influence discourse found in this chapter will be

limited to Figure 5.7 and Figure 5.9. The terminal conditions and the equilibrium points

established in Figure 5.7 and Figure 5.9 were also consistent with the node-pair loss shown in

Figure 5.8 and Figure 5.10, respectively. Therefore, future discourse on terminal condition

and equilibrium point behaviors will be limited to Figure 5.7 and Figure 5.9.

Further data representing variations in the information transfer, network connectivity

parameter and node-pair type 1-2 can be found in appendix. These data are available by run

type and attack class. The attack simulation results presented in the remainder of this chapter

will establish foundational evidence that the network‟s connectivity stability was related to

the composition of its node-pairs.

Run type 2 and 3 simulation runs were determined to be transitional results leading to

the discoveries found in the run type 4 results. Therefore, the results of run types 2 and 3 can

be found in Appendix H and Appendix I. Run types 1 and 4 were found to present trends

that merit further discourse. The remainder of this section will present the results for run

type 1 and run type 4.

114

2) Run Type 1.

Ten run type 1 simulations are presented in this section. These simulations

represented the affects of denial-of-service attacks against the pre-attack network. These

simulations did not have additional node protection. For each attack class, Figure 5.7

represents changes in information transfer over the life of the simulation. Figure 5.8 depicts

the corresponding change in the number of node-pairs of type 1-2 for the same simulations

shown in Figure 5.7.

Figure 5.7. Run type 1, network stability, information transfer versus time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

I (bits)

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%
2.0% 2.5% 3.0%
3.5% 4.0% 4.5%
5.0%

115

Figure 5.8. Run type 1, node-pair type 1-2 counts versus time

a) Behaviors in the First 200 Seconds.

As shown in Figure 5.7, all run type 1 attack classes experienced a sudden decline in

information transfer in the first 100 seconds. The information transfer for attack classes

4.5% and 5.0 % rapidly declined and met their terminal conditions in the first 150 seconds.

The information transfer decrease in the first 100 seconds experienced by all attack classes

was influenced by the relative attack severity. Over the first 100 seconds, the rate and

magnitude of the information transfer loss increased with an increase in attack severity.

However, the rate and magnitude of the information transfer loss for attack class 2.0% was

more evenly distributed over the first 200 seconds. Therefore, the rate of decline for attack

class 2.0% was less pronounced in the first 100 seconds. In the first 100 seconds,

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Node-Pair
Counts

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

5.0%

116

information transfer decreased for all attack classes by 12.7% to 96.2% from the simulation‟s

pre-attack conditions. The information transfer loss increased during this period over a range

of approximately 0.20 bits/sec to 1.50 bits/sec.

Along with the information transfer decreases shown in Figure 5.7 there was a

corresponding decrease in the number of node-pairs of type 1-2. As shown in Figure 5.8,

there was also sudden decline in the number of node-pairs of type 1-2 in the first 100 to 200

seconds. Over the first 100 to 200 seconds, the number of node-pairs of type 1-2 decreased

for all attack classes by 0.0% to 52.6% from the simulation‟s pre-attack conditions. The

node-pair count rate of decline during this period ranged from approximately 0 to 539 node-

pairs/sec.

b) Behaviors after the First 200 Seconds.

As shown in Figure 5.7, attack classes 0.5% through 4.0% established a local

minimum value at approximately 200 seconds. This local minimum value decreased with an

increase in attack severity. After the local minimum was established, the information

transfer level for each attack class remained relatively constant over time. For this time

period, the information transfer loss stabilized at a rate of less than 0.03 bits/sec. This level

was maintained until each attack class encountered its critical threshold.

During this period of slower information transfer decline shown in Figure 5.7 and

Figure 5.8, there is a corresponding decrease in the number of node-pairs of type 1-2. After

the first 200 seconds, the number of node-pairs for attack classes 0.5% through 4.0%

declined over time at a significantly lower rate ranging from 23 to 38 node-pairs/sec. This

slower rate of node-pair loss continued for each attack class until the terminal conditions

were met.

117

c) Critical Threshold and Terminal Condition Behaviors.

For the information transfer data shown in Figure 5.7, the attack severity influence on

the critical threshold time for attack classes 0.5% through 2.0% varied. Attack classes 2.5%

through 4.0% achieved their critical threshold earliest. The critical threshold time increased

with an increase in attack severity for attack classes 2.5% through 4.0%. The most severe

attack classes, 4.5% and 5.0%, did not project a critical threshold. As shown in Figure 5.8,

node-pair type 1-2 counts gradually approached the terminal conditions and did not present a

critical threshold.

3) Run Type 4.

Ten run type 4 simulations are presented in this section. These simulations

represented the effects of the denial-of-service attacks against the pre-attack network. These

simulations represented protection strategy 3 that was previously presented in Table 4.2. For

each attack class, Figure 5.9 represents changes in information transfer over the life of the

simulation. Figure 5.10 depicts the corresponding change in the number of node-pairs of

type 1-2 for the same simulations shown in Figure 5.9.

118

 Figure 5.9. Run type 4, network stability, information transfer versus time

 Figure 5.10. Run type 4, node-pair Type 1-2 counts versus time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

I (bits)

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

5.0%

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Node-Pair
Counts

Simulation Time (x 100 sec)

0.5% 1.0% 1.5% 2.0%

2.5% 3.0% 3.5% 4.0%

4.5% 5.0%

119

a) Behaviors in the First 400 Seconds.

As shown in Figure 5.9, all run type 4 attack classes experienced a sudden decline in

information transfer in the first 300 to 400 seconds. The information transfer for attack

classes 4.5% and 5.0% rapidly declined and met their terminal conditions in the first 400

seconds. The information transfer decrease in the first 400 seconds experienced by all attack

classes was influenced by the relative attack severity. Over the first 400 seconds, the

magnitude of the information transfer loss increased with an increase in attack severity. In

the first 400 seconds, information transfer decreased for all attack classes by 3.4% to 25.1%

from the simulation‟s pre-attack conditions. The information transfer loss increased during

this period over a range of approximately 0.06 bits/sec to 0.51 bits/sec.

Along with the information transfer decreases shown in Figure 5.9, there was a

corresponding decrease in the number of node-pairs of type 1-2. As shown in Figure 5.10,

there was also sudden decline in the number of node-pairs of type 1-2 in the first 400

seconds. Over the first 300 to 400 seconds, the number of node-pairs of type 1-2 decreased

for all attack classes by 4.0% to 25.0% from the simulation‟s pre-attack conditions. The

node-pair count rate of decline during this period ranged from approximately 40 to 206 node-

pairs/sec. The loss of node-pairs by attack class varied. Attack severity did not influence the

loss of node-pairs.

b) Behaviors after the First 400 seconds.

As shown in Figure 5.9, attack classes 0.5% through 4.0% established a local

minimum value at approximately 400 seconds. This local minimum level decreased with an

increase in attack severity. After the local minimum value was established, the information

transfer decreased for each attack class at a slower rate less than 0.01 bits/sec. This slow rate

120

of decrease continued until each attack class encountered its equilibrium point. Attack

classes 4.0% through 5.0% did not encounter an equilibrium point.

During this period of slower information transfer decline shown in Figure 5.9 and

Figure 5.10, there was a corresponding decrease in the number of node-pairs of type 1-2. As

shown in Figure 5.10, after the first 400 seconds, attack classes 0.5% through 4.0% declined

over time at a significantly lower rate ranging from 8 to 19 node-pairs/sec. This slower rate

of node-pair loss continued until each of these classes encountered its equilibrium point.

c) Equilibrium, Critical Threshold and Terminal Condition Behaviors.

Figures 5.9 and 5.10 did not exhibit a critical threshold. As shown in Figure 5.9,

attack classes 0.5% through 3.5% encountered an equilibrium point after the initial 1,800

seconds. No equilibrium point occurred for attack class 4.0%, which met its terminal

conditions around 1,400 seconds. Attack classes 4.5% and 5.0% did not encounter an

equilibrium point; they met their terminal conditions in the first 400 seconds. The

equilibrium point and level varied by attack class. The equilibrium levels attack classes 0.5%

through 3.5% occurred in the range of approximately 200 to 400 node-pairs. The minimum

node-pair count for attack class 4.0%, 4.5%, and 5.0% at their terminal conditions was 240,

480, and 485 node-pairs, respectively.

E. Attack Detection

During each simulation, this research inferred an attack‟s existence as the first time

that the number of node-pairs of type 1-1 increased by more than 50%. To measure the

accuracy of this detection, the inferred attack times were compared with the actual attack

commencement times. The actual attack commencement time was recorded when the first

121

targeted node was removed during the simulation. Table 5.4 depicts the variance between

the actual attack time and the inferred attack time for all 40 simulation runs by run type. This

table summarizes results previously presented in Section D of this chapter. The differences

are shown in Table 5.4 where the actual attack times were later than the projected attack

times are denoted in parentheses. As previously defined in Table 4.2, each run type

represented a different protection scheme.

Table 5.4. Attack detection percent variance, actual versus inferred

Attack

Class

Total Num

of Attacked
Nodes /

Avg

Degree

Run Type 1
Percent

Variance

Run Type 2
 Percent

Variance

Run Type 3
Percent

Variance

Run Type 4
Percent

Variance

Average
Percent

Variance

0.5% 60 / 47 1.9% 1.0% (0.8%) (2.8%) (0.2%)

1.0% 124 / 41 1.6% 7.1% (0.6%) 0.8% 2.2%

1.5% 179 / 38 11.1% 3.2% (0.6%) (2.0%) 2.9%

2.0% 241 / 35 1.4% 0.0% 1.5% (2.4%) 0.1%

2.5% 303 / 31 5.3% 4.8% 0.0% 1.1% 2.8%

3.0% 363 / 29 7.1% 1.9% (2.5%) (3.8%) 0.7%

3.5% 421 / 26 (25.5%) 4.8% (1.8%) 0.0% (5.6%)

4.0% 478 / 24 2.3% 1.3% (2.0%) (5.7%) (1.0%)

4.5% 544 / 22 11.1% 6.4% 20.7% (7.4%) 7.7%

5.0% 613 / 20 9.8% 12.7% 0.0% 9.5% 8.0%

Average

Percent
Variance

2.6% 4.3% 1.4% (1.3%) 1.8%

Figure 5.11 depicts the descriptive statistics for the average percent variance across all 40

simulation runs. Over the 40 simulation runs, the average detection time derived in this

122

research varied from the actual attack time by 1.75 %. Additional attack detection data can

be found in appendices M through P.

Figure 5.11. Attack detection, descriptive statistics over 40 simulation runs

F. Network Protection

For attack classes 0.5% through 3.5%, the results depicted in Chapter V indicate that

after the early rapid network stability degradation, there was a recovery in network stability.

The level of recovery was influenced by the attack class severity. After the recovery, each of

these attack classes established a relatively constant equilibrium level at this recovery level

for the remainder of the simulation. The recovery levels were most pronounced and at

123

higher information transfer levels for the run type 4 simulations. Table 5.5 depicts the

percent of the original information transfer recovered at the equilibrium level. This table

summarizes results previously presented in Section D of this chapter. The 20 simulations of

run types 2 and 3 exhibited similar equilibrium behaviors but not as pronounced as run type

4. The average equilibrium effects for all run types can be found in the appendix.

Table 5.5. Network protection, equilibrium and stability recovery for run type 4

Attack Class Information Transfer Recovery at the Equilibrium level

0.5% and 1.0% Almost 100%

1.5% Approx. 44%

2.0% Approx. 31%

2.5% Approx. 25%

3.0% Approx. 13%

3.5% Approx. 6%

4.0%, 4.5% and 5.0% 0%

This chapter has shown that changes in network stability during the attack simulations

resulted in corresponding variations in the number of node-pairs. The results depicted in

Figure 5.8 and Figure 5.10 were consistent with the behaviors observed in Figures 5.7 and

Figure 5.9, respectively. The results indicated that attack severity and run type influenced

node-pair and network stability behaviors during the simulated attacks. The next chapter will

discuss the theoretical and practical implications of the research results presented in this

section.

124

CHAPTER VI. DISCUSSION

 This chapter will summarize the previously presented rationale and methods of this

research. This will be followed by a discussion of the theoretical and practical implications

of this research investigation. A discourse on research limitations will conclude this chapter.

A. Research Summary

For the first time, Colored Petri Net (CPN) modeling and simulation techniques have

been used in this research to simulate targeted denial-of-service attacks over the Internet‟s

router infrastructure. This research developed a cyber attack model and simulation using

Colored Petri Nets with actual Internet router connectivity data. The simulation was used to

study changes in the Internet‟s connectivity state during a targeted denial-of-service attack.

Using scale-free network theory, this research sought to determine whether there is strong

evidence that underlying network-wide connectivity changes (attack markers) that occur

during the formative stages of a massive targeted denial-of-service attack against large-scale

computer networks can be used to study cyber attack mechanics.

As presented earlier in this dissertation, the CPN model and simulation developed

specifically for this research investigation was used to 1) determine whether it is possible to

detect small subtle changes (attack markers) in the connectivity environment of the Internet‟s

router connectivity infrastructure that occur during a cyber attack, and 2) if the first premise

is valid, to ascertain the feasibility of using these changes as a means for a) early

infrastructure attack detection and b) router infrastructure protection strategy development

against these attacks.

Previous studies have shown that the Internet‟s router infrastructure is vulnerable to

targeted denial-of-service attacks against the network‟s most connected routers. Severe

125

damage to the Internet‟s router infrastructure could lead to significant disruptions in global

commerce as well as impede national security objectives. The availability of easy-to-use

malicious attack tools and significant potential gain for an attacker has increased the

frequency of all cyber attacks. Early attack detection is critical to avoid catastrophic network

stability degradation. In addition, cost effective and reliable means to protect the Internet‟s

router infrastructure from malicious attempts to impede critical global transactions is a

national priority (Richardson 2008; U. S. House 2005).

Previous discourse has shown that current cyber attack detection techniques rely on

the tedious and time-consuming examination of individual network router communication

packets. This leads to a reactive process that detects an attack only after significant network

degradation has occurred. In addition, most network protection schemes are dependent upon

router traffic analysis for deployment of defensive countermeasures. This dependence also

leads to a reactive defense of the network‟s connectivity.

Tracking and investigating individual router communications is costly, inefficient,

and impractical. As previously discussed in Chapter I, to avoid the problems associated with

the large volumes of complex network traffic, attack detection and network protection must

be environmentally-based. To achieve early attack detection and efficient network protection

requires a new paradigm. For attack detection purposes, this paradigm must rely on systemic

changes to the underlying physical characteristics of the router‟s infrastructure during the

formative stages of an attack. Understanding these changes may also provide a means to

protect the Internet‟s core router infrastructure from catastrophic network stability

degradation. Attack detection and network protection will be discussed later in this chapter.

126

1) Methods Summary.

As previously discussed in Chapter IV, the attack simulations used data from an

actual large scale Internet router infrastructure to simulate router connectivity. Using a trace-

route based protocol, the University of Washington‟s Rocketfuel project extracted snapshots

of the Internet‟s core router infrastructure (Alderson et al. 2005; Rocketfuel: An ISP topology

mapping engine n.d.; Spring et al. 2004) at the autonomous system level. These data

represented router adjacencies present over a time period ranging from December 2001 to

January 2002. The research simulation utilized these data as its initial pre-attack state.

Specifically, this research used the United States AT&T (ASN 7018) backbone and access

router datasets extracted by the Rocketfuel project team. The pre-attack network represented

11,800 routers connected by 28,592 links.

As discussed earlier, the research model and attack simulation results were consistent

with earlier studies of scale-free computer networks found in the literature. To emulate

denial-of-service attacks, the simulations employed a targeted node removal attack strategy

(Albert, Jeong, and Barabasi 2000; Crucitti et al. 2004; Salla 2005; Sun et al. 2007). During

each simulation, the network‟s most connected nodes were randomly removed. Over specific

time intervals, the changes in the simulated network‟s underlying physical characteristics and

stability were studied. As previously discussed in Chapter II, network stability was measured

using two network characteristics, mutual information transfer, and the network connectivity

parameter.

This research executed 40 simulation runs. Each execution represented a different

attack scenario. For every attack scenario there were 4 different protection schemes

emulated. Table 4.1 defines the simulation‟s execution parameters. Table 4.2 defines the

127

attack scenarios. Using a Pearson correlation analysis, this investigation focused on the

relationship of information transfer and the number of node-pairs by type. Node-pair types

were previously defined in Chapter I.

For select simulations, the analysis was performed in 50-second time intervals. This

correlation analysis led to the selection of significant node-pair types. The number of node-

pairs identified as significant types exhibited a correlation greater than 0.8 at a 99.9%

statistical confidence level. During the attack simulations, as node-pairs were destroyed and

new node-pairs were established, the count of each node-pair type changed. During each

simulation, changes in the number of node-pairs of type 1-1 and 1-2 were correlated with

variation in the network‟s overall connectivity stability. These variations represented critical

changes in the physical characteristics of the network‟s connectivity during an attack. The

next section will present the significant theoretical implications of this research investigation.

B. Theoretical Implications for this Research

The theoretical implications of this research with regard to the Theory of Cyber

Attack Mechanics will now be addressed (Stephenson and Prueitt 2005). In Chapter II, this

dissertation previously discussed the relevance of the cyber attack mechanics hypothesis

developed by Stephenson and Prueitt (2005). The formal representation of a cyber attack as

postulated by Stephenson and Prueitt (2005) is: 𝑎 ⋅ {ℯ𝑓 ⇒ △ 𝐷𝑓 ℯ } ⇒ 𝜉, where:

𝑎 is an attack, that is an ordered threat-vulnerability pair.

𝜉 is an event marker.

ℯ𝑓 is an element of a fractal set describing Internet based router traffic.

△ 𝐷𝑓 ℯ is the change in the fractal dimension

128

Table 6.1. Cyber attack mechanics hypothesis and this dissertation

Term Theory of Cyber Attack Mechanics Research in this dissertation

𝑎 Ordered threat-vulnerability pair. Threat: easy availability of targeted denial-of-

service techniques. Vulnerability: nature of

scale-free computer network connectivity.

ℯ𝑓 Element describing Internet based

router traffic.

Network connectivity stability and

fragmentation.

△ 𝐷𝑓 ℯ Change in ℯ𝑓 . Variance in the expected behaviors of scale-free

router connectivity

𝜉 An event (attack) marker. Connectivity “noise” as depicted through

changes in the network‟s characteristic statistical

mechanics.

The work detailed in this research can be applied to the cyber attack mechanics hypothesis

described as follows: The Internet‟s router connectivity can be represented as a finite state

machine. During a targeted denial-of-service attack, finite network stability states present

during the breakdown of normal communications characterize its relative connectivity

fragmentation. The network‟s connectivity topology can be formally represented through its

node states. Two adjacent node states represent a node-pair state. Subtle changes in node-

pair states can formally represent variations in the network‟s topology. Changes in the node-

pair states present during a denial-of-service attack produce emergent patterns and residual

connectivity “noise.” It is possible to distinguish the “noise” from the emergent patterns

through characteristic changes in the underlying network degree distribution that represent

attack markers. These attack markers indirectly represent variation in the network‟s

emergent connectivity patterns. During the formative stages of the attack, discrete attack

129

markers may provide a means to sense an attack‟s existence before significant stability

degradation has occurred. In addition, by preserving discrete attack markers it should be

possible to protect the network‟s connectivity topology against denial-of-service attacks.

The cyber attack mechanics theory also postulates that scale-free networks under

attack will encounter halting conditions. The halting conditions represent a sudden rapid and

complete degradation in network connectivity. The critical threshold presented in the results

chapter of this dissertation has confirmed the existence of these halting conditions. Another

important aspect of this theory is the existence of attack markers. Attack markers have been

previously defined in Chapter I. Node-pair type behaviors relative to information transfer as

studied in this research indicated that attack markers exist.

 This section has shown that the results previously presented support the Theory of

Cyber Attack Mechanics as a scientifically sound hypothesis. The next section in this

chapter will discuss potential practical applications of this research.

130

C. Practical Implications of this Research

The necessity for new techniques that utilize changes in the Internet‟s environment to

thwart malicious attacks against the Internet‟s router connectivity infrastructure was

previously discussed in Chapter I. This research has shown that using the network‟s

environment to detect denial-of-service attacks as well as protecting the network is feasible.

This research found two attack markers represented as changes in the number of node-pairs

of type 1-1 and 1-2. This section will first address how node-pair type 1-1 counts were used

to detect the existence of a denial-of-service attack against the network. The discussion will

then focus on using node-pairs of type 1-2 as a means to protect network connectivity

stability against a denial-of-service attack.

1) Using Node-pair Counts to Detect Denial-of-Service Attacks.

As previously discussed in Chapter I, identifying a practical means to detect a denial-

of-service attack in its formative stages has useful applications. The underlying physical

characteristics of an attacked network could be used as an attack indicator. The underlying

physical characteristics were represented in this research as the number of node-pairs of type

1-1. As a result of the correlation analysis presented in Chapter V, changes in the number of

node-pairs of type 1-1 were considered attack markers. The changes in the number of node-

pairs of type 1-1 were strongly correlated with network stability degradation. In the first 150

seconds of each simulation, the rapid increase in the number of node-pairs of type 1-1

represented network fragmentation during the formative stages of an attack because they

represented isolated node-pairs.

Table 5.4 suggests that the network‟s environment can be used for attack detection.

Current detection methods assume that the attack would be detected at the critical threshold,

131

when the network is rapidly degrading and no communication is possible. The detection

method used in this research indicates an attack‟s existence much earlier than the critical

threshold. The detection techniques described here led to an approximately 90%

improvement over the detection time using critical threshold as an indicator of attack.

Based on these results, it may be possible to develop a new application that monitors

the number of node-pairs of type 1-1 present in the network over time. An automated sensor

might be employed to signify an attack‟s existence using the techniques described in this

section. Further potential applications of these research findings will be discussed in Chapter

VII. The next section will present the practical implications of using a different node-pair

type to protect the network from a targeted denial-of service attack.

2) Using Node-pair-type Counts for Network Protection.

As previously discussed in Chapter I, the Internet‟s router infrastructure defense

would benefit from a new security tool that utilizes a systemic paradigm that can protect the

network‟s connectivity. By manipulating the number of node-pairs of specific types, this

investigation has uncovered a potential technique to protect the network‟s connectivity. This

research investigation selected node-pair type 1-2 for further study of potential protection

effects. The reasoning for this selection was 1) it is assumed that routers with fewer

connections are less expensive and less complex to protect than routers with a large number

of connections, 2) the literature indicates that protecting the outer low degree nodes in a

scale-free network may be advantageous for the network‟s overall stability, 3) the consistent

data trends previously shown in Figure 5.7 and Figure 5.8, and 4) the correlation of this

node-pair type with information transfer met the previously defined research criteria for

attack marker selection.

132

The evidence of network protection using node-pair type manipulation found for run

types 2, 3, and 4 indicates that it is feasible to protect the network using these techniques.

However, further study is required to determine the optimum attack markers. This section

has shown that changes in the network‟s connectivity stability are accompanied by

corresponding changes in the number of node-pairs of type 1-2. The changes in the node-

pair type count were consistent over the life of the simulation. As shown in Table 5.5,

simulations using protection strategy 3 (run type 4) as defined earlier suggest that it is

possible to protect the network‟s connectivity stability by manipulating the node-pair type

counts. Therefore, this research has shown that using the network‟s environment as a means

to protect the network is scientifically plausible and merits further study.

D. Limitations

This research was a feasibility study that sought to determine whether the network‟s

connectivity environment could be utilized for attack detection and network protection. The

theoretical potential for attack attribution discussed in the theory of cyber attack mechanics

was not addressed. The feasibility of the techniques proposed was benchmarked against a

static pre-attack network. A dynamic pre-attack network undergoing normal router failures

during the simulation may also be a useful benchmark. As shown earlier, the Internet‟s robust

connectivity allows normal network operations, even with the occurrence of regular, random,

and routine router failures. A study of simulation behaviors using a dynamic pre-attack

network as the benchmark might uncover trends not found in this research investigation.

This study only considered changes in the number of node-pair of types 1-1 and 1-2

as attack markers. The correlation analysis produced other node-pair types that exhibited a

133

relatively strong correlation with network stability. It is possible that other node-pair types

may provide further evidence to support or refute the conclusions of this investigation. In

addition, this study only considered denial-of-service attacks on large scale router

infrastructures and may not be applicable to significantly smaller networks. Further

investigation is needed to determine if this method could be applied to other types of exploits

such as worm or virus propagation attacks. However, it is expected that regardless of the

attack genre, the attack router infrastructure will likely exhibit systemic router failures.

E. Chapter Summary

The CPN model and simulation developed for this research behaved in a consistent

manner with relevant scale-free network connectivity studies. This model and simulation has

provided a unique methodology for further study of scale-free network connectivity attacks.

This chapter has discussed the practical and theoretical implications of this research

including the feasibility of using the Internet router node-pair types to detect attacks and

protect the network from denial-of-service attacks. The research limitations presented may

provide foundation for further study. Research conclusions and potential future work to

expand the discoveries of this research investigation will be addressed in the next chapter.

134

CHAPTER VII. CONCLUSIONS

This chapter will first discuss the conclusions reached by this research investigation

and then address future work.

A. Research Relevance

As previously discussed in Chapter I, the Internet‟s router infrastructure, a scale-free

computer network, is vulnerable to targeted denial-of-service attacks. Current attack

detection techniques and countermeasures have been shown to be costly and inefficient

(Casey 2002; Casey 2004; Mizrak et al. 2006; Rattray 2001a; Stephenson 2006; Stephenson

and Prueitt 2005). Attack detection before the network has suffered substantial degradation

would greatly enhance the security of military and economic transactions.

This research investigation developed a Colored Petri Net model and simulation that

emulated changes in the Internet‟s core router infrastructure connectivity during a targeted

denial-of-service attack. From these simulations, attack markers were discovered that

identified the critical indicators of DoS attacks. These results support the feasibility of using

knowledge of a network‟s underlying physical connectivity environment for defensive

purposes. In summary this research concludes that:

1. The unique CPN model and its simulation results were consistent with the scale-free

network literature.

2. It is plausible to use changes in a scale-free computer network‟s underlying physical

characteristics to study attack detection and network protection.

3. Subtle changes in the number of node-pairs of type 1-1 and 1-2 represent a physical

characteristic that can be used as attack markers.

135

4. The Theory of Cyber Attack Mechanics is a scientifically sound premise.

5. Specific attack marker node-pair types can be used to detect attacks, while others can be

used to protect a network‟s connectivity.

6. The protective effects of certain attack markers were strongly influenced by the attack‟s

severity.

7. The model and simulation developed in this research has provided a prototype for

studying cyber attacks.

8. A systemic approach for identifying cyber attacks based on the network‟s environment

may provide the foundation for the development of new network security tools.

B. Attack Detection and Network Protection Application

This study has provided confirmation that monitoring a network‟s environment can

be used for defensive purposes. It has presented a unique paradigm for the development of

future network security applications. This section will describe a potential network security

application that might be derived from this research.

Autonomous agents are “a group of free-running processes which can act

independently of each other and the global controls” (Crosbie and Spafford 1995). These

agents are goal-oriented systems that can be defined for single purposes while maintaining a

small environmental footprint. The techniques proposed in this research might lead to a

network-wide defense strategy by strategically placing autonomous agents throughout the

network. Real time node-pair information collected by these autonomous agents could

determine the location of potential attack marker node-pairs and dynamically provide a list

of all node-pairs in its domain to a centralized command center.

136

After the centralized command center has identified attack marker node-pairs and

sent the information to the autonomous agents, the agents would periodically send the

command center the number of each attack marker node-pairs. The number of attack marker

node-pairs could be analyzed by the command center, and if it appears an attack is forming

then the command center could notify the affected autonomous agents. One possible quick

countermeasure that could be taken by these autonomous agents might be to increase the link

capacity of the node-pairs identified as attack markers. This increase in link capacity would

protect these node-pairs from attack-induced destruction. After the threat has subsided, the

command center could order the autonomous agents to remove the additional capacity.

Advantages of this attack detection and protection methodology are: (1) it is cost

efficient because only nodes that have been flagged will increase their capacity; (2) it is

resource efficient because the only small amounts of information must be transmitted to a

few select routers; (3) it is specific; only attack marker node-pairs are updated; (4) the time-

interval of the data transmissions can be fine-tuned as needed; and (5) it is flexible because

autonomous agent designations can be dynamic and changed to optimize agent deployments.

C. Future Work

This study can lead to several avenues of work. Expansion of this feasibility study

might lead to the development of new cyber attack tools. These tools would be proactive and

systemic, not reactive and haphazard. While this research validated two potential attack

marker node-pair types, there may be other more accurate attack marker node-pair types.

Further study of the other 22 node-pair types identified by the correlation analysis might lead

to more efficient attack marker node-pair types. In addition, the collection and analysis

137

protocol for the identification of attack marker node-pair types was manually intensive.

Automation of this analysis would greatly enhance the usability of this technique.

To further evaluate the variability and validity of the research conclusions, the

research simulations discussed in Chapters V and VI should be replicated. This research

simulation analyzed a large scale-free computer network. Large networks may behave

differently than smaller networks. Future work is needed to determine whether the attack

marker selection methods discovered in this research are scalable to smaller networks.

Additional studies using other Internet router datasets, such as those found at the CAIDA

website (www.caida.org), might advance this study‟s contribution to the cyber attack

literature. This research dissertation focused on scale-free network connectivity theory, but it

might be possible to base the simulations developed in this research on other network

theories, such as the Erdos and Renyi (ER) (1960) exponential network.

Further investigation using the research results of this study might lead to the

development of an information warfare offensive application. Since protection of the

aforementioned node-pair types has been shown to protect network stability, it may be

reasonable to assume that a DoS attack against these node-pair types might significantly

degrade an adversary‟s network connectivity stability.

Instead of comparing the attacked networks against a static pre-attack network,

further study benchmarking the attack simulation results against a dynamic pre-attack

network undergoing normal router failures might yield additional useful information. A next

phase of this research would validate the simulation results against a virtual Internet router

lab. By implementing the same protocols used in this investigation against the virtual router

lab, the results from the two settings could be compared. If the virtual lab testing results

www.caida.org

138

were consistent with the CPN simulations, then these research findings would further

validate the results presented here. Additional validation using an existing Internet security

and event management tool over an actual Internet region may also be possible.

D. Summary

 As discussed earlier in this dissertation, detecting cyber attacks and protecting

networks using individual router anomalies is costly, inefficient, and impractical. This study

presented a new paradigm that focused on systemic environmental network changes that

occur during a cyber attack. The techniques proposed by this investigation are unique and

have not been cited in the literature. This research has provided evidence that using

knowledge of the Internet‟s connectivity topology and its physical characteristics to protect

the router infrastructure from targeted DoS attacks is a scientifically sound premise. In

addition, this research has also shown that it is plausible that these techniques could be used

to detect targeted DoS attacks and may lead to new network security tools.

139

REFERENCES

Adkins, Bonnie N. 2001. The spectrum of cyber conflict from hacking to information

warfare: What is law enforcement's role? U. S. Air Command and Staff College, Air

University.

Aiello, William, Fan Chung, and Linyuan Lu. 2000. A random graph model for massive

graphs. Paper presented at Proceedings of the Thirty-Second Annual ACM

symposium on Theory of computing, Portland, Oregon, United States.

Albert, R. and A. L. Barabasi. 2000. Topology of evolving networks: Local events and

universality. Physical Review Letters 85, no. 24: 5234-5237.

________. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74,

no. 1: 47-97.

Albert, R., H. Jeong, and A. L. Barabasi. 1999. Diameter of the world-wide web. Nature 401,

no. 6749: 130-131.

________. 2000. Error and attack tolerance of complex networks. Nature 406, no. 6794: 378-

382.

Alderson, D., L. Li, W. Willinger, and J. C. Doyle. 2005. Understanding internet topology:

Principles, models, and validation. IEEE-ACM Transactions on Networking 13, no. 6:

1205-1218.

Ale and Kub. 2003. Toward a formalization of emergence. Artif. Life 9, no. 1: 41-65.

Barabasi, A. L. and R. Albert. 1999. Emergence of scaling in random networks. Science 286,

no. 5439: 509-512.

________. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics 74,

no. 1: 47.

Barabasi, A. L., R. Albert, and H. Jeong. 2000. Scale-free characteristics of random

networks: The topology of the world-wide web. Physica A 281, no. 1-4: 69-77.

Barabasi, A. L., Erzsebet Ravasz, and Tamas Vicsek. 2001. Deterministic scale-free

networks. Physica A: Statistical Mechanics and its Applications 299, no. 3-4: 559-

564.

Boccaletti, S., V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang. 2006. Complex

networks: Structure and dynamics. Physics Reports-Review Section of Physics Letters

424, no. 4-5: 175-308.

140

Borchgrave, A., F.J. Cilluffo, S.L. Cardash, and M.M. Ledgerwood. 2001. Cyber threats and

information security meeting the 21st century challenge. Csis report - executive

summary of four working group reports on homeland defense. Washington, D.C.:

Center for Strategic and International Studies.

Boschetti, F., M. Prokopenko, I. Macreadie, and A. M. Grisogono. 2005. Defining and

detecting emergence in complex networks. In Knowledge-based intelligent

information and engineering systems, pt 4, proceedings, 3684:573-580.

Caldarelli, G, R Marchetti, and L Pietronero. 2000. The fractal properties of internet.

Europhysics letters 52: 386-992.

Casey, E. 2002. Error, uncertainty, and loss in digital evidence. International Journal of

Digital Evidence 1, no. 2.

http://www.utica.edu/academic/institutes/ecii/ijde/articles.cfm accessed Date

Accessed)|.

Casey, Eoghan. 2004. Network traffic as a source of evidence: Tool strengths, weaknesses,

and future needs. Digital Investigation 1, no. 1: 28-43.

Cassey, Lee. 2004. Emergence and universal computation. Metroeconomica 55, no. 2-3: 219-

238.

Chakrabarti, A., Manimaran,G. 2002. Internet infrastructure security: A taxonomy. IEEE

Network 16, no. 6: 13-21.

Chakraborty, D., A. Ashir, T. Suganuma, G. Mansfield Keeni, T. K. Roy, and N. Shiratori.

2004. Self-similar and fractal nature of internet traffic. International Journal of

Network Management 14: 119-129.

Cheetancheri, Senthilkumar G., John Mark Agosta, Denver H. Dash, Karl N. Levitt, Jeff

Rowe, and Eve M. Schooler. 2006. A distributed host-based worm detection system.

Paper presented at Proceedings of the 2006 SIGCOMM workshop on Large-scale

attack defense, Pisa, Italy.

Cheol-Joo, Chae, Lee Seoung-Hyeon, Lee Jae-Seung, and Lee Jae-Kwang. 2007. A study of

defense ddos attacks using ip traceback. Paper presented at Proceedings of the The

2007 International Conference on Intelligent Pervasive Computing.

Cheung, S. 2006. Denial of service against the domain name system. IEEE Security &

Privacy 4, no. 1: 40-45.

Cicic, T. 2008. On basic properties of fault-tolerant multi-topology routing. Computer

Networks 52, no. 18: 3325-3341.

http://www.utica.edu/academic/institutes/ecii/ijde/articles.cfm

141

Cohen, R., Erez, K., ben-Avraham, D., & Havlin, S. 2000. Resilience of the internet to

random breakdowns. Physical Review Letters 85, no. 21: 4626-4628.

________. 2001. Breakdown of the internet under intentional attack. Physical Review Letters

86, no. 16: 3682-3685.

Convery, S., D. Cook, and M. Franz. 2004. An attack tree for the border gateway protocol.

IETF Draft - Internet-Draft draft-ietf-rpsec-bgpattack-00, no.

http://tools.ietf.org/html/draft-ietf-rpsec-bgpattack-00 accessed Date Accessed)|.

Costa, L. D., F. A. Rodrigues, G. Travieso, and P. R. V. Boas. 2007. Characterization of

complex networks: A survey of measurements. Advances in Physics 56, no. 1: 167-

242.

Cover, T. M. and Joy A. Thomas, eds. 2006. Elements of information theory. Hoboken, N.J.:

Wiley-Interscience.

Criado, R., A. G. del Amo, B. Hernandez-Bermejo, and M. Romance. 2006. New results on

computable efficiency and its stability for complex networks:59-74.

Crosbie, Mark and Gene Spafford. 1995. Defending a computer system using autonomous

agents. In Proceedings of the 18th National Information Systems Security Conference.

Baltimore, MD: Department of Computer Sciences, Purdue University.

Crucitti, P., V. Latora, and M. Marchiori. 2004. Model for cascading failures in complex

networks. Physical Review E 69, no. 4.

Crucitti, P., V. Latora, M. Marchiori, and A. Rapisarda. 2003a. Efficiency of scale-free

networks: Error and attack tolerance. Physica a-Statistical Mechanics and Its

Applications 320: 622-642.

________. 2004. Error and attack tolerance of complex networks. Physica a-Statistical

Mechanics and Its Applications 340, no. 1-3: 388-394.

Crucitti, Paolo, Vito Latora, Massimo Marchiori, and Andrea Rapisarda. 2003b. Efficiency

of scale-free networks: Error and attack tolerance. Physica A: Statistical Mechanics

and its Applications 320: 622-642.

Crutchfield, James P. 1994. The calculi of emergence: Computation, dynamics and induction.

Physica D: Nonlinear Phenomena 75, no. 1-3: 11-54.

Dall'Asta, L., A. Barrat, M. Barthelemy, and A. Vespignani. 2006. Vulnerability of weighted

networks. Journal of Statistical Mechanics-Theory and Experiment: 12.

Daniels, Thomas E. 2002. Reference models for the concealment and observation of origin

identity in store-and-forward networks. DAI 64, no. 09B: 157.

http://tools.ietf.org/html/draft-ietf-rpsec-bgpattack-00

142

Daniels, Thomas E. and Eugene H. Spafford. 2000. Network traffic tracking systems: Folly

in the large? In Proceedings of the 2000 workshop on New security paradigms.

Ballycotton, County Cork, Ireland: ACM Press.

Dekker, Anthony H. and Bernard Colbert. 2008. Scale-free networks and robustness of

critical infrastructure networks. Complexity International 12.

Demetrius, L. and T. Manke. 2005. Robustness and network evolution - an entropic

principle. Physica a-Statistical Mechanics and Its Applications 346, no. 3-4: 682-696.

Dirk, Ourston, Matzner Sara, Stump William, and Hopkins Bryan. 2004. Coordinated

internet attacks: Responding to attack complexity. J. Comput. Secur. 12, no. 2: 165-

190.

Dobson, I., B. A. Carreras, V. E. Lynch, and D. E. Newman. 2007. Complex systems

analysis of series of blackouts: Cascading failure, critical points, and self-

organization. Chaos 17, no. 2: 13.

Donnet, B. and T. Friedman. 2007. Internet topology discovery: A survey. Communications

Surveys & Tutorials, IEEE 9, no. 4: 56-69.

Dorogovtsev, S. N., A. V. Goltsev, and J. F. F. Mendes. 2008. Critical phenomena in

complex networks. Reviews of Modern Physics 80, no. 4: 1275-1335.

Dorogovtsev, S. N. and J. F. F. Mendes. 2002. Evolution of networks. Advances in Physics

51, no. 4: 1079-1187.

Douligeris, C. and A. Mitrokotsa. 2004. Ddos attacks and defense mechanisms:

Classification and state-of-the-art. Computer Networks 44, no. 5: 643-666.

Erdos, P. and A. Renyi. 1960. On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Science 5: 17-61.

Estrada, E., D. J. Higham, and N. Hatano. 2009. Communicability betweenness in complex

networks. Physica a-Statistical Mechanics and Its Applications 388, no. 5: 764-774.

Furuya, S. and K. Yakubo. 2008. Generalized strength of weighted scale-free networks.

Physical Review E 78, no. 6.

Gallos, L. K. and P. Argyrakis. 2007. Scale-free networks resistant to intentional attacks. Epl

80, no. 5.

Gallos, L. K., R. Cohen, F. Lijeros, P. Argyrakis, A. Bunde, and S. Havlin. 2006. Attack

strategies on complex networks, ed. V. N. Alexandrov, G. D. VanAlbada, P. M. A.

Sloot and J. Dongarra:1048-1055: Springer-Verlag Berlin.

143

Gallos, L. K., Cohen, R., Argyrakis, P., Bunde, A., & Havlin, S. 2005. Stability and topology

of scale-free networks under attack and defense strategies. Physical Review Letters

94, no. 18: 188701-188704.

Gallos, L. K., F. Liljeros, P. Argyrakis, A. Bunde, and S. Havlin. 2007. Improving

immunization strategies. Physical Review E 75, no. 4.

Gudkov, V. and V. Montealegre. 2008. Analysis of networks using generalized mutual

entropies. Physica a-Statistical Mechanics and Its Applications 387, no. 11: 2620-

2630.

Guillaume, J. L., M. Latapy, and C. Magnien. 2005. Comparison of failures and attacks on

random and scale-free networks. In Principles of distributed systems, 3544:186-196:

Springer Berlin / Heidelberg.

Haggerty, J., Q. Shi, and M. Merabti. 2005. Early detection and prevention of denial-of-

service attacks: A novel mechanism with propagated traced-back attack blocking.

Ieee Journal on Selected Areas in Communications 23, no. 10: 1994-2002.

Hamed, Haddadi, Uhlig Steve, Moore Andrew, Mortier Richard, and Rio Miguel. 2008.

Modeling internet topology dynamics. SIGCOMM Computer Commuications. Rev.

38, no. 2: 65-68.

Holme, P., B. J. Kim, C. N. Yoon, and S. K. Han. 2002a. Attack vulnerability of complex

networks. Physical Review E 65, no. 5: 14.

________. 2002b. Attack vulnerability of complex networks. Physical Review E 65, no. 5.

Hu, H. B. and X. F. Wang. 2008. Unified index to quantifying heterogeneity of complex

networks. Physica a-Statistical Mechanics and Its Applications 387, no. 14: 3769-

3780.

Huang, L., Y. C. Lai, and G. R. Chen. 2008. Understanding and preventing cascading

breakdown in complex clustered networks. Physical Review E 78, no. 3: 5.

Huang, W. and C. G. Li. 2007. Cascading breakdown on weighted scale-free complex

networks. Progress of Theoretical Physics 118, no. 1: 15-24.

Hussain, Alefiya, John Heidemann, and Christos Papadopoulos. 2003. A framework for

classifying denial of service attacks. In Proceedings of the 2003 conference on

applications, technologies, architectures, and protocols for computer

communications. Karlsruhe, Germany: ACM Press.

144

Jamakovic, A., S. Uhlig, and I. Theisler. 2007. On the relationships between topological

metrics in real-world networks. In European Conference on Complex Systems.

Dresden, Germany.

Jensen, K. 1994. An introduction to the theoretical aspects of coloured petri nets. In A decade

of concurrency, ed. W.-P. de Roever J.W. de Bakker, G. Rozenberg, 803:230-272.

Enschede: Springer-Verlag.

________. 1997. Coloured petri nets: Basic concepts, analysis methods and practical use.

Monographs in theoretical computer science: Springer-Verlag.

________. 1998. An introduction to the practical use of coloured petri nets. In Lectures on

petri nets ii: Applications, lecture notes in computer science, ed. W. Reisig and G.

Rozenberg, 1492:237-292: Springer-Verlag

Jeong, H., Z. Neda, and A. L. Barabasi. 2003. Measuring preferential attachment in evolving

networks. Europhysics Letters 61, no. 4: 567-572.

Jeong, H., B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabasi. 2000. The large-scale

organization of metabolic networks. Nature 407, no. 6804: 651-654.

Jung-Ying, Lai, Wu Jain-Shing, Chen Shih-Jen, Wu Chia-Huan, and Yang Chung-Huang.

2008. Designing a taxonomy of web attacks. Paper presented at Proceedings of the

2008 International Conference on Convergence and Hybrid Information Technology -

Volume 00.

Kristensen, L.M., S. Christensen, and K. Jensen. 1998. The practitioner's guide to coloured

petri nets. International Journal on Software Tools for Technology Transfer 2: 98-

132.

Kristensen, Lars Michael and Soren Christensen. 2004. Implementing coloured petri nets

using a functional programming language. Higher Order Symbol. Comput. 17, no. 3:

207-243.

Labovitz, C., A. Ahuja, A. Bose, and F. Jahanian. 2001. Delayed internet routing

convergence. Ieee-Acm Transactions on Networking 9, no. 3: 293-306.

Lai, Ying-Cheng, Adilson E. Motter, and Takashi Nishikawa. 2004. Attacks and cascades in

complex networks. In Complex Networks:299-310: Springer Berlin / Heidelberg.

Lakhina, Anukool, John W. Byers, Mark Crovella, and Ibrahim Matta. 2002. On the

geographic location of internet resources. In Proceedings of the 2nd ACM SIGCOMM

Workshop on Internet measurement:249-250. Marseille, France: ACM Press.

Latora, V. and M. Marchiori. 2001. Efficient behavior of small-world networks. Physical

Review Letters 87, no. 19.

145

________. 2004a. How the science of complex networks can help developing strategies

against terrorism. Chaos Solitons & Fractals 20, no. 1: 69-75.

________. 2005. Vulnerability and protection of infrastructure networks. Physical Review E

71, no. 1: 4.

Latora, Vito and Massimo Marchiori. 2004b. How the science of complex networks can help

developing strategies against terrorism. Chaos, Solitons & Fractals 20, no. 1: 69-75.

Lazaroff, Mark and David Snowden. 2006. Anticipatory models for counter-terrorism. In

Emergent information technologies and enabling policies for counter-terrorism, ed.

Robert L. Popp and John Yen:51-73. Hoboken, New Jersey: Wiley-Interscience.

Lee, Keunsoo, Juhyun Kim, Ki Hoon Kwon, Younggoo Han, and Sehun Kim. 2008. Ddos

attack detection method using cluster analysis. Expert Systems with Applications 34,

no. 3: 1659-1665.

Leguay, J., M. Latapy, T. Friedman, and K. Salamatian. 2007. Describing and simulating

internet routes. Computer Networks 51, no. 8: 2067.

Lerner, V. S. 2004. Introduction to information systems theory: Concepts, formalism and

applications. International Journal of Systems Science 35, no. 7: 405-424.

Leung, C. C. and H. F. Chau. 2007. Weighted assortative and disassortative networks model.

Physica A: Statistical Mechanics and its Applications 378, no. 2: 591-602.

Li, P., B. H. Wang, H. Sun, P. Gao, and T. Zhou. 2008. A limited resource model of fault-

tolerant capability against cascading failure of complex network. European Physical

Journal B 62, no. 1: 101-104.

Liljenstam, M., Y. Yuan, B. J. Premore, and D. Nicol. 2002. A mixed abstraction level

simulation model of large-scale internet worm infestations. In 10th IEEE

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems (MASCOTS'02):109.

Liljenstam, Michael, Jason Liu, and David Nicol. 2003. Simulation of large scale networks ii:

Development of an internet backbone topology for large-scale network simulations.

In WSC '03: Proceedings of the 35th conference on Winter simulation:694-702. New

Orleans, Louisiana: Winter Simulation Conference.

Lipson, Howard F. 2002. Tracking and tracing cyber-attacks: Technical challenges and

global policy issues. Carnegie Melon Software Engineering Institute, CERT

Coordination Center.

Lopez, E., Parshani, R., Cohen, R., Carmi, S., & Havlin, S. 2007. Limited path percolation in

complex networks. Physical Review Letters 99, no. 18: 188701-4.

146

Lu, K., D. Wu, H. Fan, S. Todorovic, and A. Nucci. 2007. Robust and efficient detection of

ddos attacks for large-scale internet. Computer Networks 51, no. 18: 5036-5056.

Macdonald, P. J., E. Almaas, and A. L. Barabasi. 2005. Minimum spanning trees of weighted

scale-free networks. Europhysics Letters 72, no. 2: 308-314.

Mahadevan, Priya, Dmitri Krioukov, Marina Fomenkov, Xenofontas Dimitropoulos, k c

claffy, and Amin Vahdat. 2006. The internet as-level topology: Three data sources

and one definitive metric. SIGCOMM Comput. Commun. Rev. 36, no. 1: 17-26.

Mahadevan, Priya, Dmitri Krioukov, Marina Fomenkov, Bradley Huffaker, Xenofontas

Dimitropoulos, kc claffy, and Amin Vahdat. 2005. Lessons from three views of the

internet topology: Technical report San Diego Supercomputer Center, University of

California, San Diego: Cooperative Association for Internet Data Analysis - CAIDA.

Markopoulou, A., G. Iannaccone, S. Bhattacharyya, C. N. Chuah, Y. Ganjali, and C. Diot.

2008. Characterization of failures in an operational ip backbone network. Ieee-Acm

Transactions on Networking 16, no. 4: 749-762.

Michalis, Faloutsos, Faloutsos Petros, and Faloutsos Christos. 1999. On power-law

relationships of the internet topology. In Proceedings of the conference on

Applications, technologies, architectures, and protocols for computer

communication:251-262. Cambridge, Massachusetts, United States: ACM Press.

Mirkovic, Jelena and Peter Reiher. 2004. A taxonomy of ddos attack and ddos defense

mechanisms. SIGCOMM Comput. Commun. Rev. 34, no. 2: 39-53.

Mizrak, A. T., Y. C. Cheng, K. Marzullo, and S. Savage. 2006. Detecting and isolating

malicious routers:230-244: Ieee Computer Soc.

Mizrak, A. T., S. Savage, and K. Marzullo. 2008. Detecting compromised routers via pocket

forwarding behavior. IEEE Network 22, no. 2: 34-39.

Moore, Andrew P., Robert J. Ellison, and Richard C. Linger. 2001. Attack modeling for

information security and survivability. Pittsburgh, PA: Carnegie Mellon University

Software Engineering Institute.

Moreno, Y., J. B. Gomez, and A. F. Pacheco. 2002. Instability of scale-free networks under

node-breaking avalanches. Europhysics Letters 58, no. 4: 630-636.

Motter, A. E. 2004. Cascade control and defense in complex networks. Physical Review

Letters 93, no. 9: 4.

Motter, A. E. and Y. C. Lai. 2002. Cascade-based attacks on complex networks. Physical

Review E 66, no. 6.

147

Motter, A. E., M. A. Matias, J. Kurths, and E. Ott. 2006. Dynamics on complex networks and

applications. Physica D-Nonlinear Phenomena 224, no. 1-2: VII-VIII.

Newman, M. E. J. 2002. Assortative mixing in networks. Physical Review Letters 89, no. 20.

________. 2003. The structure and function of complex networks. Siam Review 45, no. 2:

167-256.

Olalekan, Adeyinka. 2008. Internet attack methods and internet security technology. Paper

presented at Proceedings of the 2008 Second Asia International Conference on

Modelling \& Simulation (AMS).

Ole Martin Dahl and Stephen D. Wolthusen. 2006. Modeling and execution of complex

attack scenarios using interval timed colored petri nets Paper presented at Fourth

IEEE International Workshop on Information Assurance (IWIA'06).

Overill, Richard E. 2007. Computational immunology and anomaly detection. Information

Security Technical Report 12, no. 4: 188-191.

Papadimitratos, P. and Z. J. Haas. 2002. Securing the internet routing infrastructure. Ieee

Communications Magazine 40, no. 10: 60-68.

Paxson, V. 2001. An analysis of using reflectors for distributed denial-of-service attacks.

Computer Communication Review 31, no. 3: 38-47.

Peng, T., C. Leckie, and K. Ramamohanarao. 2007a. Survey of network-based defense

mechanisms countering the dos and ddos problems. Acm Computing Surveys 39, no.

1: 42.

Peng, Tao, Christopher Leckie, and Kotagiri Ramamohanarao. 2007b. Survey of network-

based defense mechanisms countering the dos and ddos problems. ACM Comput.

Surv. 39, no. 1: 3.

Pietsch, W. 2006. Derivation of the percolation threshold for the network model of barabasi

and albert. Physical Review E 73, no. 6: 7.

Piraveenan, M., M. Prokopenko, and A. Y. Zomaya. 2008. Local assortativeness in scale-free

networks. Epl 84, no. 2: 6.

________. 2009. Assortativeness and information in scale-free networks. European Physical

Journal B 67, no. 3: 291-300.

Qin, Q., Z. P. Wang, F. Zhang, and P. Y. Xu. 2008. Evolving scale-free network model.

International Journal of Modern Physics B 22, no. 13: 2138-2148.

148

Rattray, Gregory J. 2001a. The cyber threat. In The terrorism threat and u.S. Government

response: Operational and organizational factors 79-119. US Air Force Academy:

USAF Institute for National Security Studies

________. 2001b. The cyber threat:79-119. US Air Force Academy: USAF Institute for

National Security Studies

Ravi, Kumar, Raghavan Prabhakar, Rajagopalan Sridhar, D. Sivakumar, Tompkins Andrew,

and Upfal Eli. 2000. The web as a graph. In Proceedings of the nineteenth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems:1-10.

Dallas, Texas, United States: ACM Press.

Redner, S. 1998. How popular is your paper? An empirical study of the citation distribution.

European Physical Journal B 4, no. 2: 131-134.

Rezaei, B. A., N. Sarshar, V. P. Roychowdhury, and P. O. Boykin. 2007. Disaster

management in power-law networks: Recovery from and protection against

intentional attacks. Physica a-Statistical Mechanics and Its Applications 381: 497-

514.

Richardson, R. 2008. 2008 CSI/FBI computer crime and security survey. no. February 10,

2006. http://www.gocsi.com/ (accessed March, 2008).

Rocketfuel: An ISP topology mapping engine.

http://www.cs.washington.edu/research/networking/rocketfuel/ (accessed December,

2008.

Rosen, R. 1985. Anticipatory systems - philosophical, mathematical and methodological

foundations Pergamon Press.

Saffre, F., H. Jovanovic, C. Hoile, and S. Nicolas. 2004. Scale-free topology for pervasive

networks. BT Technology Journal 22, no. 3: 200-208.

Salla, Vamsi. 2005. Error and attack tolerance of complex real networks. MAI 44, no. 04: 90.

Sanchirico, A. and M. Fiorentino. 2008. Scale-free networks as entropy competition.

Physical Review E 78, no. 4.

Schreiber, T. 2000. Measuring information transfer. Physical Review Letters 85, no. 2: 461-

464.

Sedgewick, Robert. 1983. Algorithms. Edited by Michael A. Harrison. Addison-wesley in

computer science. Reading, Massachusetts: Addison-Wesley

Sekiyama, Kosuke and Hirohisa Araki. 2007. Network topology reconfiguration against

targeted and random attack. In Self-organizing systems, 4725/2007:119-130: Springer

Berlin / Heidelberg.

http://www.gocsi.com/
http://www.cs.washington.edu/research/networking/rocketfuel/

149

Shannon, C., D. Moore, D. J. Brown, G. M. Voelker, and S. Savage. 2006. Inferring internet

denial-of-service activity. ACM Trans. Comput. Syst. 24, no. 2: 115-139.

Siganos, Georgos, Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 2003. Power

laws and the as-level internet topology. IEEE/ACM Trans. Netw. 11, no. 4: 514-524.

Sole, Ricard V. and Sergi Valverde. 2004. Information theory of complex networks: On

evolution and architectural constraints. In Lecture notes in physics: Complex

networks, ed. E. Ben-Naim, H. Frauenfelder and Z. Toroczkai, 650:189-207. Berlin,

Germany: Springer-Verlag.

Spring, N., R. Mahajan, D. Wetherall, and T. Anderson. 2004. Measuring ISP topologies

with rocketfuel. Networking, IEEE/ACM Transactions on 12, no. 1: 2-16.

Spring, Neil, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP topologies with

rocketfuel. In SIGCOMM '02: Proceedings of the 2002 conference on Applications,

technologies, architectures, and protocols for computer communications, 32:133-145:

ACM Press.

Srivastav, A., A. Ray, and S. Gupta. 2009. An information-theoretic measure for anomaly

detection in complex dynamical systems. Mechanical Systems and Signal Processing

23, no. 2: 358-371.

Stephenson, P. 2006. Towards improving attribution confidence in cyber attacks. Journal of

Cyber Conflict Studies 1, no. 1: 48-54.

Stephenson, P. R. and P. S. Prueitt. 2005. Towards a theory of cyber attack mechanics. Paper

presented at IFIP wg 11.9 Digital Forensics, First Annual Conference, Orlando,

Florida.

Sun, S., Z. X. Liu, Z. Q. Chen, and Z. Z. Yuan. 2007. Error and attack tolerance of evolving

networks with local preferential attachment. Physica a-Statistical Mechanics and Its

Applications 373: 851-860.

Tang, Yongping and Thomas E. Daniels. 2005. A simple framework for distributed forensics.

Paper presented at Proceedings of the Second International Workshop on Security in

Distributed Computing Systems (SDCS) (ICDCSW'05) - Volume 02.

Toby, Ehrenkranz and Li Jun. 2009. On the state of ip spoofing defense. ACM Trans. Internet

Technol. 9, no. 2: 1-29.

Tsunoda, Hiroshi, Kohei Ohta, Atsunori Yamamoto, Nirwan Ansari, Yuji Waizumi, and

Yoshiaki Nemoto. 2008. Detecting drdos attacks by a simple response packet

confirmation mechanism. Computer Communications 31, no. 14: 3299-3306.

150

U.S. Congress. House. House Armed Services Committee. 2005. Hearing on "Cyber

Security, Information Assurance and Information Security", Statement of Eugene h.

Spafford.

U. S. Office of Science and Technology Policy. National Science and Technology Council.

2006. Federal plan for Cyber Security and Information Assurance Research and

Development. Report by the Interagency Working Group on Cyber Security and

Information Assurance.

Wang, B., H. W. Tang, C. H. Guo, and Z. L. Xiu. 2006. Entropy optimization of scale-free

networks' robustness to random failures. Physica a-Statistical Mechanics and Its

Applications 363, no. 2: 591-596.

Wang, F., Z. Q. M. Mao, J. Wang, L. X. Gao, and R. Bush. 2006. A measurement study on

the impact of routing events on end-to-end internet path performance:375-386: Assoc

Computing Machinery.

Wang, J. W. and L. L. Rong. 2008. Effect attack on scale-free networks due to cascading

failures. Chinese Physics Letters 25, no. 10: 3826-3829.

________. 2009a. Edge-based-attack induced cascading failures on scale-free networks.

Physica a-Statistical Mechanics and Its Applications 388, no. 8: 1731-1737.

________. 2009b. A model for cascading failures in scale-free networks with a breakdown

probability. Physica a-Statistical Mechanics and Its Applications 388, no. 7: 1289-

1298.

Wang, J. W., L. L. Rong, L. Zhang, and Z. Z. Zhang. 2008. Attack vulnerability of scale-free

networks due to cascading failures. Physica a-Statistical Mechanics and Its

Applications 387, no. 26: 6671-6678.

Wang, L. N., J. L. Guo, H. X. Yang, and T. Zhou. 2009. Local preferential attachment model

for hierarchical networks. Physica a-Statistical Mechanics and Its Applications 388,

no. 8: 1713-1720.

Wang, X. A., S. G. Guan, and C. H. Lai. 2009. Protecting infrastructure networks from cost-

based attacks. New Journal of Physics 11: 9.

Wu, J., H. Z. Deng, Y. J. Tan, Y. Li, and D. Z. Zhu. 2007. Attack vulnerability of complex

networks based on local information. Modern Physics Letters B 21, no. 16: 1007-

1014.

Wu, J., H. Z. Deng, Y. J. Tan, and D. Z. Zhu. 2007. Vulnerability of complex networks under

intentional attack with incomplete information. Journal of Physics a-Mathematical

and Theoretical 40, no. 11: 2665-2671.

151

Wu, Z. H. and H. J. Fang. 2008. Cascading failures of complex networks based on two-step

degree. Chinese Physics Letters 25, no. 10: 3822-3825.

Xu, J. and X. F. Wang. 2005. Cascading failures in scale-free coupled map lattices. Physica

a-Statistical Mechanics and Its Applications 349, no. 3-4: 685-692.

Yegneswaran, Vinod, Paul Barford, and Johannes Ullrich. 2003. Internet intrusions: Global

characteristics and prevalence. In Proceedings of the 2003 ACM SIGMETRICS

international conference on Measurement and modeling of computer systems:138-

147. San Diego, CA, USA: ACM Press.

Yook, Soon-Hyung, Hawoong Jeong, and Albert-Laszlo Barabasi. 2002. Modeling the

internet's large-scale topology. Proceedings of the National Academy of Sciences of

the United States of America 99, no. 21: 13382-13386.

Yu, M., W. D. Chen, and X. Y. Zhou. 2008. Adaptive detection of syn flooding attacks at

source-end networks. Chinese Journal of Electronics 17, no. 1: 141-144.

Zhang, Shaojun, Jianhua Li, Xiuzhen Chen, and Lei Fan. 2008. Building network attack

graph for alert causal correlation. Computers & Security 27, no. 5-6: 188-196.

Zhang, Z. Z., S. G. Zhou, T. Zou, and G. S. Chen. 2008. Fractal scale-free networks resistant

to disease spread. Journal of Statistical Mechanics-Theory and Experiment: 11.

Zhao, L., K. H. Park, Y. C. Lai, and N. Ye. 2005. Tolerance of scale-free networks against

attack-induced cascades. Physical Review E 72, no. 2: 4.

Ziviani, A., A. T. A. Gomes, M. L. Monsores, and P. S. S. Rodrigues. 2007. Network

anomaly detection using nonextensive entropy. Ieee Communications Letters 11, no.

12: 1034-1036.

152

APPENDIX

153

Appendix A

CPN Declarations

(* Base Declarations *)

 colset INT = int declare output_col;

 colset BOOL = bool;

 colset E = with e;

 colset LIST = list INT;

 colset NODE = INT declare ms;

 colset ORPHAN_NODE = NODE declare ms;

 colset NEIGH_NODE = INT declare ms;

 colset ATTACKED_NODE = NODE declare ms;

 colset TEMP_ORPHAN_NODE = NODE declare ms;

 colset PERM_ORPHAN_NODE = NODE declare ms;

 colset NODE_TYPE = INT declare ms;

 colset NP = product NODE * NODE declare ms;

 colset NP_LIST = list NP declare ms;

 colset STATUS_INT = int with 0..4;

 colset NP_ORPHAN_STATUS = INT declare ms;

 colset NODE_STATUS = STATUS_INT declare ms;

 colset NODE_REMOVED_STATUS = BOOL declare ms;

 colset REMOVED_NODE = NODE declare ms;

 colset REMOVED_NODE_LIST = list REMOVED_NODE declare ms;

 colset NEIGH_NODE_LIST = list NEIGH_NODE declare ms;

 colset NEIGH_NODE_LIST_LIST = list NEIGH_NODE_LIST declare ms;

 colset NODE_THRESHOLD = INT declare ms;

 colset NODE_DEGREE = INT declare ms;

 colset LINK_PROB_OUT_OF_100 = INT declare ms;

 colset NEIGH_NODE_PROB =

 product NEIGH_NODE * LINK_PROB_OUT_OF_100 declare ms;

 colset NEIGH_NODE_PROB_LIST = list NEIGH_NODE_PROB declare ms;

 colset NODE_RECORD1 =

 record id:NODE * neigh:NEIGH_NODE_LIST * degree:NODE_DEGREE *

 threshold:NODE_THRESHOLD * status:NODE_STATUS * ts:INT

 declare output_col,ms;

 colset NODE_RECORD1_LIST = list NODE_RECORD1 declare output_col;

 colset NODE_RECORD2 =

record oid:NODE * odegree:NODE_DEGREE *

nnDegreeProbList:NEIGH_NODE_PROB_LIST * nnDegreeTotal:INT *

newLink:NEIGH_NODE declare ms;

 colset NODE_RECORD2_LIST = list NODE_RECORD2 declare ms;

154

(* Product Declarations with Multiple Colorsets *)

 colset NODExNPxREMOVED_NODE_LIST =

 product NODE * NP * REMOVED_NODE_LIST declare ms;

 colset NPxNP_LIST = product NP * NP_LIST declare ms;

 colset ORPHAN_NODExNODE_STATUS =

 product ORPHAN_NODE * NODE_STATUS declare ms;

 colset NP_STATUSxNPxNODE =

 product NP_ORPHAN_STATUS * NP * NODE declare ms;

 colset NPxNP_ORPHAN_STATUS = product NP * NP_ORPHAN_STATUS declare ms;

 colset NPxNODE_REMOVED_STATUS =

 product NP * NODE_REMOVED_STATUS declare ms;

 colset NODE_RECORD1xNODE_RECORD1_LIST =

 product NODE_RECORD1 * NODE_RECORD1_LIST declare ms;

 colset NODExNODE_RECORD1_LIST =

 product NODE * NODE_RECORD1_LIST declare ms;

 colset ORPHAN_NODExNODE_STATUSxNODE_RECORD1_LIST =

 product ORPHAN_NODE * NODE_STATUS * NODE_RECORD1_LIST declare

ms;

 colset NODE_RECORD1xNODE_RECORD1_LISTxNODE_RECORD2 =

 product NODE_RECORD1 * NODE_RECORD1_LIST *

 NODE_RECORD2 declare ms;

 colset REMOVED_NODExNODE_RECORD1xNODE_RECORD1_LIST =

 product REMOVED_NODE * NODE_RECORD1 * NODE_RECORD1_LIST

 declare ms;

 colset REMOVED_NODExNODE_RECORD1_LIST =

 product REMOVED_NODE * NODE_RECORD1_LIST declare ms;

 colset REMOVED_NODExNODE_RECORD1_LISTxREMOVED_NODE_LIST =

 product REMOVED_NODE * NODE_RECORD1_LIST *

 REMOVED_NODE_LIST declare ms;

 colset REMOVED_NODExREMOVED_NODE_LIST =

 product REMOVED_NODE * REMOVED_NODE_LIST declare ms;

 colset NODE_RECORD2xNODE_RECORD1_LIST =

 product NODE_RECORD2 * NODE_RECORD1_LIST declare ms;

 colset NODE_RECORD2xNODE = product NODE_RECORD2 * NODE declare ms;

 colset INTxINT = product INT * INT declare ms;

 colset NODExBOOL = product NODE * BOOL declare ms;

 colset NODE_RECORD1_LISTxTEMP_ORPHAN_NODE =

 product NODE_RECORD1_LIST * TEMP_ORPHAN_NODE declare ms;

 colset TEMP_ORPHAN_NODExNODExNODE_RECORD1_LIST =

 product TEMP_ORPHAN_NODE * NODE * NODE_RECORD1_LIST declare ms;

(* Variables *)

 var nplist1,nplist2,nplist3,nplist4,nplist5,nplist6:NP_LIST;

 var neighNodeListList1, neighNodeListList2: NEIGH_NODE_LIST_LIST;

 var rlist1,rlist2,rlist3,rlist4,rlist5,rlist6,rlist7,rlist8,rlist9:REMOVED_NODE_LIST;

155

 var nodeRecord1List1,nodeRecord1List2,nodeRecord1List3,nodeRecord1List4,

 nodeRecord1List5,nodeRecord1List6:NODE_RECORD1_LIST;

 var nodeRecord2List1,nodeRecord2List2,nodeRecord2List3,nodeRecord2List4,

 nodeRecord2List5:NODE_RECORD2_LIST;

 var b1,b2,b3,b4,criticalNodeCount,timeStamp:INT;

 var n1,n2:NODE;

 var n3_n4:BOOL;

 var tempOrphanNode1,tempOrphanNode2,tempOrphanNode3,

 tempOrphanNode4:TEMP_ORPHAN_NODE;

 var

permOrphanNode1,permOrphanNode2,permOrphanNode3:PERM_ORPHAN_NODE;

 var node,node1,node2,node3,node4:NODE;

 var nodeRemovedStatus1,nodeRemovedStatus2:NODE_REMOVED_STATUS;

 var npStatus1,npStatus2:NP_ORPHAN_STATUS;

 var nodePair1,nodePair2:NP;

 var nodeStatus1,nodeStatus2:NODE_STATUS;

 var evalNodePair1,evalNodePair2:NP;

 var removedNode,removedNode1,removedNode2,removedNode3:REMOVED_NODE;

 var

nodeRecord1,nodeRecord2,nodeRecord3,nodeRecord4,nodeRecord5:NODE_RECORD1;

 var nodeRecord2_1,nodeRecord2_2,nodeRecord2_3,nodeRecord2_4:NODE_RECORD2;

(* Global Variables *)

 globref packets = empty: NEIGH_NODE_LIST ms;

 globref packets1 = empty: NP ms;

 globref outfile = TextIO.stdOut;

 globref packetsCrit = empty: REMOVED_NODE ms;

 globref packetsCritCount = empty: INT ms;

 globref rt = Timer.startRealTimer();

 val PROTECT_LIST = [];

 val NODE_THRESHOLD = 0.1;

 val NODE_THRESHOLD_PROTECT = 5.0;

 val M = 100000000;

 val M1 = 10000;

 val B = 31415821;

 val RANDOM_SEED = 7789;

(* Exceptions *)

 exception notFound of int;

156

Appendix B

CPN Function Code

(* Functions *)

 fun getTarget (_,nil) = raise notFound(1)

 | getTarget (target, recordList:NODE_RECORD1_LIST) =

 let

 val b = hd recordList;

 val key = #id(b);

 in

 if (key = target) andalso (List.null recordList = false)

 then b

 else (getTarget (target,tl recordList))

 end;

 fun getTarget2 (_,nil) = raise notFound(1)

 | getTarget2 (target, recordList:NODE_RECORD2_LIST) =

 let

 val b = hd recordList;

 val key = #oid(b);

 in

 if (key = target) andalso (List.null recordList = false)

 then b

 else (getTarget2 (target,tl recordList))

 end;

 fun mult(p:INT,q:INT):INT =

 let

 val p1 = p div M1;

 val p0 = p mod M1;

 val q1 = q div M1;

 val q0 = q mod M1;

 in

 (((p0*q1+p1*q0) mod M1) * M1 + p0 * q0) mod M

 end;

 fun randomInt(r:INT):INT =

157

 let

 val a = (mult(RANDOM_SEED,B)+1) mod M;

 in

 ((a div M1)*r) div M1 (* generate random number between 0 and r-1 *)

 end;

fun simulationTimer (rt) =

 let

 val currentTime = Time.toMilliseconds(Timer.checkRealTimer rt);

 val IntTimeSeconds = Int.fromLarge currentTime;

 in

 IntTimeSeconds

 end;

fun currentTimeSimulation ():INTxINT =

 let

 val currentTime = Date.fromTimeLocal(Time.now());

 val currentHour = Date.hour(currentTime);

 val currentMinute = Date.minute(currentTime);

 in

 (currentHour,currentMinute)

 end;

fun idFound ({id,...}:NODE_RECORD1) = id=10;

fun getPackets() = (!packets);

fun getPackets1() = (!packets1);

fun getPacketsCritical() = (!packetsCrit);

fun getPacketsCritCount() = (!packetsCritCount);

fun getCritical() =

 let

 val infileCrit=TextIO.openIn("criticalNodesTokens.txt");

 val message2 = REMOVED_NODE.input_ms(infileCrit);

 in

 packetsCrit := message2;

 TextIO.closeIn(infileCrit);

 ()

 end handle _ => ();

fun getInputList() =

 let

 val infile=TextIO.openIn("nodeNeighborListTokens.txt");

158

 val message = NEIGH_NODE_LIST.input_ms(infile);

 in

 packets := message;

 TextIO.closeIn(infile);

 ()

 end handle _ => ();

fun getInputNPList() =

 let

 val infile=TextIO.openIn("nodePairTokens.txt");

 val message1 = NP.input_ms(infile);

 in

 packets1 := message1;

 TextIO.closeIn(infile);

 ()

 end handle _ => ();

fun getCriticalCount() =

 let

 val infile=TextIO.openIn("criticalNodeCount.txt");

 val message2 = INT.input_ms(infile);

 in

 packetsCritCount := message2;

 TextIO.closeIn(infile);

 ()

 end handle _ => ();

fun releaseOneNodePair (nplist):NPxNP_LIST =

 let

 val listLength = List.length(nplist);

 val randomIndex = randomInt(listLength);

 val npair = List.nth(nplist, randomIndex);

 val newList = rm npair nplist;

 in

 (npair,newList)

 end;

fun releaseOneCriticalNode (rlist):REMOVED_NODExREMOVED_NODE_LIST =

 let

 val listLength = List.length(rlist);

 val randomIndex = randomInt(listLength);

 val remNode = List.nth(rlist, randomIndex);

 val newList = rm remNode rlist;

 in

 (remNode,newList)

 end;

159

 fun updateRecordList2 (recordList2,record2:NODE_RECORD2) =

 let

 fun newMember (recordList2,record2):BOOL = (mem recordList2

record2);

 fun intializeR2 (recordList2,record2) =

 let

 val target = #oid(record2);

 val r2 = getTarget2

(target:ORPHAN_NODE,recordList2):NODE_RECORD2 handle notFound(1) =>

record2;

 in

 if newMember(recordList2,record2)= true then

{oid=0,odegree=0,nnDegreeProbList= [],nnDegreeTotal=0,newLink=0}

 else r2

 end;

 val recordListMinusOldRecord = rm

(intializeR2(recordList2,record2):NODE_RECORD2) recordList2;

 in

 [intializeR2 (recordList2,record2)] ^^ recordListMinusOldRecord

 end;

fun updateStatus (r,status) = NODE_RECORD1.set_status r status;

fun updateDegree(r,degree) = NODE_RECORD1.set_degree r degree;

fun updateTimeStamp (r,timestamp) = NODE_RECORD1.set_ts r timestamp;

fun determineCascade (nodeRecord:NODE_RECORD1):BOOL =

 let

 val currentThreshold = #threshold(nodeRecord);

 val currentDegree = #degree(nodeRecord);

 in

 if (currentDegree >= currentThreshold) then true else false

 end;

fun determine_3_4(currentRecord:NODE_RECORD1):NODE_RECORD1 =

 let

 val currentNode = #id(currentRecord);

 val currentDegree = #degree(currentRecord);

 val currentThreshold = #threshold(currentRecord);

 in

 (

 if currentDegree = 0

 then

 updateStatus(currentRecord,3)

160

 else

 if (currentDegree >= currentThreshold)

 then

 updateStatus(currentRecord,4)

 else currentRecord

)

 end;

fun outputNodeRecord (outfile,nodeRecord3:NODE_RECORD1) =

 let

 val (currentHour,currentMinute) = currentTimeSimulation();

 in

 (

 NODE.output(outfile,#id(nodeRecord3));

 TextIO.output(outfile,"\t");

 NODE_STATUS.output(outfile,#status(nodeRecord3));

 TextIO.output(outfile,"\t");

 NODE_DEGREE.output(outfile,#degree(nodeRecord3));

 TextIO.output(outfile,"\t");

 NODE_THRESHOLD.output(outfile,#threshold(nodeRecord3));

 TextIO.output(outfile,"\t");

 INT.output(outfile,#ts(nodeRecord3));

 TextIO.output(outfile,"\t");

 INT.output(outfile,currentHour);

 TextIO.output(outfile,"\t");

 INT.output(outfile,currentMinute);

 TextIO.output(outfile,"\t");

 NEIGH_NODE_LIST.output(outfile,#neigh(nodeRecord3));

 TextIO.output(outfile,"\n")

)

 end;

fun updateNeighList

(outfile,neighborNodeRecord,newNeighList,newNeighDegree):NODE_RECORD1 =

 let

 val neighborListBefore = #neigh(neighborNodeRecord);

 val neighborNodeRecord1= NODE_RECORD1.set_neigh neighborNodeRecord

newNeighList;

 val neighborNodeRecord2= NODE_RECORD1.set_degree

neighborNodeRecord1 newNeighDegree;

 val currentNode = #id(neighborNodeRecord2);

 val neighborNodeRecord3= determine_3_4(neighborNodeRecord2);

161

 val neighborNodeRecord4= updateTimeStamp

(neighborNodeRecord3,simulationTimer(!rt));

 val NeighNodeStatus = #status(neighborNodeRecord4);

 val neighborListAfter = #neigh(neighborNodeRecord4);

 in

 (

 if NeighNodeStatus = 3 orelse NeighNodeStatus = 4

 then

 (

 outputNodeRecord(outfile,neighborNodeRecord4);

 neighborNodeRecord4

)

 else if neighborListAfter <> neighborListBefore

 then

 (

 outputNodeRecord(outfile,neighborNodeRecord4);

 neighborNodeRecord4

)

 else neighborNodeRecord4

)

 end;

fun intializeOutputNodeRecord (outfile,nodeRecord3:NODE_RECORD1) =

 let

 val (currentHour,currentMinute) = currentTimeSimulation();

 in

 (

 NODE.output(outfile,#id(nodeRecord3));

 TextIO.output(outfile,"\t");

 NODE_STATUS.output(outfile,#status(nodeRecord3));

 TextIO.output(outfile,"\t");

 NODE_DEGREE.output(outfile,#degree(nodeRecord3));

 TextIO.output(outfile,"\t");

 NODE_THRESHOLD.output(outfile,#threshold(nodeRecord3));

 TextIO.output(outfile,"\t");

 INT.output(outfile,#ts(nodeRecord3));

 TextIO.output(outfile,"\t");

 INT.output(outfile,currentHour);

 TextIO.output(outfile,"\t");

 INT.output(outfile,currentMinute);

 TextIO.output(outfile,"\t");

 NEIGH_NODE_LIST.output(outfile,#neigh(nodeRecord3));

 TextIO.output(outfile,"\n")

162

)

 end;

fun closeFile(outfile) = TextIO.closeOut(outfile);

fun checkForProtection(node):BOOL =

 if mem PROTECT_LIST node then true else false;

fun removeNodeFromNNList

(outfile,target:NEIGH_NODE,recordList:NODE_RECORD1_LIST):NODE_RECORD1 =

 let

 fun protectNode(neighNode:NODE,neighNodeList) =

 if

 checkForProtection(neighNode)

 then

 neighNodeList

 else

 rmall target (neighNodeList);

 val neighborNodeRecord = (hd recordList):NODE_RECORD1;

 val neighNode = #id(neighborNodeRecord);

 val oldNeighList = #neigh(neighborNodeRecord);

 val neighList = protectNode(neighNode,oldNeighList);

 val neighDegree = length neighList;

 val neighNodeStatus = #status(neighborNodeRecord);

 in

 (

 (* only process neighbor list of active nodes *)

 if neighNodeStatus = 0

 then

 updateNeighList (outfile,neighborNodeRecord,neighList,neighDegree)

 else

 neighborNodeRecord (* no change *)

)

 end;

fun traverseRecordList (_,_,nil) = nil

 | traverseRecordList (outfile,target,recordList) =

 [removeNodeFromNNList(outfile,target,recordList)] ^^ traverseRecordList

(outfile,target,(tl recordList));

fun computeNodeDegreeThreshold (node:NODE,nodeDegree:INT):INT =

 let

163

 val nodeDegreeReal = Real.fromInt nodeDegree;

 val nodeDegreeThresholdReal = nodeDegreeReal * NODE_THRESHOLD;

 val nodeDegreeThreshold = Real.ceil nodeDegreeThresholdReal + nodeDegree;

 val nodeThresholdProtect =

 NODE_THRESHOLD + NODE_THRESHOLD_PROTECT;

 val nodeDegreeThresholdRealProtect = nodeDegreeReal * nodeThresholdProtect;

 val nodeDegreeThresholdProtect = Real.ceil nodeDegreeThresholdRealProtect +

nodeDegree;

 in

 (

 if checkForProtection(node) = true

 then

 nodeDegreeThresholdProtect

 else

 nodeDegreeThreshold

)

 end;

fun computeNodeProfileRecordStep1 (outfile,nlist) =

 let

 val nodeDegree = length (tl nlist);

 val node = hd nlist;

 val r1 = {

 id = (hd nlist):NODE,

 neigh = (tl nlist):NEIGH_NODE_LIST,

 degree = nodeDegree:NODE_DEGREE,

 threshold = computeNodeDegreeThreshold(node,nodeDegree),

 status = 0,ts=0

 };

 in

 intializeOutputNodeRecord(outfile,r1);

 r1

 end;

fun updateNodeProfileRecordStep1A (outfile,recordList) =

 let

 fun checkNull (recordList) =

 if List.null recordList = false then

 [computeNodeProfileRecordStep1 (outfile, hd recordList)]

 else [];

 in

 if List.null recordList = true then []

 else

 computeNodeProfileRecordStep1 (outfile,hd recordList) ::

(updateNodeProfileRecordStep1A (outfile,tl recordList))

164

 end;

fun updateNodeProfileRecordThreshold {id,neigh,degree,threshold,status,ts} =

 {id = id,neigh=neigh,degree=degree,threshold = computeNodeDegreeThreshold(degree),

 status=status,ts=0};

 fun insertRecord (newRecord:NODE_RECORD1,recordList:NODE_RECORD1_LIST) =

 ins_new recordList newRecord;

fun removeRecord (target,rs) =

 (*Find and remove the first instance of the target

 Assumes that this function is used with the insertRecord function, the

 insertRecord function adds the NEW record to the end of the recordList, thus the old re

 record is the first occurence of target in the record list*)

 let

 val r = getTarget (target,rs):NODE_RECORD1;

 in

 rm r rs

 end;

fun traverseAndUpdateStatus (nil) = nil

 | traverseAndUpdateStatus (recordList) =

 let

 val targetRecord = hd recordList;

 val neighList = #neigh(targetRecord);

 in

 (

 if List.null neighList = true then

 [updateStatus (targetRecord,3)] ^^ traverseAndUpdateStatus (tl

recordList)

 else

 [targetRecord] ^^ traverseAndUpdateStatus (tl recordList)

)

 end;

fun recordUpdateForStatus_1

(outfile,s,removedNodeList,recordList:NODE_RECORD1_LIST):REMOVED_NODExNO

DE_RECORD1_LISTxREMOVED_NODE_LIST =

 let

 val (removedNode,removedNodeListMinus) =

 releaseOneCriticalNode (removedNodeList);

 val targetRecord = getTarget(removedNode,recordList):NODE_RECORD1;

 val targetRecord1 = updateStatus(targetRecord,s);

 val targetRecord2 = updateTimeStamp (targetRecord1,simulationTimer(!rt));

 val recordListMinus = removeRecord(removedNode, recordList);

 val newRecordList = insertRecord(targetRecord2,recordListMinus);

165

 val updatedNeighLists =

traverseRecordList(outfile,removedNode,newRecordList)

 in

 (

 outputNodeRecord(outfile,targetRecord2);

 (removedNode,updatedNeighLists,removedNodeListMinus)

)

 end;

fun updateNodeRecord

(s:INT,rs:NODE_RECORD1_LIST,TPorphanNode:ORPHAN_NODE):NODE_RECORD1

=

 let

 val updatedRecord1= getTarget

(TPorphanNode:ORPHAN_NODE,rs):NODE_RECORD1

 val updatedRecord2 = updateStatus (updatedRecord1,s);

 val updatedRecord3 = updateTimeStamp

(updatedRecord2,simulationTimer(!rt));

 val theNeighList = #neigh(updatedRecord3);

 val d = length theNeighList;

 val updatedRecord = updateDegree (updatedRecord3,d);

 in

 updatedRecord

 end;

fun updateRemovedNodeAndDeleteFromNeighLists

(outfile,targetRecord:NODE_RECORD1,recordList:NODE_RECORD1_LIST) =

 let

 val targetNode = #id(targetRecord);

 val nodeStatus = #status(targetRecord);

 in

 (

 if nodeStatus = 3 orelse nodeStatus = 4

 then

 (

 outputNodeRecord(outfile,targetRecord);

 closeFile(outfile);

 traverseRecordList(outfile,targetNode,recordList)

)

 else

 recordList

)

 end;

fun checkFor3_4(currentNode:NODE,recordListBefore:NODE_RECORD1_LIST):BOOL =

 let

166

 val currentRecord = getTarget

(currentNode:NODE,recordListBefore):NODE_RECORD1;

 val currentDegree = #degree(currentRecord);

 val currentThreshold = #threshold(currentRecord);

 in

 (

 if currentDegree = 0

 then

 true

 else

 if (currentDegree >= currentThreshold)

 then

 true

 else false

)

 end;

fun updateDB_Input_NR

(outfile,s:INT,rs:NODE_RECORD1_LIST,newRecord:NODE_RECORD1):NODE_RECOR

D1_LIST=

 let

 val newRecordNode = #id(newRecord);

 val newRecord = updateNodeRecord(s,rs,newRecordNode);

 val newRecordStatus = #status(newRecord);

 val newRecord1 = determine_3_4(newRecord);

 val recordListMinus = removeRecord(newRecordNode, rs);

 val newRecordList = insertRecord(newRecord1,recordListMinus);

 val newRecordList1 = updateRemovedNodeAndDeleteFromNeighLists

(outfile,newRecord1,newRecordList);

 in

 newRecordList1

 end;

fun updateDB_RecordList

(recordList:NODE_RECORD1_LIST,newRecord:NODE_RECORD1):

 NODE_RECORD1_LIST=

 let

 val newRecordNode = #id(newRecord);

 val recordListMinus = removeRecord(newRecordNode, recordList);

 val newRecordList = insertRecord(newRecord,recordListMinus);

 in

 newRecordList

 end;

167

fun

processNewLink(outfile,recordListBeforeUpdate:NODE_RECORD1_LIST,r2:NODE_REC

ORD2):NODE_RECORD1_LIST =

 let

 val newLinkNode = #newLink(r2);

 val orphanNode = #oid(r2);

 val targetNodeRecord = getTarget

(newLinkNode:NEIGH_NODE,recordListBeforeUpdate):NODE_RECORD1

 val oldNeighList = #neigh(targetNodeRecord);

 val newNeighList = ins oldNeighList orphanNode;

 val newNeighDegree = #degree(targetNodeRecord) + 1;

 val updatedRecord = updateNeighList

(outfile,targetNodeRecord,newNeighList,newNeighDegree);

 val updatedRecordList1 =

updateDB_RecordList(recordListBeforeUpdate,updatedRecord);

 in

 updatedRecordList1

 end;

fun updateStatusRecord (target,rs,nodeStatus) =

 let

 val r = getTarget (target,rs):NODE_RECORD1;

 in

 updateStatus (r,nodeStatus)

 end;

fun updateNodeRecordThreshold (recordList) =

 if List.null recordList = true then [] else

 [updateNodeProfileRecordThreshold (hd recordList)] ^^ updateNodeRecordThreshold(tl

recordList);

fun nnLinkProb (nnDegree:INT,nnDegreeTotal:INT):INT =

 let

 val nnDegreeReal = Real.fromInt nnDegree;

 val nnDegreeTotalReal = Real.fromInt nnDegreeTotal;

 val nnProbReal = (nnDegreeReal / nnDegreeTotalReal) * 100.00;

 val nnProb = Real.trunc nnProbReal;

 in

 nnProb

 end;

fun nnDegreeTotal (nil,_):INT = 0

 | nnDegreeTotal (nnList:NEIGH_NODE_LIST,rs:NODE_RECORD1_LIST):INT =

 let

168

 val nn = hd nnList;

 val r = getTarget (nn:NEIGH_NODE,rs):NODE_RECORD1;

 val nnD = #degree(r);

 in

 if List.null nnList = false then

 nnD + nnDegreeTotal (tl

nnList:NEIGH_NODE_LIST,rs:NODE_RECORD1_LIST)

 else 0

 end;

fun createNNProbList (nil,_,_) = nil

 | createNNProbList (nnList,rs,nnDTotal) =

 let

 val nn = hd nnList;

 val r = getTarget (nn:NEIGH_NODE,rs):NODE_RECORD1

 val nnD = #degree(r);

 val nnProb = nnLinkProb (nnD,nnDTotal);

 val neighNodeStatus = #status(r);

 in

 if neighNodeStatus =2 orelse neighNodeStatus = 0

 then

 [(nn,nnProb)] ^^ createNNProbList (tl nnList,rs,nnDTotal)

 else

 createNNProbList (tl nnList,rs,nnDTotal)

 end;

fun newLink2

(orphanNode,orphanNodeDegree,nnList:NEIGH_NODE_LIST,rs:NODE_RECORD1_LIST)

=

 let

 val nnDTotal = nnDegreeTotal (nnList,rs);

 val nnProbList = createNNProbList (nnList,rs,nnDTotal);

 in

 {oid = orphanNode,odegree = orphanNodeDegree, nnDegreeProbList = nnProbList,

nnDegreeTotal = nnDTotal, newLink = 0}

 end;

 fun newLink1 (orphanNode:TEMP_ORPHAN_NODE,rs:NODE_RECORD1_LIST) =

 let

 val r = getTarget

(orphanNode:TEMP_ORPHAN_NODE,rs):NODE_RECORD1;

 val orphan = #id(r);

 val nnList = #neigh(r);

 val orphanDegree = #degree(r);

 in

 newLink2 (orphan,orphanDegree,nnList,rs)

 end;

169

fun buildNewLinkList2 (elementNode,elementCount,count) =

 let

 val count = count + 1;

 in

 (

 if (count > elementCount)

 then

 nil

 else

 [elementNode] ^^ buildNewLinkList2(elementNode,elementCount,count)

)

 end;

fun buildNewLinkList1 (nil,_) = nil

 | buildNewLinkList1

(elementList:NEIGH_NODE_PROB_LIST,currentNewLinkList:LIST) =

 let

 val elementNodeData = hd elementList;

 val elementNode = #1(elementNodeData);

 val elementCount = #2(elementNodeData);

 in

 buildNewLinkList2(elementNode,elementCount,0) ^^ buildNewLinkList1(tl

elementList,currentNewLinkList)

 end;

fun updateNewLink (r,newLinkNode) =

 let

 val r1 = NODE_RECORD2.set_newLink r newLinkNode;

 in

 r1

 end;

fun selectNewLink (r:NODE_RECORD2):NODE_RECORD2xNODE =

 let

 val elementList = #nnDegreeProbList(r);

 val possibleNewLinksList = buildNewLinkList1(elementList,[]);

 val newLinkNode = List.nth(possibleNewLinksList, discrete(0,

List.length(possibleNewLinksList) - 1))

 in

 (updateNewLink (r,newLinkNode),newLinkNode)

 end;

170

fun attackedNodePair(node,removedNodesList) = (mem removedNodesList node)

fun getTempOrphan (npair:NP,status):TEMP_ORPHAN_NODE =

 if (status = 1) then #1(npair)

 else #2(npair);

 fun buildNPList (nplist,npair:NP):NP_LIST =

 nplist ^^ [npair];

fun buildRemList (node1,node2,remList,recordList):REMOVED_NODE_LIST =

 let

 val targetRecord1 = getTarget(node1:NODE,recordList):NODE_RECORD1;

 val nodeStatus1 = #status(targetRecord1);

 val targetRecord2 = getTarget(node2:NODE,recordList):NODE_RECORD1;

 val nodeStatus2 = #status(targetRecord2);

 in

 (

 (

 if (nodeStatus1 = 3) orelse (nodeStatus1 = 4) orelse (nodeStatus1 = 1)

 then

 ins_new remList node1

 else

 remList

);

 (

 if (nodeStatus2 = 3) orelse (nodeStatus2 = 4) orelse (nodeStatus2 = 1)

 then

 ins_new remList node2

 else

 remList

)

)

 end;

fun makeRemovedNodeList2

(node,m:REMOVED_NODE_LIST):REMOVED_NODE_LIST = ins_new m node;

 fun createUpdateRemovedNodeList (nil,_) = nil

 | createUpdateRemovedNodeList

(recordList1:NODE_RECORD1_LIST,updateRemovedNodeList) =

 let

 val record1 = (hd recordList1);

 in

 if (#status(record1) = 3) orelse (#status(record1) = 4) then

 [#id(record1)] ^^ updateRemovedNodeList ^^ createUpdateRemovedNodeList (tl

recordList1,updateRemovedNodeList)

 else

171

 createUpdateRemovedNodeList (tl recordList1,updateRemovedNodeList)

 end;

fun recordUpdateForStatus_4

(outfile,s,node,recordList:NODE_RECORD1_LIST):NODE_RECORD1_LIST =

 let

 val targetRecord = getTarget(node,recordList):NODE_RECORD1;

 val targetRecord1 = updateStatus(targetRecord,s);

 val targetRecord2 = updateTimeStamp (targetRecord1,simulationTimer(!rt));

 val recordListMinus = removeRecord(node, recordList);

 val newRecordList = insertRecord(targetRecord2,recordListMinus);

 val updatedNeighLists = traverseRecordList(outfile,node,newRecordList) (*

remove from neighbor lists *)

 in

 (

 outputNodeRecord(outfile,targetRecord2);

 updatedNeighLists

)

 end;

fun checkForNewLinkCascade(outfile,s,node,recordList:NODE_RECORD1_LIST):

 NODE_RECORD1_LIST =

 let

 in

 (

 if checkFor3_4(node,recordList) = true (* returns updated record *)

 then

 recordUpdateForStatus_4 (outfile,s,node,recordList) (* Cascade as result of

new link *)

 else

 recordList (* no change *)

)

 end;

fun processAndSelectNewLink

(outfile,orphanNode:TEMP_ORPHAN_NODE,recordListBefore:NODE_RECORD1_LIST):

 TEMP_ORPHAN_NODExNODExNODE_RECORD1_LIST =

 let

 fun checkNewLink

(outfile,recordListBefore,updatedNR2:NODE_RECORD2):NODE_RECORD1_LIST

=

 let

 val newLinkNode = #newLink(updatedNR2);

 val orphanNode = #oid(updatedNR2);

 in

172

 if newLinkNode = orphanNode

 then

 recordListBefore

 else

 processNewLink(outfile,recordListBefore,updatedNR2)

 end;

fun newLinkSelection(orphanNode,recordListBefore):

 TEMP_ORPHAN_NODExNODExNODE_RECORD1_LIST=

 let

 val nr2_1 = newLink1(orphanNode,recordListBefore);

 val (updatedNR2,newLinkNode) = selectNewLink(nr2_1) handle Discrete =>

 ({oid = orphanNode,odegree = 0, nnDegreeProbList = [], nnDegreeTotal = 0,

newLink = orphanNode},orphanNode);

 val updatedList = checkNewLink (outfile,recordListBefore,updatedNR2);

 val updatedList1 =

checkForNewLinkCascade(outfile,4,newLinkNode,updatedList); (* check for cascade as

result of newLink *)

 in

 (orphanNode,newLinkNode,updatedList1)

 end;

 in

 (

 if checkFor3_4(orphanNode,recordListBefore) = true

 then

 (orphanNode,orphanNode,recordListBefore) (* No Change *)

 else

 newLinkSelection(orphanNode,recordListBefore) (* RecordList1 with new

link added due to being selected *)

)

 end;

fun updateDB_Input_N

(s:INT,rs:NODE_RECORD1_LIST,nodeForUpdate):NODE_RECORD1_LIST =

 let

 val newRecord = updateNodeRecord(s,rs,nodeForUpdate);

 val newRecordNode = #id(newRecord);

 val newRecordStatus = #status(newRecord);

 val recordListMinus = removeRecord(newRecordNode, rs);

 val newRecordList = insertRecord(newRecord,recordListMinus);

 in

 newRecordList

 end;

173

fun node3_4(node1,recordList):BOOL =

 let

 val targetRecord = getTarget(node1:NODE,recordList):NODE_RECORD1;

 val nodeStatus = #status(targetRecord);

 in

 (

 if (nodeStatus = 3) orelse (nodeStatus = 4) orelse (nodeStatus = 1)

 then (true)

 else (false)

)

 end;

fun buildRemList1 (node,remList):REMOVED_NODE_LIST = ins_new remList node;

174

Appendix C

Simulation Run Data File Identification

Each CPN simulation run generates the following files:

 File name: RCxxxy_6M_7018_Runz_SimResults.txt, one file per simulation run.

 File-id = 1: identifies file for reference purposes

Description: CPN simulation run output, audit trail of all changes that occur in one

CPN simulation run.

Data Format: One record per node.

Column data at time t: Node-id, status, degree, capacity, timestamp(ms), real clock

hour, real clock time (hour and minute), list of all neighbor nodes.

 Filename Descriptors for file-id number 1 (as defined in Chapters III and IV):

Run Class: xxx = (000, 005, 010, 015, 020, ...,050) representing attack classes (in

order): (pre-attack, 0.5%, 1.0%, 1.5%, …, 5.0%).

Additional Capacity: y = 1 indicates each node‟s capacity in simulation was 1.1 *pre-

attack node degree.

6M

Each simulation run was executed for 6 million CPN execution steps.

7018

Pre-Attack Autonomous System Number (ASN) for Rocketfuel router adjacency data.

Run Type: z = 01, 02, 03, 04.

In addition to the intermediate “processing files” generated through execution of the

offline Microsoft Visual Basic routines that were developed specifically for this research,

other significant data files associated with each simulation run included:

File-id: 2. File name: NetworkProfile.txt

Description: Collected at each simulation time interval, represents all current network

connectivity states at time t.

Storage interval: One file for each simulation run.

175

Data format: One record per time interval and node-pair type.

Column data at time t: simulation time(ms), Information transfer, k1Count, k2Count,

pk1, pk2, p(k1k2),file-id descriptors as defined for file-id number 1 above.

File-id: 3. File name: ActiveNodes.txt

Description: Active nodes at time t as defined in Chapter III (status = 0).

Storage interval: One file for each time interval in each simulation run.

Data format: One record per node-id.

Column data: file-id descriptors, node-id, status, degree, simulation timestamp(ms),

node neighbor list at time t.

File-id: 4. File name: ActiveNodesWithNeighbors.txt

Description: Active nodes with neighbors at time t as defined in Chapter III (status =

0).

Storage interval: One file for each time interval in each simulation run.

Data format: One record per node-id and neighbor node-pair.

Column data: file-id descriptors, node-id, neighbor node-id, node degree, simulation

timestamp(ms).

File-id: 5. File name: OrphanNodeProfile.txt

Description: Orphan nodes at time t as defined in Chapter III (status = 0).

Storage interval: One file for each time interval in each simulation run.

Data format: One record per node-id.

Column data: file-id descriptors, orphan node-id, status, pre-attack degree, oTime

(time the node became orphaned).

File-id: 6. File name: OrphanNodeNeighProfile.txt

Description: Active nodes with neighbors at time t as defined in Chapter III (status =

0). Storage interval: One file for each time interval in each simulation run.

Data format: One record per node-id and neighbor node-pair.

Column data: file-id descriptors, orphan node-id, pre-attack orphan neighbor node-id,

pre-attack node degree, oTime (time the node became orphaned).

176

Appendix D

CPN Simulation Sub-Page Design Details

CPN Sub-page Details

Each I/O port on the CPN main page discussed in the previous section communicates

with a CPN sub-page. These sub-pages execute the core functionality of the simulation.

This section presents the details of each sub-page.

CPN Sub-Pages - IntializeNodePairs, IntializeNodeNeighList

As shown in Figure U.1 (IntializeNodePairs), place 1 triggers transition A to fire,

transition A then reads a text file containing the pre-attack node pairs in CPN token format.

Transition A creates a one CPN list (denoted as […]) of node pair tuples ([< 𝑛𝑖 , 𝑛𝑗 >])

representing the pre-attack router adjacencies; where 𝑛𝑖 is one node of the node pair and 𝑛𝑗

represents the other. Each neighbor node list in Figure D.2 (IntializeNodeNeighList)

corresponds to one node‟s adjacencies. Place 1 triggers transition A to retrieve from a text

file a set of lists (each list is denoted as […]) stored in CPN token format. Each list contains

a network node with all other elements in the list representing its neighbor nodes as follows:

[< 𝑛𝑖 , 𝑛𝑛𝑘 𝑖 >]. Where node 𝑖 = {0,1,2, … . , 𝑁}; N is the total number of pre-attack nodes,

𝑛𝑖 is the node key for that list and 𝑛𝑛𝑘 𝑖 represents a neighbor node of 𝑖. Each node 𝑘(𝑖) is

the 𝑘𝑡 neighbor node of node 𝑖 with degree 𝑘 = {1,2,3, … . 𝐾} and where K is the degree of a

177

specific node. Transition A creates a CPN list of these node-neighbor lists as formatted as

follows:

[[< 𝑛𝑖 , 𝑛𝑛𝑘 𝑖 >, < 𝑛𝑖 , 𝑛𝑛𝑘+1 𝑖 >, … . , < 𝑛𝑖 , 𝑛𝑛𝑘+𝐾 𝑖 >],

 [< 𝑛𝑖+1 , 𝑛𝑛𝑘 𝑖+1 >, < 𝑛𝑖+1, 𝑛𝑛𝑘+1 𝑖+1 >, … . , < 𝑛𝑖+1, 𝑛𝑛𝐾 𝑖+1 >],…..,

 [< 𝑛𝑖 , 𝑛𝑛𝑘 𝑖 >, < 𝑛𝑖 , 𝑛𝑛𝑘+1 𝑖 >, … . , < 𝑛𝑁 + 𝑁, 𝑛𝑛𝑘+𝐾 𝑁 >]].

An illustrative example of the list of neighbor lists on place 2 is as follows:

 If place 1 contained 2 node lists:

Node 1 with a degree of 3 and neighbor nodes, 6, 8, 77 and

Node 4 with a degree of 2 and neighbor nodes 55, 43

Then

CPN list found on place 2 created by transition A would be represented as:

[[1,6,8,77], [2,55,l43].].

178

Figure D.1 CPN IntializeNodePairs page

Figure D.2. CPN IntializeNodeNeighList page

[getPackets1()]

e

action

getInputNPList();

NP_LIST

e

E

Place 1

Start

Intialize Node Pairs List

Input Process

START-A

Place 2

Return

List of Pre-Attack Network

 Node Pairs
OutOut

Transition A

Input

Node Pairs from File

[getPackets()]

e

NEIGH_NODE_LIST_LIST

e

E

Transition A

Get Neighbor
Node Lists from Input File

action

getInputList();

Place 2

Return
List of Pre-Attack Network Nodes

 with Neighbors

OutOut

START-A

Place 1

Start

Intialize Node Neighbor
Input Process

179

CPN Sub-Pages - GetCriticalNodeList, IntializeNetworkDB

Transition A shown in Figure D.3 (GetCriticalNodeList) is triggered by place 1 and it

will input critical node tokens from a text file stored in CPN token format and create a list of

critical nodes on place 2 in the following format: [𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑖), 𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑖+1),

…..,𝑛𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (𝑁(𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙))]; where 𝑁(𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) is the number of critical nodes as previously

defined for each run class. In Figure D.4 (IntializeNetworkDB), when there are tokens

available on place 1A and 1B, transition A will fire and it creates the simulation output

file(NetworkDB_NodeStatus). This audit trail text file will be updated continuously by the

simulation output function (to be defined later in this chapter) by adding an incremental tuple

to the file whenever there is a change to a node‟s status, degree or neighbor nodes (ie. it

records all changes to the networkDB node records).

After the file has been initially created by transition A, it passes the token with the list

of all pre-attack nodes and the associated neighbors to place 2. Place 2 serves as temporary

storage location, and eventually the tokens are passed to transition B. Transition B will write

the initial pre-attack node data (status = 0, timestamp = 0ms) to the output file. Transition B

will also create the initial pre-attack CPN record structure for each node and store it in the

network DB and return it to the main page via place 3. The network DB data structure is a

list of cpn records with one record for each node. The sum of all the networkDB records

represents the current global connectivity state of the network during the attack. The

networkDB node records will be used to implement node state changes and it is continually

updated during the simulation.

180

Figure D.3. CPN GetCriticalNodeList page

Figure D.4. CPN IntializeNetworkDB page

[(getPacketsCritical())]

e

1`e

E

REMOVED_NODE_LIST

action
getCritical();

Place 1

Start
Get Critical Nodes from Input File

Transition A

Get Critical
Node Input List

Place 2
Return

CriticalNodesList

OutOut

neighNodeListList1

neighNodeListList1

b1

NEIGH_NODE_LIST_LIST

1`1

INT

[b1=1]

input (b1);

action
 let
val outfile = TextIO.openOut("NetworkDB_NodeStatus.txt");
in

 (TextIO.output(outfile,"Node\tStatus\tDegree\tThreshold\tTimeStamp\tHour\tMinute\tNeighList");
 TextIO.output(outfile,"\n");
 TextIO.closeOut(outfile))
end;

input (neighNodeListList1);
output (nodeRecord1List1);
action

let
val outfile = TextIO.openAppend("NetworkDB_NodeStatus.txt");
in
 updateNodeProfileRecordStep1A (outfile,neighNodeListList1)

end;

Place 1B
Input

NetworkNodeNeighborLists

InIn

Place 1A
Start

Get Critical Nodes from Input File

InIn

NEIGH_NODE_LIST_LIST

NODE_RECORD1_LIST

nodeRecord1List1

Transition A
Initialize Output File

with Pre-Attack Network Nodes

Place 3
Return

Initialized All Nodes
Network DB

OutOut

neighNodeListList1 Place 2
List of All Nodes
with Neighbors

START-A

START-B

Transition B

Intialize Network DB
Nodes with Neighbor Lists
from Pre-Attack Network

181

CPN Sub-Pages - IntializeCriticalNodes, ReleaseNP

The simulated attack is shown in Figure D.5 (IntializeCriticalNodes). Place 1A

(critical Nodes List) and place 1B (current list of network DB connectivity records) triggers

transition A to fire creating an attacked node, randomly selected from the list of critical

nodes. Transition A also updates the network DB connectivity record for the newly

designated attacked node. As previously defined, an attacked node is removed from the

simulation and all communications with that node are halted. Transition B then adds the

chosen attacked node to the removed nodes list (place 1C). The updated removed nodes list

and network DB records are returned to the main page and are globally available to the

simulation. The removed nodes list in place 1C will be evaluated against the node-pair

released in Figure D.6 (ReleaseNP) by the EvaluateNP page depicted in Figure D.6. Place 1

shown in Figure D.6 represents the current list of all node-pairs available to the simulation.

Randomly and continuously as determined by the CPN simulation engine, place 1 will trigger

transition A to fire and randomly select one node pair from the node pair list and return it to

the main page via place 3 for further processing.

182

Figure D.5. CPN IntializeCriticalNodes page

Figure D.6. CPN ReleaseNP page.

rlist5

rlist4

nodeRecord1List4
removedNode2

rlist4

rlist5

nodeRecord1List3

REMOVED_NODE_LIST

REMOVED_NODE

NODE_RECORD1_LIST

REMOVED_NODE_LIST

Place 1B
Return and Input

Updated Current
All Nodes Network DB

I/OI/O

input (rlist4,removedNode2);

output (rlist5);
action
buildRemList1(removedNode2,rlist4);

Transition A

Intialize All Critical Node Records
in Network DB

Transition B
Add Critical Node to

Removed List

input (nodeRecord1List3,rlist4);
output (removedNode2,nodeRecord1List4,rlist5);
action
let

val outfile = TextIO.openAppend("NetworkDB_NodeStatus.txt");
in
recordUpdateForStatus_1 (outfile,1,rlist4,nodeRecord1List3)
end;

[List.null nodeRecord1List3 = false andalso List.null rlist4 = false]

Place 1C

Return and Input
Updated Current

Removed Nodes List
I/OI/O

START-A

START-B

START-C

Place 1A
Input

All Critical Nodes List

InIn

Place 2
One Critical Node

for Removal

removedNode2

nodePair1(nodePair1,nplist2)

(nodePair1,nplist2)

nplist1

Place 2
One Released

NodePair

NPxNP_LIST

NP

NP_LIST

Transition A
Select One Node Pair

for Release

Place 1
Input

All Network
NodePairs

InIn

Place 3
Return

One Released NodePair

OutOut

input (nplist1);
output (nodePair1,nplist2);
action
releaseOneNodePair(nplist1);

Transition B
Process
NodePair

[List.null nplist1 = false]

183

CPN Sub-Page - EvaluateNP

The CPN page for the EvaluateNP sub page is depicted in Figure D.7. This sub-page

executes the core attack simulation processes. Due to the complexity of this page Figures

D.8 and D.9 are provided for further clarification. As mentioned earlier, the release of node

pairs represents an attempt by one router to communicate with one of its neighbors. The

“EvaluateNP” sub page continuously evaluates the node pairs released (communication

attempts) and determines whether the communication is successful. As shown in Figure D.7,

one released node pair inputted is passed through transition F1 for evaluation. This node pair

is added to place 12. Place 12 and the current set of removed nodes (place 9) triggers

transition A. Transition A divides the node pair into 2 nodes, one node is added to place 1A

and the other node is added to place 1B. Each node is subsequently evaluated as depicted in

Figure D.8.

Annotation “A” in Figure D.8 projects that each node is evaluated separately using

the Boolean functions, attackedNodePair1 and attackedNodePair2. The attackedNodePair1

function returns true if node1 of the node pair is a member of the removed nodes list (place

9) and attackedNodePair2 returns true if node 2 is a member of the removed nodes list. After

transition C has passed the results of each Boolean expression, the conditional statement on

the arc to place 3 is evaluated.

Reading from left to right, with T being true and F being false, Figure D.8 (annotation

“A”) indicates that if attackedNodePair1 and attackedNodePair2 for both nodes is true then

the token associated with that node pair is assigned a nodeStatus1 value of 3 indicating that

both nodes have been removed from the simulation and the node pair should be discarded (to

trash bin, place 4). If either of the nodes is evaluated to be true, then the other node is

184

designated a temporary orphan and passed to place 6 for further processing. This leads to the

node pair being discarded and implementation of the temporary orphan recovery process as

introduced in the formal definitions chapter of this dissertation. And finally, if both nodes

are not members of the current set of removed nodes list (place 9) then the node pair is added

back to the list of active node pairs (place 5) and no further processing of that node pair

occurs until it is re-released at random and evaluated again against the dynamic list of

removed nodes. Transition E2 of Figure D.8 is the CPN implementation of the temporary

orphan recovery process mechanism and it is the focus of Figure D.9.

 Once the node has been determined to be a temporary orphan and is placed on place 6

as previously shown in Figure D.7, the temporary orphan recovery process must ascertain the

disposition of this node. At this juncture, temporary orphans will not be processed further if

they are members of the PROTECTED_LIST. This is a list of nodes that have been selected

to be protected against the attack. Therefore protected nodes are not candidates for removal

and transition E1 will fire for all nodes on the protected list. If the node is not on the

PROTECTED_LIST then it is passed to transition E2 for further evaluation and potential

removal from the simulated network connectivity. As the implementation of transition E2

(Figure D.9) continues, the CPN functions will evaluate the temporary orphans neighbor

nodes, and attempt to establish a new link through preferential attachment. After processing

the new link and any subsequent overloaded or null-link orphans, the CPN functions will

update the networkDB and return the updated networkDB and removed nodes list to the main

page.

185

Figure D.7. CPN EvaluateNP page

START-C

START-A

tempOrphanNode1

tempOrphanNode1

rlist8

rlist9

nodeRecord1List6

evalNodePair1

evalNodePair1

rlist5

rlist4

rlist5

(tempOrphanNode3,node1,nodeRecord1List4)

(tempOrphanNode4,node1,nodeRecord1List4)

nodeRecord1List4

nodeRecord1List5

tempOrphanNode1

evalNodePair1

(evalNodePair1,npStatus1)

nplist4

nplist3

(evalNodePair1,npStatus1)

tempOrphanNode1

(evalNodePair1,npStatus1)

if (nodeRemovedStatus1 andalso nodeRemovedStatus2 = false)
then (evalNodePair1,2) else
if (nodeRemovedStatus2 andalso nodeRemovedStatus1 = false)
then (evalNodePair1,1) else
if (nodeRemovedStatus1 = false andalso nodeRemovedStatus2 = false)
then (evalNodePair1,0) else (evalNodePair1,3)

(evalNodePair1,nodeRemovedStatus1)

(evalNodePair1,attackedNodePair(n1,rlist5)) (evalNodePair1,attackedNodePair(n2,rlist5))

(n1,evalNodePair1,rlist5) (n2,evalNodePair1,rlist5)

(#2(evalNodePair1),evalNodePair1,rlist5)

(#1(evalNodePair1),evalNodePair1,rlist5)

Transition E1
Check for Protected Nodes

[checkForProtection(tempOrphanNode1) = true]

Transition F1
Update

Removed Node List

input (evalNodePair1,rlist8,nodeRecord1List6);
output (rlist9);
action
buildRemList(#1(evalNodePair1),#2(evalNodePair1),rlist8,nodeRecord1List6);

Transition F2
Update

Removed Node List

input (tempOrphanNode3,node1,rlist4,nodeRecord1List4);
output (rlist5);
action
buildRemList(tempOrphanNode3,node1,rlist4,nodeRecord1List4);

Transition E2
Does this Unprotected temp orphan node have any active neighbor nodes?

If Yes - Update Network DB, add load to new node link for newnode-pair
else this node is a permanent orphan, add to removed list

[checkForProtection(tempOrphanNode1) = false]

input (tempOrphanNode1,nodeRecord1List5);
output (tempOrphanNode4,node1,nodeRecord1List4);
action
let
val outfile = TextIO.openAppend("NetworkDB_NodeStatus.txt");
in
 processAndSelectNewLink (outfile,tempOrphanNode1,nodeRecord1List5)
end;

Transition D1
Both Nodes in NodePair

are Removed

[npStatus1 = 3]

Transition D3
Neither Node is Removed

[npStatus1 = 0]

input (nplist4,evalNodePair1,npStatus1);
output (nplist3);
action
buildNPList (nplist4,evalNodePair1);

Transition D2
Check Node1 and Node2 in NodePair

Is either node a Temp Orphan?
Pass Temp orphan for Further Evaluation

[npStatus1 = 1 orelse npStatus1 = 2]

input (evalNodePair1,npStatus1);
output (tempOrphanNode1);
action
getTempOrphan(evalNodePair1,npStatus1);

Transition C

Transition B2Transition B1

TEMP_ORPHAN_NODE

NP

TEMP_ORPHAN_NODExNODExNODE_RECORD1_LIST

Place 4
Trash Bin

NP

[]

REMOVED_NODE_LIST

Place 5
Return and Input
Updated Current

NodePair List

I/O
NP_LIST

Place 6

TEMP_ORPHAN_NODE

Place 3

NPxNP_ORPHAN_STATUS

Place 2B

NPxNODE_REMOVED_STATUS

Place 2A

NPxNODE_REMOVED_STATUS

Place 1B

NODExNPxREMOVED_NODE_LIST

Place 1A

NODExNPxREMOVED_NODE_LIST

Place 11
Input

One Released
NodePairIn

NP
In

I/O

Place 7
Protected Nodes

Place 8
Return and Input
Updated Current

All Nodes Network DB

I/OI/O

NODE_RECORD1_LIST

Place 9
Return and Input
Updated Current

Removed Node List

I/OI/O

Place 10
Orphan Node

evalNodePair1

START-B

(evalNodePair1,nodeRemovedStatus2)

Place 12
One Released

Node Pair

Transition A
Process Node Pair

against
Removed Nodes List

186

Figure D.8. Evaluate NP processing summary

187

Figure D.9.CPN Transition E2 Processing Logic

188

Appendix E

Network Connectivity Parameter Results by Run Type

Run Type 1

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NCP

Simulation Time (x 100 sec)

0.5% 1.0% 1.5% 2.0%

2.5% 3.0% 3.5% 4.0%

4.5% 5.0%

Total Fragmentation (NCP=2)

189

Run Type 2

Run Type 3

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NCP

Simulation Time (x 100 sec)

0.5% 1.0% 1.5% 2.0%

2.5% 3.0% 3.5% 4.0%

4.5% 5.0%

Total Fragmentation (NCP=2)

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NCP

Simulation Time (x 100 sec)

0.5% 1.0% 1.5% 2.0%

2.5% 3.0% 3.5% 4.0%

4.5% 5.0%

Total Fragmentation (NCP=2)

190

Run Type 4

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

NCP

Simulation Time (x 100 sec)

0.5% 1.0% 1.5% 2.0%

2.5% 3.0% 3.5% 4.0%

4.5% 5.0%

Total Fragmentation (NCP=2)

191

Appendix F

Network Connectivity Parameter Results by Attack Class

Attack Class 0.5%

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

NCP

Simulation Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation (NCP=2)

192

Attack Class 1.0%

Attack Class 1.5%

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

NCP

Simulation Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation (NCP=2)

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

NCP

Simulation Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation (NCP=2)

193

Attack Class 2.0%

Attack Class 2.5%

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

NCP

Simulation Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation
(NCP=2)

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

NCP

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation (NCP=2)

194

Attack Class 3.0%

Attack Class 3.5%

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

NCP

Simulation Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation (NCP=2)

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

NCP

Simulation Time(sec)

RunType-1

RunType-2

RunType-3

RunType-4

Total Fragmentation (NCP=2)

195

Attack Class 4.0%

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

NCP

Simulation Time(sec)

RunType-1

RunType-2

RunType-3

RunType-4

Total Fragmentation (NCP=2)

196

Attack Class 4.5%

Attack Class 5.0%

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

NCP

SImulation Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation (NCP=2)

0

2

4

6

8

10

12

14

16

18

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

NCP

Simulation Time (sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation (NCP=2)

197

Appendix G

Network Connectivity Parameter Results by Attack Effect

Attack Effect 1 - Attack Classes - 0.5% through 3.5%

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

NCP

Simulation Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation (NCP=2)

198

Attack Effect 2 - Attack Classes - 4.0% through 5.0%

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

NCP

Simulation Time (sec)

RunType-1 RunType-2

RunType-3 RunType-4

Total Fragmentation (NCP=2)

199

Appendix H

Run Type 2 Results for Network Stability and Node-Pair Type Counts

Ten run type 2 simulations are presented in this section. These simulations

represented the affects of the denial-of-service attacks against the pre-attack network. These

simulations represented protection strategy 1.

Figure H.1 Network Stability – Run type 2, information transfer

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

I (bits)

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

200

Figure H.2. Run type 2, Node-pair Type 1-2 Counts, By Attack Class, first 5000 seconds

Behaviors in the first 400 seconds

As shown in Figure H.1, all run type 2 attack classes experienced a sudden decline in

information transfer in the first 300 to 400 seconds. The information transfer for attack

classes 4.5% and 5.0 % rapidly declined and met their terminal conditions in the first 400

seconds. The information transfer decrease in the first 400 seconds experienced by all attack

classes was influenced by the relative attack severity. Over the first 400 seconds, the rate and

magnitude of the information transfer loss increased with an increase in attack severity. Over

the first 400 seconds, information transfer decreased for all attack classes by 3.3% to 25.0%

from the simulation‟s pre-attack conditions. The information transfer rate of decline during

this period ranged from approximately 0.06 to 0.47 bits/sec .

Along with the information transfer decreases shown in Figure H.1 there was a

corresponding decrease in the number of node-pairs of type 1-2. As shown in Figure H.2,

there was also sudden decline in the number of node-pairs of type 1-2 in the first 300 to 400

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Node-Pair
Counts

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

5.0%

201

seconds. Over the first 300 to 400 seconds, the number of node-pairs of type 1-2 decreased

for all attack classes by 4.9% to 25.0% from the simulation‟s pre-attack conditions. The

node-pair count rate of decline during this period ranged from approximately 50 to 201 node-

pairs/sec.

Behaviors after the first 400 seconds

As shown in Figure H.1, attack classes 0.5% through 4.0% established a local

minimum value at approximately 400 seconds. This local minimum level decreased with an

increase in attack severity. After the local minimum value was established, the information

transfer decreased for each attack class at a slower rate ranging from 0.01 to 0.03 bits/sec.

This slow rate of decrease continued until each attack class encountered its terminal

conditions.

During this period of slower information transfer decline shown in Figure H.1, Figure

H.2 depicts the corresponding decrease in the number of node-pairs of type 1-2. As shown in

Figure H.2, after the first 400 seconds, attack classes 0.5% through 4.0% declined over time

at a significantly lower rate ranging from 24 to 33 node-pairs/sec. This slower rate of node-

pair loss continued for each attack class until the terminal conditions for information transfer

were met.

Critical Threshold and Terminal Condition Behaviors

Figures H.1 and H.2 did not exhibit a critical threshold. For the information transfer

data shown in Figure H.1, the most severe attack classes, 4.5% and 5.0%, met their terminal

conditions the earliest. Attack classes 3.0% and 4.0% were the next attack classes to meet

their terminal conditions. Attack classes 0.5% and 1.0% achieved the terminal conditions

202

latest. The terminal conditions for the remainder of the attack classes varied and attack

severity did not have a significant influence.

203

Appendix I

Run Type 3 Results for Network Stability and Node-Pair Type Counts

Ten run type 3 simulations are presented in this section. These simulations

represented the affects of the denial-of-service attacks against the pre-attack network. These

simulations represented protection strategy 2.

Figure I.1. Network Stability – Run type 3, information transfer

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

I (bits)

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

5.0%

204

 Figure I.2. Run type 3, Node-pair Type 1-2 Counts, By Attack Class, first 5000 seconds

Behaviors in the first 400 seconds

As shown in Figure I.1, all run type 3 attack classes experienced a sudden decline in

information transfer in the first 300 to 400 seconds. The information transfer for attack

classes 4.5% rapidly declined and met its terminal conditions in the first 400 seconds. It is

shown in Figure I.1 that the information transfer loss for attack class 5.0% did not meet its

terminal conditions until approximately 600 seconds. In the first 400 seconds, the decrease

in information transfer for attack class 5.0% was less pronounced than attack class 4.5%.

With the exception of attack class 5.0%, the information transfer decrease in the first 400

seconds experienced by all attack classes was influenced by the relative attack severity. Over

the first 400 seconds, the rate and magnitude of the information transfer loss increased with

an increase in attack severity. Over the first 400 seconds, information transfer decreased for

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Node-Pair
Counts

Simulation Time (sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

5.0%

205

all attack classes by 3.4% to 25.1% from the simulation‟s pre-attack conditions. The

information transfer rate of decline during this period ranged from approximately 0.06 to

0.41 bits/sec .

Along with the information transfer decreases shown in Figure I.1 there was a

corresponding decrease in the number of node-pairs of type 1-2. As shown in Figure I.2,

there was also sudden decline in the number of node-pairs of type 1-2 in the first 400

seconds. Over the first 300 to 400 seconds, the number of node-pairs of type 1-2 decreased

for all attack classes by 4.0% to 25.0% from the simulation‟s pre-attack conditions. The

node-pair count rate of decline during this period ranged from approximately 49 to 169 node-

pairs/sec. Figure I.2 depicts that the loss of node-pairs by attack class varied. Attack

severity did not influence the loss of node-pairs.

Behaviors after the first 400 seconds

As shown in Figure I.1, attack classes 0.5% through 4.0% established a local

minimum value at approximately 400 seconds. This local minimum level decreased with an

increase in attack severity. After the local minimum value was established, the information

transfer decreased for each attack class at a slower rate ranging from 0.01 to 0.04 bits/sec.

This slow rate of decrease continued until each attack class encountered its equilibrium point.

Attack classes 4.0% through 5.0% did not encounter an equilibrium point.

During this period of slower information transfer decline shown in Figure I.1, Figure

I.2 depicts the corresponding decrease in the number of node-pairs of type 1-2. As shown in

Figure I.2, after the first 400 seconds, attack classes 0.5% through 4.0% declined over time at

206

a significantly lower rate ranging from 8 to 19 node-pairs/sec. This slower rate of node-pair

loss continued until each of these classes encountered its equilibrium point.

Critical Threshold, Terminal Condition and Equilibrium Behaviors

Figures I.1 and I.2 did not exhibit a critical threshold. As shown in Figure I.1, attack

classes 0.5% through 3.5% encountered an equilibrium point after the initial 1,800 seconds.

No equilibrium point occurred for attack class 4.0% which met its terminal conditions around

1,300 seconds. Attack classes 4.5% and 5.0% did not encounter an equilibrium point; they

met their terminal conditions in the first 400 to 600 seconds. The equilibrium point and

level varied by attack class. The equilibrium levels attack classes 0.5% through 3.5%

occurred at approximately 200 node-pairs. The minimum node-pair count for attack class

4.0%, 4.5% and 5.0% at their terminal conditions was 330, 482 and 490 node-pairs

respectively.

207

Appendix J

Mutual Information Transfer Results by Attack Class

Attack Class 0.5 %

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

208

Attack Class 1.0 %

Attack Class 1.5 %

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

209

Attack Class 2.0 %

Attack Class 2.5 %

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

210

Attack Class 3.0 %

Attack Class 3.5 %

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

211

Attack Class 4.0 %

Attack Class 4.5 %

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

212

Attack Class 5.0 %

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000

I (Bits)

Time(sec)

RunType-1 RunType-2 RunType-3 RunType-4

213

Appendix L

Node-Pair Type 1-2 Counts Results by Attack Class

The Figures in this appendix section represent graphs that were not presented in Chapter V.

Attack Class 0.5 %

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 500 1000 1500 2000 2500 3000

node-pair
type

Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

214

Attack Class 1.0%

Attack Class 1.5%

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 500 1000 1500 2000 2500 3000

Node-pair
Type

Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 500 1000 1500 2000 2500 3000

Node-pair
Type

Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

215

Attack Class 2.0%

Attack Class 2.5%

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 500 1000 1500 2000 2500 3000

Node-pair
Type

Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 50 100 150 200 250 300 350 400 450 500 550 600

Node-pair
Type

Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

216

Attack Class 3.0%

Attack Class 3.5%

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 500 1000 1500 2000 2500 3000

Node-pair
Type Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 500 1000 1500 2000 2500 3000

Node-pair
Type

Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

217

Attack Class 4.0%

Attack Class 4.5%

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 500 1000 1500 2000 2500 3000

Node-pair
Type

Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 500 1000 1500 2000 2500 3000

Node-pair
Type

Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

218

Attack Class 5.0%

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

0 500 1000 1500 2000 2500 3000

Node-pair
Type

Counts

Time(sec)

RunType-1 RunType-2

RunType-3 RunType-4

219

Appendix L

Information Transfer Loss Results by Run Type

The data in this section represents the percent information transfer loss in the first 400

seconds of each simulation. Numbers in parenthesis indicate negative rates (loss). „*‟

indicates no data due to terminal condition already being met.

Run Type 1 - Information Transfer Loss for the first 400 seconds

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds

Attack

Class

 Loss

bits

% Loss Loss

bits

% Loss Loss

bits

% Loss Loss

bits

% Loss

0.5% 0.2 12.7% 0.1 6.1% 0.1 3.7% 0.1 3.2%

1.0% 0.4 24.5% 0.2 11.8% 0.1 7.9% 0.1 6.0%

1.5% 0.5 34.4% 0.3 17.0% 0.2 11.3% 0.1 8.4%

2.0% 0.3 19.6% 0.4 23.9% 0.2 15.7% 0.2 11.7%

2.5% 0.8 49.8% 0.5 29.7% 0.3 19.6% 0.2 14.6%

3.0% 1.1 71.6% 0.6 35.9% 0.4 23.7% 0.3 17.6%

3.5% 1.3 83.1% 0.6 41.3% 0.4 27.3% 0.3 20.3%

4.0% 1.4 92.6% 0.7 46.1% 0.5 30.7% 0.4 23.0%

4.5% 1.5 96.2% 0.8 50.1% 0.5 33.4% 0.4 25.1%

5.0% 1.5 96.2% 0.8 50.1% 0.5 33.4% 0.4 25.1%

220

Run Type 2 - Information Transfer Loss for the first 400 seconds

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds

Attack

Class

 Loss

bits

% Loss Loss

bits

% Loss Loss

bits

% Loss Loss

bits

% Loss

0.5% 0.0 0.2% 0.1 6.5% 0.1 4.4% 0.1 3.3%

1.0% 0.1 9.1% 0.2 12.1% 0.1 8.1% 0.1 6.2%

1.5% 0.0 0.0% 0.1 5.5% 0.2 11.8% 0.1 9.4%

2.0% 0.3 16.1% 0.4 24.0% 0.2 16.0% 0.2 12.2%

2.5% 0.0 0.0% 0.1 7.0% 0.3 20.5% 0.3 16.3%

3.0% 0.1 6.4% 0.4 24.3% 0.4 24.2% 0.3 18.6%

3.5% 0.2 11.7% 0.4 25.7% 0.4 27.8% 0.3 20.9%

4.0% 0.0 0.0% 0.1 4.6% 0.2 12.7% 0.4 23.2%

4.5% 0.0 2.9% 0.1 7.5% 0.5 30.2% 0.4 25.0%

5.0% 0.0 0.0% 0.0 0.0% 0.1 4.2% 0.4 25.1%

Run Type 3 - Information Transfer Loss for the first 400 seconds

First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds

Attack

Class

 Loss

bits

% Loss Loss

bits

% Loss Loss

bits

% Loss Loss

bits

% Loss

0.5% 0.0 0.0% 0.1 6.5% 0.1 4.5% 0.1 3.4%

1.0% 0.0 0.0% 0.1 4.6% 0.1 8.1% 0.1 6.2%

1.5% 0.0 0.0% 0.0 2.7% 0.2 11.5% 0.1 9.1%

2.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%

2.5% 0.0 0.0% 0.1 9.5% 0.3 20.4% 0.2 15.8%

3.0% 0.0 0.0% 0.1 4.5% 0.2 13.9% 0.3 18.1%

3.5% 0.0 2.0% 0.1 8.0% 0.4 27.9% 0.3 21.4%

4.0% 0.0 0.0% 0.1 3.7% 0.1 9.2% 0.4 23.2%

4.5% 0.0 -0.3% 0.0 0.3% 0.1 6.4% 0.4 25.1%

5.0% 0.0 0.0% 0.0 1.7% 0.1 4.4% 0.1 8.9%

221

Run Type 4 - Information Transfer Loss for the first 400 seconds

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds

Attack

Class

 Loss

bits

% Loss Loss

bits

% Loss Loss

bits

% Loss Loss

bits

% Loss

0.5% 0.0 0.0% 0.1 6.4% 0.1 4.4% 0.1 3.4%

1.0% 0.0 0.0% 0.2 11.8% 0.1 8.1% 0.1 6.2%

1.5% 0.0 0.0% 0.3 17.3% 0.2 12.5% 0.2 9.7%

2.0% 0.0 1.3% 0.4 24.3% 0.3 17.3% 0.2 13.2%

2.5% 0.0 0.4% 0.2 13.3% 0.3 20.8% 0.3 16.3%

3.0% 0.0 3.0% 0.3 22.4% 0.4 24.4% 0.3 18.4%

3.5% 0.1 8.0% 0.3 21.1% 0.4 27.9% 0.3 20.9%

4.0% 0.2 15.7% 0.4 28.8% 0.5 31.0% 0.4 23.4%

4.5% 0.2 10.8% 0.3 20.9% 0.5 32.7% 0.4 25.1%

5.0% 0.0 0.0% 0.0 -0.8% 0.0 1.2% 0.4 25.1%

222

Appendix N

Rate of Information Transfer Loss Results by Run Type

The data in this section represents the rate of information transfer loss of each simulation.

Numbers in parenthesis indicate negative rates (loss). „*‟ indicates no data due to terminal

condition already being met. Each cell represents bits/sec at time t.

 Run Type 1 – Rate of Information Transfer Loss

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

First 100 (0.20) (0.38) (0.54) (0.31) (0.78) (1.12) (1.30) (1.45) (1.50) (1.43)

100 to terminal conditions (0.03) (0.03) (0.02) (0.02) (0.01) (0.00) (0.00) 0.01 * *

Run Type 2 – Rate of Information Transfer Loss

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

First 400 (0.06) (0.11) (0.19) (0.21) (0.32) (0.36) (0.41) (0.35) (0.47) (0.37)

400 to terminal conditions (0.03) (0.04) (0.04) (0.03) (0.03) (0.02) (0.01) (0.01) * *

Run Type 3 – Rate of Information Transfer Loss

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

First 400 (0.06) (0.13) (0.18) 0.00 (0.31) (0.32) (0.41) (0.30) (0.37) (0.13)

400 to 3200 (0.02) (0.04) (0.04) (0.06) (0.02) (0.01) (0.01) (0.01) * *

3200 to terminal conditions (0.00) 0.00 0.00 0.00 0.00 0.00 0.00 * * *

Run Type 4 – Rate of Information Transfer Loss

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

First 400 (0.06) (0.12) (0.19) (0.26) (0.33) (0.37) (0.42) (0.45) (0.51) (0.06)

400 to 3200 (0.01) 0.01 (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) * (0.01)

3200 to terminal conditions 0.00 0.00 0.00 0.00 (0.00) 0.00 (0.00) * *

223

Appendix N

Node-pair type 1-2 Count Loss Results by Run Type

The data in this section represents node-pair type 1-2 count loss of each simulation.

Numbers in parenthesis indicate negative rates (loss). „*‟ indicates no data due to terminal

condition already being met. NP loss column represents the number of node-pairs.

Run Type 1 – Node-pair type 1-2 Count Loss, First 400 Seconds

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds

Attack

Class
NP loss % loss NP loss % loss NP loss % loss NP loss % loss

0.5% 0.0 0.0% 78.5 7.8% 56.7 5.6% 49.3 4.9%

1.0% 273.0 27.1% 146.5 14.5% 103.7 10.3% 83.0 8.2%

1.5% 380.0 37.7% 199.5 19.8% 138.7 13.7% 110.5 11.0%

2.0% 288.0 28.5% 231.5 22.9% 159.7 15.8% 128.0 12.7%

2.5% 449.0 44.5% 259.5 25.7% 181.7 18.0% 142.0 14.1%

3.0% 519.0 51.4% 274.5 27.2% 194.3 19.3% 153.5 15.2%

3.5% 539.0 53.4% 293.5 29.1% 208.0 20.6% 164.3 16.3%

4.0% 534.0 52.9% 284.0 28.1% 201.7 20.0% 153.8 15.2%

4.5% 530.0 52.5% 504.5 50.0% 336.3 33.3% 252.3 25.0%

5.0% 531.0 52.6% 504.5 50.0% 336.3 33.3% 252.3 25.0%

224

Run Type 2 – Node-pair type 1-2 Count Loss, First 400 Seconds

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds

Attack

Class
NP loss % loss NP loss % loss NP loss % loss NP loss % loss

0.5% 8.0 0.8% 72.0 7.1% 55.0 5.5% 42.8 4.2%

1.0% 138.0 13.7% 137.5 13.6% 102.0 10.1% 82.8 8.2%

1.5% 0.0 0.0% 96.0 9.5% 124.3 12.3% 101.3 10.0%

2.0% 180.0 17.8% 221.5 22.0% 155.7 15.4% 126.3 12.5%

2.5% 0.0 0.0% 120.0 11.9% 163.7 16.2% 127.8 12.7%

3.0% 136.0 13.5% 229.0 22.7% 181.0 17.9% 145.0 14.4%

3.5% 180.0 17.8% 239.0 23.7% 185.7 18.4% 146.5 14.5%

4.0% 0.0 0.0% 91.0 9.0% 141.3 14.0% 135.0 13.4%

4.5% 68.0 6.7% 132.5 13.1% 336.3 33.3% 252.3 25.0%

5.0% 0.0 0.0% 5.5 0.5% 84.0 8.3% 252.3 25.0%

Run Type 3 – Node-pair type 1-2 Count Loss, First 400 Seconds

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds

Attack

Class
NP loss % loss NP loss % loss NP loss % loss NP loss % loss

0.5% 0.0 0.0% 68.5 6.8% 52.7 5.2% 40.5 4.0%

1.0% 0.0 0.0% 72.0 7.1% 92.3 9.2% 73.0 7.2%

1.5% 0.0 0.0% 57.0 5.6% 125.7 12.5% 96.8 9.6%

2.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0%

2.5% 0.0 0.0% 144.5 14.3% 163.3 16.2% 126.8 12.6%

3.0% 0.0 0.0% 81.0 8.0% 141.0 14.0% 130.8 13.0%

3.5% 59.0 5.8% 137.0 13.6% 176.0 17.4% 138.3 13.7%

4.0% 0.0 0.0% 76.5 7.6% 121.7 12.1% 133.3 13.2%

4.5% 2.0 0.2% 25.0 2.5% 100.7 10.0% 252.3 25.0%

5.0% 0.0 0.0% 28.5 2.8% 85.7 8.5% 98.5 9.8%

225

Run Type 4 – Node-pair type 1-2 Count Loss, First 400 Seconds

 First 100 Seconds First 200 Seconds First 300 Seconds First 400 Seconds

Attack
Class

NP loss % loss NP loss % loss NP loss % loss NP loss % loss

0.5% 137.0 13.6% 74.5 7.4% 53.3 5.3% 40.8 4.0%

1.0% 107.0 10.6% 133.0 13.2% 92.7 9.2% 71.8 7.1%

1.5% 202.0 20.0% 188.0 18.6% 132.7 13.1% 100.8 10.0%

2.0% 226.0 22.4% 230.0 22.8% 155.7 15.4% 118.3 11.7%

2.5% 177.0 17.5% 243.5 24.1% 165.7 16.4% 134.0 13.3%

3.0% 255.0 25.3% 255.5 25.3% 177.7 17.6% 138.3 13.7%

3.5% 312.0 30.9% 266.5 26.4% 181.3 18.0% 141.0 14.0%

4.0% 402.0 39.8% 263.0 26.1% 186.7 18.5% 147.3 14.6%

4.5% 323.0 32.0% 241.5 23.9% 336.3 33.3% 252.3 25.0%

5.0% -2.0 -0.2% 26.5 2.6% 112.7 11.2% 122.3 12.1%

226

Appendix O

Node-pair Type 1-2 Count Loss Rate by Run Type

The data in this section represents the rate of count loss of node-pair type 1-2 for each

simulation. Numbers in parenthesis indicate negative rates (loss). „*‟ indicates no data due to

terminal condition already being met.

Run Type 1 – Node-pair Type 1-2 Count Loss (node-pairs/sec)

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

First 100 0.0 (273.0) (380.0) (288.0) (449.0) (519.0) (539.0) (534.0) (530.0) (518.0)

100 to terminal

conditions
(38.3) (30.0) (33.0) (23.3) (28.3) (28.3) (29.0) (32.3) * *

Run Type 2 – Node-pair Type 1-2 Count Loss (node-pairs/sec)

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

First 400 (50.50) (87.93) (130.2) (137.2) (162.5) (168.5) (165.7) (161.2) (201.7) (126.1)

400 to terminal

conditions
(24.04) (23.54) (24.75) (20.27) (23.43) (23.21) (21.23) (33.01) * *

227

Run Type 3 – Node-pair Type 1-2 Count Loss (node-pairs/sec)

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

First 400 (49.0) (95.7) (126.0) 0.00 (160.5) (159.8) (169.6) (150.4) (134.4) (107.6)

400 to 3200 (17.71) (19.03) (14.10) (31.90) (8.46) (8.34) (6.31) (15.67) * *

3200 to terminal

conditions
(0.12) (0.02) 0.03 0.00 0.00 0.00 0.02 * * *

Run Type 4 – Node-pair Type 1-2 Count Loss (node-pairs/sec)

Time (sec) 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

First 400 (39.9) (77.6) (107.2) (123.2) (148.4) (141.7) (132.7) (127.0) (206.2) (139.0)

400 to 3200 (16.7) (14.2) (9.9) (8.0) (8.3) (7.1) (8.1) (20.1) * *

3200 to terminal

conditions
(0.1) (0.1) (0.0) (0.0) (0.1) (0.0) (0.0) * * *

228

Appendix P

Attack Detection by Run Type

Numbers in parenthesis indicate negative rates (loss).

Run Type 1 – Attack Detection (All time in simulation seconds)

Attack
Class

Terminal

Condition

Time

Attack

Start

Time

Attack

End

Time

Attacked
Nodes

Average

Attack
Node

Degree

Attack

Intensity

(node/sec)

Attack
Time

Detect

Research
Estimate

 Percent

Variance

from
Actual

Attack

Time

0.5% 25,500 103 108 60 47 12.0 105 2%
1.0% 2,850 64 91 124 41 4.6 65 2%

1.5% 2,100 45 62 179 38 10.5 50 11%

2.0% 2,500 74 114 241 35 6.0 75 1%

2.5% 2,300 76 103 303 31 11.2 80 5%
3.0% 1,750 42 76 363 29 10.7 45 7%

3.5% 1,650 47 88 421 26 10.3 35 -26%

4.0% 1,600 44 82 478 24 12.6 45 2%
4.5% 90 45 89 544 22 12.4 50 11%

5.0% 88 41 86 613 20 13.6 45 10%

Average 4,043 58 90 333 31 10 60 3%

Median 1,925 46 89 333 30 11 50 9%

229

Run Type 2 – Attack Detection (All time in simulation seconds)

Attack
Class

Terminal

Condition

Time

Attack

Start

Time

Attack

End

Time

Attacked
Nodes

Average

Attack
Node

Degree

Attack

Intensity

(node/sec)

Attack
Time

Detect

Research
Estimate

Percent

Variance

from
Actual

Attack

Time

0.5% 3,800 99 126 60 47 2.2 100 1.0%
1.0% 3,350 70 126 124 41 2.2 75 7.1%

1.5% 2,600 155 235 179 38 2.2 160 3.2%

2.0% 2,800 65 169 241 35 2.3 65 0.0%
2.5% 2,200 124 262 303 31 2.2 130 4.8%

3.0% 2,100 54 213 363 29 2.3 55 1.9%

3.5% 2,350 62 244 421 26 2.3 65 4.8%

4.0% 1,300 153 363 478 24 2.3 155 1.3%
4.5% 288 47 288 544 22 2.3 50 6.4%

5.0% 350 71 350 613 20 2.2 80 12.7%

Average 2,040 82 231 334 32 2.2 86 5.4%

Median 2,275 71 240 333 30 2 78 9.9%

Run Type 3 – Attack Detection (All time in simulation seconds)

Attack
Class

Terminal

Condition

Time

Attack

Start

Time

Attack

End

Time

Attacked
Nodes

Average

Attack
Node

Degree

Attack

Intensity

(node/sec)

Attack
Time

Detect

Research
Estimate

 Percent

Variance

from
Actual

Attack

Time

0.5% 25,000 126 157 60 47 1.9 125 (0.8%)
1.0% 25,000 161 228 124 41 1.9 160 (0.6%)

1.5% 25,000 166 261 179 38 1.9 165 (0.6%)

2.0% 25,000 1,084 1,211 241 35 1.9 1,100 1.5%
2.5% 25,000 100 259 303 31 1.9 100 0.0%

3.0% 25,000 159 344 363 29 2.0 155 (2.5%)

3.5% 25,000 56 276 421 26 1.9 55 (1.8%)

4.0% 1,350 153 400 478 24 1.9 150 (2.0%)
4.5% 348 58 348 544 22 1.9 70 20.7%

5.0% 470 155 470 613 20 1.9 155 0.0%

Average 409 107 409 579 21 1.9 113 10.3%

Median 25,000 154 310 333 30 2 153 (1.0%)

230

Run Type 4 – Attack Detection (All time in simulation seconds)

Attack

Class

Terminal

Condition

Time

Attack

Start

Time

Attack

End

Time

Attacked

Nodes

Average
Attack

Node

Degree

Attack

Intensity

(node/sec)

Attack

Time

Detect

Research
Estimate

Percent

Variance
from

Actual

Attack

Time

0.5% 25,000 108 135 60 47 2.2 105 (2.8%)

1.0% 25,000 124 181 124 41 2.2 125 0.8%

1.5% 25,000 102 182 179 38 2.2 100 (2.0%)
2.0% 25,000 82 192 241 35 2.2 80 (2.4%)

2.5% 25,000 94 232 303 31 2.2 95 1.1%

3.0% 25,000 52 213 363 29 2.3 50 (3.8%)

3.5% 17,050 55 242 421 26 2.3 55 0.0%
4.0% 1,450 53 258 478 24 2.3 50 (5.7%)

4.5% 286 54 286 544 22 2.3 50 (7.4%)

5.0% 384 105 384 613 20 2.2 115 9.5%

Average 15,028 90 238 334 32 2.2 90 (0.7%)

Median 25,000 88 223 333 30 2 88 (0.6%)

231

Appendix Q

Attack Detection and Node-Pair Type 1-1 Counts Results by Run Type

This data represents the counts of node-pair type 1-1 used for attack detection. It depicts the

first 200 seconds of each simulation as discussed in Chapter VI. Blank cells indicate no data

due to terminal condition already being met. Each cell represents node-pair type 1-1 count at

simulation time t.

Run Type 1 – Attack Detection

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

0 36 36 36 36 36 36 36 36 36 36

5 36 36 36 36 36 36 36 36 36 36

10 36 36 36 36 36 36 36 36 36 36

15 36 36 36 36 36 36 36 36 36 36

20 36 36 36 36 36 36 36 36 36 36

25 36 36 36 36 36 36 36 36 36 36

30 36 36 36 36 36 36 36 36 36 36

35 36 36 36 36 36 36 74 36 36 36

40 36 36 36 36 36 36 319 36 36 36

45 36 36 36 36 36 186 593 132 36 352

50 36 36 360 36 36 471 761 428 414 698

55 36 36 708 36 36 769 958 827 750 1033

60 36 36 1080 36 36 993 1246 1087 1043 1287

65 36 64 1204 36 36 1224 1505 1276 1285 1472

70 36 176 1198 36 36 1482 1760 1542 1468 1649

80 36 506 1194 250 356 1768 1834 1812 1770 1859

232

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

85 36 680 1188 408 674 1752 1828 1892 1877 1933

90 36 879 1180 567 1002 1746 1824 1886 1937 1983

95 36 913 1176 751 1276 1736 1818 1883

100 36 925 1170 907 1475 1728 1812 1880

105 214 927 1164 1111 1607 1718 1812 1868

110 497 933 1162 1310 1601 1708 1802 1866

115 497 929 1158 1448 1593 1696 1790 1854

120 485 935 1158 1446 1583 1684 1786 1854

125 483 941 1158 1442 1571 1676 1786 1848

130 481 943 1160 1440 1559 1662 1776 1836

135 481 942 1156 1440 1547 1658 1774 1834

140 481 942 1156 1432 1545 1652 1766 1832

145 481 941 1150 1430 1535 1646 1762 1818

150 481 935 1148 1428 1525 1643 1752 1810

Run Type 2 – Attack Detection

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

0 36 36 36 36 36 36 36 36 36 36

5 36 36 36 36 36 36 36 36 36 36
10 36 36 36 36 36 36 36 36 36 36

15 36 36 36 36 36 36 36 36 36 36

20 36 36 36 36 36 36 36 36 36 36
25 36 36 36 36 36 36 36 36 36 36

30 36 36 36 36 36 36 36 36 36 36

35 36 36 36 36 36 36 36 36 36 36
40 36 36 36 36 36 36 36 36 36 36

45 36 36 36 36 36 36 36 36 36 36

50 36 36 36 36 36 36 36 36 56 36

55 36 36 36 36 36 50 36 36 82 36
60 36 36 36 36 36 84 36 36 116 36

65 36 36 36 46 36 134 90 36 146 36

70 36 36 36 161 36 196 162 36 166 36
75 36 106 36 247 36 244 234 36 190 36

80 36 174 36 335 36 304 322 36 233 52

85 36 240 36 425 36 348 396 36 267 54

90 36 324 36 485 36 402 462 36 303 62

233

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

95 36 424 36 555 36 459 522 36 331 62

100 58 476 36 641 36 491 604 36 353 66

105 150 546 36 703 36 521 672 36 373 70

110 220 616 36 771 36 571 734 36 409 80

115 310 690 36 833 36 643 801 36 439 86

120 387 785 36 909 36 672 857 36 469 88

125 483 879 36 964 38 725 933 36 507 102

130 499 907 36 1053 72 781 995 36 553 108

135 507 907 36 1091 134 828 1029 36 581 116

140 509 911 36 1171 180 872 1085 36 591 128

145 509 914 36 1225 244 937 1147 36 631 138

150 509 919 36 1261 302 985 1189 36 669 142

155 509 922 36 1325 338 1043 1253 80 697 156

160 509 925 110 1387 401 1093 1285 154 749 158

165 520 926 180 1435 461 1165 1317 200 775 170

170 521 927 238 1453 495 1210 1345 287 797 182

175 521 928 302 1453 545 1268 1393 335 855 198

180 521 931 350 1454 615 1334 1433 385 889 214

185 521 932 406 1459 661 1405 1463 445 913 220

190 521 936 489 1462 701 1465 1493 497 959 236

195 524 941 566 1465 759 1539 1535 541 1008 268

200 529 942 628 1468 820 1595 1598 591 1043 300

155 36 36 36 36 36 36 36 36 36 36
160 36 36 36 36 36 36 36 36 36 36
165 36 36 36 36 36 36 36 36 36 36
170 36 36 36 36 36 36 36 36 36 36
175 36 36 36 36 36 36 36 36 36 36
180 36 36 36 36 36 36 36 36 36 36
185 36 36 36 36 36 36 36 36 36 36
190 36 36 36 36 36 36 36 36 36 36
195 36 36 36 36 36 36 36 36 36 36
200 36 36 36 36 36 36 36 36 36 36

Run Type 3 – Attack Detection

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

0 36 36 36 36 36 36 36 36 36 36
5 36 36 36 36 36 36 36 36 36 36

10 36 36 36 36 36 36 36 36 36 36

15 36 36 36 36 36 36 36 36 36 36
20 36 36 36 36 36 36 36 36 36 36

25 36 36 36 36 36 36 36 36 36 36

30 36 36 36 36 36 36 36 36 36 36

35 36 36 36 36 36 36 36 36 36 36

234

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

40 36 36 36 36 36 36 36 36 36 36
45 36 36 36 36 36 36 36 36 36 36

50 36 36 36 36 36 36 36 36 36 36

55 36 36 36 36 36 36 60 36 36 36

60 36 36 36 36 36 36 76 36 42 36
65 36 36 36 36 36 36 102 36 50 36

70 36 36 36 36 36 36 126 36 50 36

75 36 36 36 36 36 36 156 36 52 36
80 36 36 36 36 36 36 174 36 66 36

85 36 36 36 36 36 36 191 36 72 36

90 36 36 36 36 36 36 233 36 78 36

95 36 36 36 36 36 36 271 36 84 36
100 36 36 36 36 78 36 289 36 102 36

105 36 36 36 36 124 36 317 36 102 36

110 36 36 36 36 172 36 337 36 106 36
115 36 36 36 36 206 36 385 36 118 36

120 36 36 36 36 234 36 421 36 122 36

125 133 36 36 36 298 36 475 36 124 36
130 199 36 36 36 357 36 501 36 136 36

135 273 36 36 36 401 36 525 36 148 36

140 341 36 36 36 443 36 559 36 160 36

145 431 36 36 36 497 36 584 36 164 36
150 476 36 36 36 557 36 636 62 180 36
155 500 36 36 36 587 50 686 98 196 78
160 503 78 36 36 645 124 714 155 200 120
165 505 132 93 36 669 192 766 229 232 152
170 507 190 139 36 713 244 808 265 260 186
175 511 240 187 36 749 300 846 331 298 214
180 512 300 257 36 815 348 894 379 326 238
185 515 364 295 36 867 404 952 431 346 265
190 515 420 333 36 921 480 996 467 364 287
195 517 474 383 36 964 522 1028 494 390 303
200 518 542 443 36 1014 566 1070 532 430 347
155 36 36 36 36 36 36 36 36 36 36
160 36 36 36 36 36 36 36 36 36 36
165 36 36 36 36 36 36 36 36 36 36
170 36 36 36 36 36 36 36 36 36 36
175 36 36 36 36 36 36 36 36 36 36
180 36 36 36 36 36 36 36 36 36 36
185 36 36 36 36 36 36 36 36 36 36
190 36 36 36 36 36 36 36 36 36 36
195 36 36 36 36 36 36 36 36 36 36
200 36 36 36 36 36 36 36 36 36 36

235

Run Type 4 – Attack Detection

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

0 36 36 36 36 36 36 36 36 36 36

5 36 36 36 36 36 36 36 36 36 36

10 36 36 36 36 36 36 36 36 36 36

15 36 36 36 36 36 36 36 36 36 36

20 36 36 36 36 36 36 36 36 36 36

25 36 36 36 36 36 36 36 36 36 36

30 36 36 36 36 36 36 36 36 36 36

35 36 36 36 36 36 36 36 36 36 36

40 36 36 36 36 36 36 36 36 36 36

45 36 36 36 36 36 36 36 36 36 36

50 36 36 36 36 36 50 36 68 54 36

55 36 36 36 36 36 76 112 172 126 36

60 36 36 36 36 36 113 180 240 190 36

65 36 36 36 36 36 141 232 306 244 36

70 36 36 36 36 36 161 297 384 332 36

75 36 36 36 36 36 199 329 448 400 36

80 36 36 36 58 36 235 399 526 440 36

85 36 36 36 94 36 283 453 584 535 36

90 36 36 36 152 38 333 511 648 573 36

95 36 36 36 196 72 371 543 734 647 36

100 36 36 76 224 134 407 585 782 717 36

105 78 36 120 262 180 443 663 869 753 42

110 160 36 193 320 232 497 715 911 799 46

115 242 36 239 378 296 551 785 987 865 52

120 314 38 301 453 336 583 835 1061 927 54

125 399 102 383 493 395 666 881 1097 969 58

130 499 170 437 559 455 690 903 1157 1005 72

135 499 244 497 633 495 760 959 1217 1037 78

140 499 300 579 691 545 846 1002 1261 1078 84

145 501 364 647 747 615 900 1054 1301 1102 90

150 503 428 725 827 651 961 1106 1329 1158 108

236

Time
(sec)

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

155 503 530 793 899 699 1007 1136 1366 1190 114

160 505 596 871 977 757 1081 1182 1392 1230 124

165 505 670 949 1041 819 1151 1210 1436 1268 130

170 505 756 1031 1117 868 1215 1260 1489 1330 132

175 505 869 1144 1197 924 1293 1326 1517 1377 140

180 505 903 1208 1285 976 1331 1388 1561 1433 152

185 505 903 1210 1402 1044 1393 1441 1619 1463 168

190 505 903 1210 1454 1102 1500 1485 1652 1499 172

195 505 903 1210 1456 1158 1553 1515 1684 1527 188

200 521 903 1214 1460 1226 1639 1561 1728 1553 194

237

Appendix R

Attack Detection and Node-Pair Type 1-1 Counts Results for Fraction Changed by Run Type

This data represents the fraction change in counts of node-pair type 1-1 from the pre-attack

state. This data was used for attack detection. It depicts the first 200 seconds of each

simulation as discussed in Chapter VI. Blank cells indicate no data due to terminal

condition already being met. Each cell represents the increase in the number of node-pairs of

type 1-1 of the previous number of node-pairs at the previous time.

Run Type 1 – Attack Detection (fraction change of node-pairs from previous time interval)

Time
(sec)

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

35 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0

40 0.0 0.0 0.0 0.0 0.0 0.0 7.9 0.0 0.0 0.0

45 0.0 0.0 0.0 0.0 0.0 4.2 15.5 2.7 0.0 8.8

50 0.0 0.0 9.0 0.0 0.0 12.1 20.1 10.9 10.5 18.4

55 0.0 0.0 18.7 0.0 0.0 20.4 25.6 22.0 19.8 27.7

60 0.0 0.0 29.0 0.0 0.0 26.6 33.6 29.2 28.0 34.8

65 0.0 0.8 32.4 0.0 0.0 33.0 40.8 34.4 34.7 39.9

70 0.0 3.9 32.3 0.0 0.0 40.2 47.9 41.8 39.8 44.8

75 0.0 9.0 32.2 1.3 0.0 48.1 50.1 45.8 45.3 47.6

80 0.0 13.1 32.2 5.9 8.9 48.1 49.9 49.3 48.2 50.6

238

Time
(sec)

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

85 0.0 17.9 32.0 10.3 17.7 47.7 49.8 51.6 51.1 52.7

90 0.0 23.4 31.8 14.8 26.8 47.5 49.7 51.4 52.8 54.1

95 0.0 24.4 31.7 19.9 34.4 47.2 49.5 51.3

100 0.0 24.7 31.5 24.2 40.0 47.0 49.3 51.2

105 4.9 24.8 31.3 29.9 43.6 46.7 49.3 50.9

110 12.8 24.9 31.3 35.4 43.5 46.4 49.1 50.8

115 12.8 24.8 31.2 39.2 43.3 46.1 48.7 50.5

120 12.5 25.0 31.2 39.2 43.0 45.8 48.6 50.5

125 12.4 25.1 31.2 39.1 42.6 45.6 48.6 50.3

130 12.4 25.2 31.2 39.0 42.3 45.2 48.3 50.0

135 12.4 25.2 31.1 39.0 42.0 45.1 48.3 49.9

140 12.4 25.2 31.1 38.8 41.9 44.9 48.1 49.9

145 12.4 25.1 30.9 38.7 41.6 44.7 47.9 49.5

150 12.4 25.0 30.9 38.7 41.4 44.6 47.7 49.3

Run Type 2 – Attack Detection (fraction change of node-pairs from previous time interval)

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

55 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0

60 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 1.3 0.0

65 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 2.2 0.0

70 0.0 0.0 0.0 0.3 0.0 2.7 1.5 0.0 3.1 0.0

75 0.0 0.0 0.0 3.5 0.0 4.4 3.5 0.0 3.6 0.0

80 0.0 1.9 0.0 5.9 0.0 5.8 5.5 0.0 4.3 0.0

85 0.0 3.8 0.0 8.3 0.0 7.4 7.9 0.0 5.5 0.4

90 0.0 5.7 0.0 10.8 0.0 8.7 10.0 0.0 6.4 0.5

95 0.0 8.0 0.0 12.5 0.0 10.2 11.8 0.0 7.4 0.7

239

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

100 0.0 10.8 0.0 14.4 0.0 11.8 13.5 0.0 8.2 0.7

105 0.6 12.2 0.0 16.8 0.0 12.6 15.8 0.0 8.8 0.8

110 3.2 14.2 0.0 18.5 0.0 13.5 17.7 0.0 9.4 0.9

115 5.1 16.1 0.0 20.4 0.0 14.9 19.4 0.0 10.4 1.2

120 7.6 18.2 0.0 22.1 0.0 16.9 21.3 0.0 11.2 1.4

125 9.8 20.8 0.0 24.3 0.0 17.7 22.8 0.0 12.0 1.4

130 12.4 23.4 0.0 25.8 0.1 19.1 24.9 0.0 13.1 1.8

135 12.9 24.2 0.0 28.3 1.0 20.7 26.6 0.0 14.4 2.0

140 13.1 24.2 0.0 29.3 2.7 22.0 27.6 0.0 15.1 2.2

145 13.1 24.3 0.0 31.5 4.0 23.2 29.1 0.0 15.4 2.6

150 13.1 24.4 0.0 33.0 5.8 25.0 30.9 0.0 16.5 2.8

155 13.1 24.5 0.0 34.0 7.4 26.4 32.0 0.0 17.6 2.9

160 13.1 24.6 0.0 35.8 8.4 28.0 33.8 1.2 18.4 3.3

165 13.1 24.7 2.1 37.5 10.1 29.4 34.7 3.3 19.8 3.4

170 13.4 24.7 4.0 38.9 11.8 31.4 35.6 4.6 20.5 3.7

175 13.5 24.8 5.6 39.4 12.8 32.6 36.4 7.0 21.1 4.1

180 13.5 24.8 7.4 39.4 14.1 34.2 37.7 8.3 22.8 4.5

185 13.5 24.9 8.7 39.4 16.1 36.1 38.8 9.7 23.7 4.9

190 13.5 24.9 10.3 39.5 17.4 38.0 39.6 11.4 24.4 5.1

195 13.5 25.0 12.6 39.6 18.5 39.7 40.5 12.8 25.6 5.6

200 13.6 25.1 14.7 39.7 20.1 41.8 41.6 14.0 27.0 6.4

155 13.7 25.2 16.4 39.8 21.8 43.3 43.4 15.4 28.0 7.3

160 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

165 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

170 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

175 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

180 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

185 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

190 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

195 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Run Type 3 – Attack Detection (fraction change of node-pairs from previous time interval)

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

240

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

55 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0

60 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.2 0.0

65 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.4 0.0

70 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.4 0.0

75 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.4 0.0

80 0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.8 0.0

85 0.0 0.0 0.0 0.0 0.0 0.0 4.3 0.0 1.0 0.0

90 0.0 0.0 0.0 0.0 0.0 0.0 5.5 0.0 1.2 0.0

95 0.0 0.0 0.0 0.0 0.0 0.0 6.5 0.0 1.3 0.0

100 0.0 0.0 0.0 0.0 1.2 0.0 7.0 0.0 1.8 0.0

105 0.0 0.0 0.0 0.0 2.4 0.0 7.8 0.0 1.8 0.0

110 0.0 0.0 0.0 0.0 3.8 0.0 8.4 0.0 1.9 0.0

115 0.0 0.0 0.0 0.0 4.7 0.0 9.7 0.0 2.3 0.0

120 0.0 0.0 0.0 0.0 5.5 0.0 10.7 0.0 2.4 0.0

125 2.7 0.0 0.0 0.0 7.3 0.0 12.2 0.0 2.4 0.0

130 4.5 0.0 0.0 0.0 8.9 0.0 12.9 0.0 2.8 0.0

135 6.6 0.0 0.0 0.0 10.1 0.0 13.6 0.0 3.1 0.0

140 8.5 0.0 0.0 0.0 11.3 0.0 14.5 0.0 3.4 0.0

145 11.0 0.0 0.0 0.0 12.8 0.0 15.2 0.0 3.6 0.0

150 12.2 0.0 0.0 0.0 14.5 0.0 16.7 0.7 4.0 0.0

155 12.9 0.0 0.0 0.0 15.3 0.4 18.1 1.7 4.4 1.2

160 13.0 1.2 0.0 0.0 16.9 2.4 18.8 3.3 4.6 2.3

165 13.0 2.7 1.6 0.0 17.6 4.3 20.3 5.4 5.4 3.2

170 13.1 4.3 2.9 0.0 18.8 5.8 21.4 6.4 6.2 4.2

175 13.2 5.7 4.2 0.0 19.8 7.3 22.5 8.2 7.3 4.9

180 13.2 7.3 6.1 0.0 21.6 8.7 23.8 9.5 8.1 5.6

185 13.3 9.1 7.2 0.0 23.1 10.2 25.4 11.0 8.6 6.4

241

Time

(sec)
0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

190 13.3 10.7 8.3 0.0 24.6 12.3 26.7 12.0 9.1 7.0

195 13.4 12.2 9.6 0.0 25.8 13.5 27.6 12.7 9.8 7.4

200 13.4 14.1 11.3 0.0 27.2 14.7 28.7 13.8 10.9 8.6

Run Type 4 – Attack Detection (fraction change of node-pairs from previous time interval)

Time
(sec)

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.9 0.5 0.0

55 0.0 0.0 0.0 0.0 0.0 1.1 2.1 3.8 2.5 0.0

60 0.0 0.0 0.0 0.0 0.0 2.1 4.0 5.7 4.3 0.0

65 0.0 0.0 0.0 0.0 0.0 2.9 5.4 7.5 5.8 0.0

70 0.0 0.0 0.0 0.0 0.0 3.5 7.3 9.7 8.2 0.0

75 0.0 0.0 0.0 0.0 0.0 4.5 8.1 11.4 10.1 0.0

80 0.0 0.0 0.0 0.6 0.0 5.5 10.1 13.6 11.2 0.0

85 0.0 0.0 0.0 1.6 0.0 6.9 11.6 15.2 13.9 0.0

90 0.0 0.0 0.0 3.2 0.1 8.3 13.2 17.0 14.9 0.0

95 0.0 0.0 0.0 4.4 1.0 9.3 14.1 19.4 17.0 0.0

100 0.0 0.0 1.1 5.2 2.7 10.3 15.3 20.7 18.9 0.0

105 1.2 0.0 2.3 6.3 4.0 11.3 17.4 23.1 19.9 0.2

110 3.4 0.0 4.4 7.9 5.4 12.8 18.9 24.3 21.2 0.3

115 5.7 0.0 5.6 9.5 7.2 14.3 20.8 26.4 23.0 0.4

242

Time
(sec)

0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%

120 7.7 0.1 7.4 11.6 8.3 15.2 22.2 28.5 24.8 0.5

125 10.1 1.8 9.6 12.7 10.0 17.5 23.5 29.5 25.9 0.6

130 12.9 3.7 11.1 14.5 11.6 18.2 24.1 31.1 26.9 1.0

135 12.9 5.8 12.8 16.6 12.8 20.1 25.6 32.8 27.8 1.2

140 12.9 7.3 15.1 18.2 14.1 22.5 26.8 34.0 28.9 1.3

145 12.9 9.1 17.0 19.8 16.1 24.0 28.3 35.1 29.6 1.5

150 13.0 10.9 19.1 22.0 17.1 25.7 29.7 35.9 31.2 2.0

155 13.0 13.7 21.0 24.0 18.4 27.0 30.6 36.9 32.1 2.2

160 13.0 15.6 23.2 26.1 20.0 29.0 31.8 37.7 33.2 2.4

165 13.0 17.6 25.4 27.9 21.8 31.0 32.6 38.9 34.2 2.6

170 13.0 20.0 27.6 30.0 23.1 32.8 34.0 40.4 35.9 2.7

175 13.0 23.1 30.8 32.3 24.7 34.9 35.8 41.1 37.3 2.9

180 13.0 24.1 32.6 34.7 26.1 36.0 37.6 42.4 38.8 3.2

185 13.0 24.1 32.6 37.9 28.0 37.7 39.0 44.0 39.6 3.7

190 13.0 24.1 32.6 39.4 29.6 40.7 40.3 44.9 40.6 3.8

195 13.0 24.1 32.6 39.4 31.2 42.1 41.1 45.8 41.4 4.2

200 13.5 24.1 32.7 39.6 33.1 44.5 42.4 47.0 42.1 4.4

243

Appendix T

Attack Detection and Node-Pair Type 1-1 Counts Results for First 300 Seconds by Run Type

These Figures represent the change in counts of node-pair type 1-1 from the pre-attack state.

This data was used for attack detection. It depicts the first 300 seconds of each simulation as

discussed in Chapter VI.

Run Type 1 – Attack Detection – Node-Pair Type 1-1 Counts, First 300 seconds

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Node-Pair
Counts

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

5.0%

244

Run Type 2 – Attack Detection – Node-Pair Type 1-1 Counts, First 300 seconds

Run Type 3 – Attack Detection – Node-Pair Type 1-1 Counts, First 300 seconds

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Node-Pair
Counts

Simulation Time (sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

5.0%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Node-Pair
Counts

Simulation Time (sec)

0.5% 1.0% 1.5%

2.0% 2.5% 3.0%

3.5% 4.0% 4.5%

5.0%

245

Run Type 4 – Attack Detection – Node-Pair Type 1-1 Counts, First 300 seconds

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Node-Pair
Counts

Simulation Time (x 100 sec)

0.5% 1.0% 1.5%
2.0% 2.5% 3.0%
3.5% 4.0% 4.5%
5.0%

246

Appendix T

Network Connectivity Parameter Efficiency Results by Attack Effect

NCP Efficiency is described in Chapter VI. An efficiency term for NCP was

developed for this research. The relative stability during the simulation was represented as:

𝑁𝐶𝑃(𝐸𝑓𝑓[𝑟𝑡])𝑡 =
 𝑁𝐶𝑃 𝑡

𝑎𝑐 𝑛
𝑎𝑐 0

 𝑁𝐶𝑃𝑡=0
𝑎𝑐 𝑛
𝑎𝑐 0

. Where the attack classes, 𝑎𝑐𝑛represents 𝑛 attack classes

as previously defined and 𝑟𝑡 = 1,2,3,4 . For example, the NCP efficiency of run type 1 at

time 𝑡 is represented as the sum of all network connectivity parameter values at time 𝑡 for all

attack classes from 𝑎𝑐0 to 𝑎𝑐𝑛 with the same run type divided by the sum of the network

connectivity parameter values at the pre-attack time for each attack class with the same run

type. In the remainder of this chapter, the research will consider to groups of attack classes

based on the attack effect. The efficiencies will be presented for attack classes 0.5% to 3.5%

(n = 7 for attack effect 1) and 4.0% through 5.0% (n = 3, for attack effect 2).

247

NCP Efficiency for Attack Effect 1 – Attack classes 0.5% to 3.5%

NCP Efficiency for Attack Effect 2 – Attack classes 4.0%, 4.5% and 5.0%

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

NCP(Eff[rt])

Simulation Time(x 1000 sec)

RunType-1 Effect1 RunType-2 Effect1

RunType-3 Effect1 RunType-4 Effect1

Attack Classes - 0.5% through 3.5%

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

NCP(Eff[rt])

Simulation Time(x 1000 sec)

RunType-1 Effect2 RunType-2 Effect2

RunType-3 Effect2 RunType-4 Effect2

Attack Classes - 4.0%, 4.5%, 5.0%

248

Appendix U

Information Transfer and Node-Pair Type Efficiency Results by Attack Effect

The attack class influence on the simulations discussed previously led this research to

segregate the attack results into 2 classifications. Simulations executed against attack classes

0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0% and 3.5% were classified as attack effect 1. The

remaining 3 most severe attack classes, 4.0%, 4.5% and 5.0%, were classified as attack effect

2.

As shown in Chapter V, each attack effect 1 simulation: 1) experienced an

equilibrium point for run type 3 and 4 simulations, 2) achieved a distinct local minimum

influenced by attack severity for all run types, 3) stabilized at these local minima at a

relatively constant value for significant period of time before the terminal conditions were

achieved. Attack effect 2 simulations experienced relatively rapid network degradation

without exhibiting any of the trends observed in the attack effect 1 simulations. The local

minima, terminal conditions and equilibrium point were previously defined.

This section will discuss the implications on network stability of protecting a node

based on its membership in a specific node-pair type, type 1-2. As previously discussed, if

one of the two nodes in a node-pair is protected then it cannot be removed from the network

during the attack simulations. The preservation of these node-pairs will selectively protect

the overall network stability from cascading node failures.

249

Node-pair and Information Transfer Efficiency

This research employed a relative measure to study changes in the network‟s

connectivity during the simulated denial-of-service attacks. The relative measure to study

the network stability was denoted as information transfer efficiency. The relative measure

used for analysis of node-pair type behaviors was denoted node-pair efficiency. Node-pair

and information transfer efficiency considers post attack stability relative to pre-attack

stability. Each was computed for attack effect 1 and attack effect 2 simulations. The relative

stability for information transfer for each simulation was represented as:

𝐼 𝐸𝑓𝑓[𝑟𝑡] 𝑡 =
 𝐼 𝑡

𝑎𝑐 𝑛
𝑎𝑐 0

 𝐼 𝑡=0
𝑎𝑐 𝑛
𝑎𝑐 0

The relative node-pair counts for each simulation were represented as:

 𝑁𝑃 𝐸𝑓𝑓[𝑟𝑡] 𝑡 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒 −𝑝𝑎𝑖𝑟𝑠 𝑡

𝑎𝑐 9
𝑎𝑐 0

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒 −𝑝𝑎𝑖𝑟𝑠 𝑡=0
𝑎𝑐 9
𝑎𝑐 0

Where 𝐼 is the information transfer and there exists 𝑛 attack classes, 𝑎𝑐𝑛 ; 𝑟𝑡 = 1,2,3,4

represents the 4 run types. For attack effect 1, 𝑛 = 7 and for attack effect 2, 𝑛 = 3.

Network connectivity parameter (NCP) efficiency results can be found in the appendix.

The efficiency terms represent the proportion of either NP or I remaining after the

attack at time 𝑡. Efficiencies below 1 indicate a decrease in information efficiency (node-

pair count) for the combined attack class data and efficiencies greater than 1 indicate an

increase in information transfer (node-pair count) efficiency for the combined attack class

data. The pre-attack efficiencies at 𝑡 = 0 were equal to one.

250

Attack Effects – Network Protection

Each run type shown in Figure U.1 represents the cumulative behaviors of 10

simulation runs, 7 for attack effect 1 and 3 for attack effect 2. Attack effect 1 simulation

executions are depicted in Figures U.1a and b. As shown in Figures U.1a and b, the network

degradation for run types 3 and 4 were greatly reduced and the network stabilized at an

equilibrium point. There was no equilibrium for run types 1 and 2. The data for run types 3

and 4 in Figures U.1a and b indicates that the network was protected from further

degradation. The network stability stabilized at approximately 50% for run type 4 as opposed

to complete degradation observed in run types 1 and 2. It shows the protection affect of

protection strategies 2 and 3 for run types 3 and 4 respectively. The counts shown in Figure

U.1b were consistent with the changes in information transfer stability shown in Figure U.1a.

Figure U.1b indicates that the network stabilized at the same time as the node-pair type 1-2

counts stabilized. The efficiency analysis for attack effect 2 is presented in Figures U.1c and

d. There was no protection effect for the most severe attacks.

251

Figure U.1. Average information transfer and node-pair type efficiency by Attack effect 1

and 2 and run type, 10 simulations for each run type, a and b) attack effect 1, information

transfer and node-pair type 1-2 counts respectively, c and d) attack effect 2, information

transfer and node-pair type 1-2 counts respectively.

	Eastern Michigan University
	DigitalCommons@EMU
	11-23-2009

	A model to study cyber attack mechanics and denial-of-service exploits over the internet's router infrastructure using colored petri nets
	Lawrence M. Healy
	Recommended Citation

	tmp.1274380924.pdf.QDqaO

