Towards Coordinated, Network-Wide Traffic
Monitoring for Early Detection of DDoS Flooding
Attacks

by
Saman Taghavi Zargar
B.Sc., Computer Engineering (Software Engineering), Azad
University of Mashhad, 2004

M.Sc., Computer Engineering (Software Engineering), Ferdowsi

University of Mashhad, 2007

Submitted to the Graduate Faculty of
the School of Information Sciences in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh
2014

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Saman Taghavi Zargar

It was defended on
June 3, 2014
and approved by

James Joshi, Ph.D., Associate Professor, School of Information Sciences

David Tipper, Ph.D., Associate Professor, School of Information Sciences
Prashant Krishnamurthy, Ph.D., Associate Professor, School of Information Sciences
Konstantinos Pelechrinis, Ph.D., Assistant Professor, School of Information Sciences

Yi Qian, Ph.D., Associate Professor, College of Engineering,
Dissertation Advisors: James Joshi, Ph.D., Associate Professor, School of Information
Sciences,

David Tipper, Ph.D., Associate Professor, School of Information Sciences

i

Copyright (©) by Saman Taghavi Zargar
2014

1l

Towards Coordinated, Network-Wide Traffic Monitoring for Early Detection of
DDoS Flooding Attacks

Saman Taghavi Zargar, PhD

University of Pittsburgh, 2014

DDoS flooding attacks are one of the biggest concerns for security professionals and they are
typically explicit attempts to disrupt legitimate users’ access to services. Developing a com-
prehensive defense mechanism against such attacks requires a comprehensive understanding
of the problem and the techniques that have been used thus far in preventing, detecting, and

responding to various such attacks.

In this thesis, we dig into the problem of DDoS flooding attacks from four directions: (1)
We study the origin of these attacks, their variations, and various existing defense mecha-
nisms against them. Our literature review gives insight into a list of key required features for
the next generation of DDoS flooding defense mechanisms. The most important requirement
on this list is to see more distributed DDoS flooding defense mechanisms in near future, (2)
In such systems, the success in detecting DDoS flooding attacks earlier and in a distributed
fashion is highly dependent on the quality and quantity of the traffic flows that are covered
by the employed traffic monitoring mechanisms. This motivates us to study and understand
the challenges of existing traffic monitoring mechanisms, (3) We propose a novel distributed,
coordinated, network-wide traffic monitoring (DiCoTraM) approach that addresses the key
challenges of current traffic monitoring mechanisms. DiCoTraM enhances flow coverage
to enable effective, early detection of DDoS flooding attacks. We compare and evaluate
the performance of DiCoTraM with various other traffic monitoring mechanisms in terms
of their total flow coverage and DDoS flooding attack flow coverage, and (4) We evaluate

the effectiveness of DiCoTraM with cSamp, an existing traffic monitoring mechanism that

v

outperforms most of other traffic monitoring mechanisms, with regards to supporting early
detection of DDoS flooding attacks (i.e., at the intermediate network) by employing two
existing DDoS flooding detection mechanisms over them. We then compare the effectiveness
of DiCoTraM with that of cSamp by comparing the detection rates and false positive rates
achieved when the selected detection mechanisms are employed over DiCoTraM and cSamp.
The results show that DiCoTraM outperforms other traffic monitoring mechanisms in terms

of total flow coverage and DDoS flooding attack flow coverage.

PREFACE

First, I am very grateful to my advisor, Professor James Joshi, for his great guidance,
continuous encouragement, invaluable suggestions, and support throughout my PhD. I would
like to thank him for giving me the great opportunity to work under his supervision as a
member of LERSAIS lab.

I am also very grateful to my co-advisor, Professor David Tipper, for his help and guid-
ance that have shaped much of the theoretical and technical basis in this thesis. I have been
and am going to be amazed by his incredible attention to technical detail. I hope I have
inherited at least some of these characteristics from him during this time.

I would also like to thank my dissertation committee members Professor Prashant Kr-
ishnamurthy, Professor Yi Qian, and Professor Konstantinos Pelechrinis for their valuable
feedback on my work. I would like to acknowledge the confidence and support that Professor
Prashant Krishnamurthy have shown for my work. His support when things were getting
tough was a great morale booster and he has always surprised me on many occasions by his
great insights to get to the depth of a research question even without detailed discussions.

I wish to thank my fellow colleagues at LERSAIS lab, Hassan Takabi, Amirreza Ma-
soumzadeh Tork, Nathalie Angel Baracaldo, Jesus Gonzales, Lei Jin, and Xulian Long for
the fruitful discussions and the knowledge they shared with me. I also thank the faculty and
staff of the School of Information Sciences, especially people listed below for being incredibly
resourceful and awesome. I have never come across something that they did not know the

answer to.

e Dean Ron Larsen, Dr. Martin Weiss, Kelly Shaffer, Wesley Lipschultz, Brandi Belleau,
Sharon Bindas, Sandra Brandon, Marcy Walls, and Corey James.

I also acknowledge that the research presented in this dissertation has been supported by

vi

the financial assistance provided through the School of Information Sciences at the University
of Pittsburgh, US National Science Foundation Computing and Communication Foundations
(CCF) award CCF-0720737, and Cisco systems Inc. award.

Finally, I would like to thank my beloved parents, sister, and brother for their endless
support in every step I took so far towards my career goals. I have been so lucky to have
such luxury. This thesis would not have been possible without the encouragement of my

family.

vil

TABLE OF CONTENTS

PREFACE vi
1.0 Introduction and Motivation 1
1.1 Thesis Statement and Challenges 2

2.0

1.1.1 Challenge 1: Network-wide approach for traffic monitoring policy en-
forcemento 3

1.1.2 Challenge 2: Resource-aware DDoS flooding attack tailored monitoring

1.1.3 Challenge 3: Distributed monitoring policy to enable distributed de-

tection of DDoS flooding attack flows 4

1.2 Proposed Research and Contributions)
1.3 Scope of the Thesis 7
1.4 Organization 8
DDoS Flooding Attacks & Existing Defense Mechanisms 9
2.1 DDoS problem definition & past incidents 10
2.2 DDoS attacks: scope and classification 12
2.2.1 Network/transport-level DDoS flooding attacks 13
2.2.1.1 Flood attacks 13

2.2.1.2 Protocol exploitation flood attacks 13

2.2.1.3 Reflection-based flood attacks 13

2.2.1.4 Amplification-based flood attacks 13

2.2.2 Application-level DDoS flooding attacks 14
2.2.2.1 Reflection/amplification based flood attacks 14

viil

3.0

4.0

2.2.2.2 HTTP flooding attacks 15

2.3 DDoS defense: scope and classification 18
2.3.1 Classification based on the deployment location 21
2.3.1.1 Defense mechanisms against network/transport-level DDoS . . 21

2.3.1.2 Defense mechanisms against application-level DDoS 26

2.3.2 Classification by the point in time (i.e., between the start and end of a

DDoS attack) that defense takes place 28

2.3.2.1 Before the attack (attack prevention) 28

2.3.2.2 During the attack (attack detection) 30

2.3.2.3 After the attack (attack source identification and response . . 31

2.4 SUMMATY oo 33

Traffic Monitoring Mechanisms: Current Practice & Challenges 35

3.1 Packet sampling vs. Flow sampling (a.k.a. Flow monitoring) 35

3.1.1 Discussion: Prioritized flow monitoring 37

3.2 Traffic monitoring as a network management task 38

3.2.1 Device-centric approaches L. 40

3.2.1.1 Existing router primitives: 40

3.2.1.2 Additional middleboxes: oL, 40

3.2.1.3 Enhancing current router primitives: 40

3.2.2 Network-wide approaches 41

3.3 cSamp: A centrally managed system-wide flow monitoring mechanism . . . 42

3.3.1 Case Study: cSamp’s vs. other packet/flow sampling mechanisms . . . 44

3.3.2 Discussion: 47

3.4 Summary 48
DiCoTraM: A Distributed and Coordinated DDoS flooding attack tai-

lored flow Traffic Monitoring 49

4.1 Introduction oL 49

4.2 DiCoTraM: an overview 50

4.2.1 Discussion: Router memory constraints 53

4.2.2 Assumptions 55

1X

5.0

4.3

4.4

4.5

4.6

4.7

4.2.3 Notation 55

4.2.4 The Set-up Processo 57
4.2.5 Proposed MIP formulation 58
4.2.6 Proposed heuristic oo 60
Scalability analysis: MIP vs. the proposed heuristic 62
4.3.1 Experimental set-up: oL 63
4.3.2 Experimental results:o o 63
Modified heuristic with input pre-processing capability 66
4.4.1 Experimental set-up:o 69
4.4.2 Experimental results: Lo 70
DiCoTraM vs. other monitoring mechanisms 75
4.5.1 Total flow coverage 75
4.5.2 DDoS flooding attack flow coverage 7
4.5.3 Discussion: 78
Network planning & memory requirements 78
4.6.1 Off-line MIP formulation 80
4.6.2 The modified heuristic with network planing capability 82
4.6.3 Experimental set-up & results: 84
SUMMATY o o o o o e e e 88

DiCoTraM’s Impact on DDoS Flooding Attack Detection Mechanisms 90

5.1

5.2

5.3

5.4
2.5

Case study 1: Distributed Change-point Detection (DCD) architecture . . . 90
5.1.1 Adopted router-level traffic surge detection algorithm 91
Case study 2: Distributed DDoS Flooding Detection based on Total Variation

Distance (TVD)o 94
5.2.1 TVD’s detection algorithm 95
Evaluations & experiments 97
5.3.1 Experimental set-up 97
5.3.2 Performance evaluations 99
Support for earlier detection of DDoS flooding attacks 105
SUMMATY . . . o v o v o e e e e e e 109

6.0 Conclusions and Future work 110

6.1 Contributions 111
6.2 Limitations of Proposed Work 113
6.3 Future Work 116
BIBLIOGRAPHY 118

x1

2.1

3.1

4.1

4.2
4.3
5.1

LIST OF TABLES

Summary of features, advantages, and disadvantages of defense mechanisms
against network /transport-level DDoS flooding attacks based on their deploy-
ment location Lo
The parameters of the experiment (Estimated maximum number of routers

(R), flows (F), and unique destination IP addresses (D) for 5 Real-world topolo-

The estimated maximum number of routers (R), flows (F), and unique desti-
nation IP addresses (D) for 10 Real-world topologies
Performance evaluation: Proposed heuristic vs. Gurobi 5.5
Performance evaluation: Proposed heuristic vs. Gurobi 5.5 (continued...) . . .

Packet Flooder (Packet Size vs. Packet Rate)

xii

2.1
2.2

2.3
24
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

5.1
5.2

LIST OF FIGURES

Different locations for performing DDoS detection and response.
A classification of the defense mechanisms against network/transport-level
DDoS flooding attacks based on their deployment location in a simple net-
work of ASs.
A taxonomy of defense mechanisms against DDoS flooding attacks
Capability-based (capabilities) vs. datagram-based (Filters) mechanisms [95].
Flow sampling vs. Packet sampling.
cSamp: a working example
Comparing cSamp with other packet sampling and flow sampling mechanisms
DiCoTraM: An architectural overview
Topology of an AS illustrating the used notation.
Monitoring assignment computation time.
DDoS flooding flow coverage.o
Total flow coverage.
Total Flow Coverage: DiCoTraM vs. other packet/flow sampling mechanisms
DDoS flooding flow coverage: DiCoTraM vs. other packet/flow sampling mech-
ANISINS . . o o o e e e e e
Distribution of the maximum additional required memory per router for 24
hour for the AT&T topology.
Total flow coverage during the 24-hour for the AT&T topology.
DETER simulation set-up o

ROC curves including 95% confidence interval employing DCD architecture .

xiil

17

19
20
24
37
43
46
20
26
72
73
74
76

7

86
87
98
102

5.3
5.4

5.9

ROC curves including 95% confidence interval employing TVD 104
Routers effectively involved in detecting TCP SYN 64B flooding attack (em-
ploying cSamp) 106
Routers effectively involved in detecting TCP SYN 64B flooding attack (em-

ploying DiCoTraM) 107

Xiv

1.0 Introduction and Motivation

According to CERT [1], with the rapid growth of Internet services, we have also seen increased
number of possible attacks against these services. DDoS flooding attacks have been reported
as one of the attacks with the highest occurrence rate over the past decade and many Internet
service providers (ISPs) and users have seriously suffered from these attacks. Despite all of
the efforts towards decreasing the number of DDoS flooding attack incidents, they have
expanded rapidly in the frequency and the size of the targeted networks and computers over
the past decade [2].

Various defense mechanisms have been proposed in the literature to address DDoS flood-
ing attacks [2]. These mechanisms could be categorized into four categories based on the
location where they are implemented [2-5]: Source-based, destination-based, network-based,
and hybrid (a.k.a. distributed). The detection accuracy is high at the victim side (i.e., desti-
nation) but it is not robust; victims cannot tolerate high volume of DDoS traffic. Stopping
the attacks at the source could be the best solution but it is very difficult since the volume of
the traffic at the sources is not significant to differentiate between legitimate and malicious
traffic. Furthermore, the collateral damage is high at the intermediate networks because
there is not enough resources to profile the traffic. Therefore, centralized mechanisms in
which all the defense components (i.e., prevention, detection, and response) are deployed at
the same place, are not practical against DDoS flooding attacks (See Chapter 2 for detailed
comparison).

Distributed collaboration among heterogeneous components within and across indepen-
dent domains has been indicated in the recent literature as a key challenge and future
direction for research in cybersecurity [6]. Since the attackers cooperate to perform suc-

cessful attacks, defenders must also form alliances and collaborate with each other to defeat

the attacks. Our review of the literature on DDoS flooding defense mechanisms show a list
of key features the next generation of DDoS flooding defense mechanisms should have [2]
(explained fully in Section 2.4). The most important requirement on this list that motivates
us to carry out the research in this thesis is to see more distributed DDoS flooding defense
mechanisms (i.e., distributed monitoring, detection, and response) in near future; since, as
explained above, they are more practical and effective than centralized mechanisms [2].

We argue that in an ideal distributed DDoS flooding defense mechanism, within each
Autonomous System (AS), traffic flows/packets should be monitored in a distributed fashion,
the monitored flows/packets should be analyzed by the detection mechanisms distributively,
and finally, upon detection of DDoS flooding attacks, the distributed response mechanisms
should respond appropriately to the attack flows/packets. Hence, the success in detecting
the DDoS flooding attacks is highly dependent on the quality and quantity of the monitored
flows/packets by the distributed traffic monitoring mechanisms that will be employed by
the distributed DDoS flooding defense mechanisms. Implementing such distributed traffic
monitoring mechanism have various challenges (see Chapter 3 for detail). In this thesis,
we propose a novel distributed traffic monitoring mechanism that plays an important role,
as the first step in defending against DDoS flooding attacks, in maximizing the coverage of
flows that are monitored to support the detection of DDoS flooding attacks. Moreover, it will
address the main limitations of existing traffic monitoring mechanisms. Such an approach

will be beneficial to future distributed DDoS flooding defense mechanisms.

1.1 Thesis Statement and Challenges

In this thesis, we carry out research to validate the following hypothesis: a network-wide traf-
fic monitoring mechanism that coordinates monitoring responsibilities among various moni-
toring devices (centrally managed) can eliminate the redundant flow monitoring issue, while
satisfying the resource constraints of the monitoring devices. Such traffic monitoring mech-
anism can also help prioritize the coverage of the DDoS flooding attack flows which can

enable early detection of DDoS flooding attacks through distributed DDoS flooding detection

mechanisms. Towards this, we propose a novel distributed, coordinated, network-wide DDoS
flooding attack tailored flow monitoring mechanism (DiCoTraM) that addresses the key chal-
lenges presented below. In section 1.2, we overview the specific research components and

contributions.

1.1.1 Challenge 1: Network-wide approach for traffic monitoring policy en-

forcement

As computer networks get more complex and dynamic, and as traffic patterns evolve, net-
work management tasks such as: traffic monitoring, performance optimization, etc. have
become more and more challenging. This is because such changes in computer networks and
traffic patterns may require new functionalities and high-level (a.k.a. network-wide) policies
that network operators are responsible for and struggle with enforcing them. For instance,
dynamic flow coverage in different monitoring devices within the network for specific flows
is an example of such a high-level policy. Enforcing such high-level policies is challenging
since employing traditional low-level vendor-specific configuration and analysis approaches
or deploying third party middleboxes for this purpose are very difficult and impractical.
The main reason for the insufficiency of available policy enforcement approaches (see
Chapter 3) to the network operators is the device-centric view of these approaches. Moreover,
all of the network elements are constrained by their technological constraints such as their
processing and memory capabilities. For instance, monitoring devices duplicate monitoring
tasks and some of them become overloaded. Moreover, translating a network-wide traffic
monitoring objective (e.g., guaranteed minimum flow coverage for specific flows) into routers’
configuration and in a router-by-router fashion (device-centric) is tedious and there is no

guarantee if routers could correctly satisfy their translated objective.

Some of the recent proposals argue that network management tasks such as traffic mon-
itoring can be viewed as resource management problems (e.g., [136]); hence, network-wide
traffic monitoring objectives can be achieved using a network-wide resource management
approach. Such approaches perform within the technological constraints of the existing

vendor-specific monitoring devices that are already deployed in the network. This minimizes

the costs of alternative solutions such as: adding special purpose middleboxes or monitoring

devices with special capabilities.

1.1.2 Challenge 2: Resource-aware DDoS flooding attack tailored monitoring

policy

Another challenge in traffic monitoring mechanisms originates from the fact that the moni-
toring devices (e.g., routers) have limited resources (e.g., memory and CPU). Hence, when
the number of traffic flows passing through them is very large they only cover a subset of
flows/packets. Moreover, this flow/packet selection is mostly done in a random fashion and
without prioritizing the coverage of possible important flows/packets (e.g., DDoS flooding
flows).

We argue that it is important for a DDoS defense mechanism to ensure that the majority
of the flows destined for the same destination (possible DDoS flooding flows) are monitored
in each and every AS !'. Hence, guaranteeing the monitoring coverage for the majority of
those flows should be an important policy to enforce for the monitoring mechanisms em-
ployed by the DDoS defense mechanisms while satisfying the monitoring devices’ memory
constraints. However, this sometimes will require network operators to augment some of
the monitoring devices with more resources for their short-term/long-term network planning
decisions. Obviously, there is a trade-off between the amount of resources in monitoring
devices and the monitoring coverage for all the flows, an issue that we explore and analyze

later in this thesis.

1.1.3 Challenge 3: Distributed monitoring policy to enable distributed detec-
tion of DDoS flooding attack flows

Currently, most of the DDoS flooding defense mechanisms analyze the flows/packets that are
monitored by distributed traffic monitoring devices centrally within each AS. This approach

requires routers (monitoring devices) to report their monitored flows/packets to some cen-

!The bandwidth starvation DDoS flooding attacks are the focus of this thesis. The port starvation DDoS
flooding attacks are not the focus of this thesis in its current version

tral points for analysis; this is challenging since it causes a huge communication overhead.
We believe that with practical distributed monitoring mechanisms that can cover as many
flows/packets as possible (specially DDoS flooding attack flows) in place, it is more feasible,
effective, and reasonable to have light-weight distributed detection mechanisms in place than

performing centralized analysis (detection).

1.2 Proposed Research and Contributions

DiCoTraM eliminates the redundant flow monitoring while satisfying the resource constraints
of the monitoring devices. DiCoTraM prioritizes the coverage of the DDoS flooding attack
flows. DiCoTraM’s capability in covering most of the DDoS flooding flows enables the early
detection of DDoS flooding attacks in the intermediate network and before these attack flows
get closer to their victims. In particular, the research presented in this dissertation makes

the following contributions:

e We study the origin of DDoS flooding attacks, their variations, and various existing
defense mechanisms against them. We summarize the list of required features for the
next generation of DDoS flooding defense mechanisms. The most important requirement
on this list is to see more distributed DDoS flooding defense mechanisms in near future
which motivated us to conduct the research presented in this thesis. As our second step,
we study the existing traffic monitoring mechanisms and identify their various challenges
in terms of the problem of DDoS flooding attack. The success in detecting DDoS flooding
attacks in a distributed fashion is highly dependent on the quantity of (i.e., flow coverage)
the distributed traffic monitoring mechanisms that are being employed.

e We present the design and proof of concept implementation of DiCoTraM as a novel
traffic monitoring mechanism to address the limitations of current traffic monitoring
mechanisms with regards to the problem of DDoS flooding attack. DiCoTraM is a
resource constraint aware, DDoS flooding attack tailored, coordinated, and network-
wide traffic monitoring mechanism (see Chapter 3 [7]). We compare and evaluate the

performance of DiCoTraM with various other traffic monitoring mechanisms in terms of

total flow coverage and DDoS flooding attack flow coverage in order to show DiCoTraM’s
effectiveness.

We analyze the scalability of DiCoTraM and improve it by proposing a scalable heuristic.
Moreover, in order to reduce the computation time of the monitoring assignment process
in our proposed heuristic, we enhance the heuristic by pre-processing the input to the
monitoring assignment process; consequently, our proposed enhanced heuristic only runs
the monitoring assignment process for the set of new or modified flows in compared to
the previous assignments. In doing so, the enhanced heuristic keeps the same assignment
for the long-term flows as far as the total DDoS flooding flow coverage is maintained or
does not significantly fallen below some predefined threshold.

We extend DiCoTraM to help the network operators in determining a list of candidate
monitoring devices to upgrade (i.e., memory upgrade) for achieving better flow coverage.
Extended version of DiCoTraM computes the amount of additional memory needed to
fully cover the traffic flows. We evaluate the memory consumption of the routers within
a well-known AS topology for both with and without DDoS flooding attacks by means
of simulations. Moreover, we perform a set of experiments in the same AS topology to
evaluate the effectiveness of the network planning capability that our extension provides

in terms of flow coverage in both with and without DDoS flooding attacks.

e Finally, we evaluate the effectiveness of DiCoTraM with an existing traffic monitoring
mechanism, that outperforms most of other traffic monitoring mechanisms, with regards
to supporting effective, early detection of DDoS flooding attacks by employing two exist-
ing DDoS flooding detection mechanisms over them. These two DDoS flooding detection
mechanisms are selected since they have been shown to have good performance in de-
tecting DDoS flooding attacks in the literature. We then compare the effectiveness of
DiCoTraM with that of other traffic monitoring mechanism by comparing the detec-
tion rates and false positive rates achieved when the selected detection mechanisms are

employed over DiCoTraM and the other traffic monitoring mechanism.

1.3 Scope of the Thesis

The proposed work in this thesis is motivated by the defense against DDoS flooding attacks.
However, currently, we focus only on monitoring the bandwidth starvation DDoS flooding
attacks and other types of DDoS flooding attacks such as port starvation DDoS flooding
attacks have not considered at present. Moreover, our proposed traffic monitoring mecha-
nism can only identify and monitor the potential DDoS flooding attack flows and not the
actual attackers who generated those flows. Hence, the actual sources of in particular DDoS
flooding attacks such as reflected/spoofed DDoS flooding attacks (e.g., DNS amplification
attacks) cannot be correctly identified through the detection mechanisms employed in our

experiments; hence these attack types are not within the scope of this thesis at present.

1.4 Organization

The remainder of this dissertation is organized as follow: Chapter 2 presents a comprehen-
sive survey of DDoS flooding attacks, their variations, existing solutions to the problem, and
a summary of features that an ideal comprehensive DDoS defense mechanism must have to
combat DDoS flooding attacks [2]. Chapter 3 studies the existing traffic monitoring mecha-
nisms and their pros and cons in detail. Chapter 4 presents the design and implementation
of DiCoTraM towards addressing the challenges of existing traffic monitoring mechanisms
in achieving the requirements of the next generation of DDoS flooding defense mechanisms;
traffic monitoring mechanisms that provide larger DDoS flow coverage [7]. Chapter 5, eval-
uates the effectiveness of DiCoTraM with an existing traffic monitoring mechanism, that
outperforms most of the other traffic monitoring mechanisms, with regards to supporting
effective, early detection of DDoS flooding attacks by employing two existing well-performing
detection mechanisms over them. Finally, Chapter 6 concludes the dissertation, summarizes

some possible limitations, and discusses the future work.

2.0 DDoS Flooding Attacks & Existing Defense Mechanisms

This chapter briefly (see [2] for more detailed version) overviews the DDoS phenomena.
We first explain DDoS problem and its background in Section 2.1. Then we categorize the
existing DDoS flooding attacks in Section 2.2. We categorize DDoS flooding attacks into
two types based on the protocol level that is targeted: network/transport-level attacks and
application-level attacks. Then, we enumerate some of the major attacks in each category.
In Section 2.3, we describe our classification of the defense mechanisms for DDoS flood-
ing attacks and enumerate various defense mechanisms against DDoS flooding attacks. We
classify the defense mechanisms against the two types of DDoS flooding attacks that we
present in section 2.2 using two criteria. First we classify both the defense mechanisms
against network/transport-level DDoS flooding attacks and the defense mechanisms against
application-level DDoS flooding attacks based on the location where prevention, detection,
and response to the DDoS flooding attacks occur. Then we classify both types of defense
mechanisms based on the point in time when they prevent, detect, and respond to DDoS
flooding attacks. Finally, we highlight the need for a comprehensive distributed and collabo-
rative defense solution against DDoS flooding attacks by enumerating some of the important
advantages of distributed DDoS defense mechanisms over centralized ones. Section 2.4 con-
cludes this chapter and provides some insights for implementing a comprehensive distributed
collaborative defense mechanism against DDoS flooding attacks. A more comprehensive and
detailed version of this literature review is published in [2]. Our main intention for this
survey was to help in understanding the scope of the DDoS attack problem which in turn
could spur our goal in this thesis which is to monitor the traffic at the intermediate network
level in such a way that, with the monitored traffic data, it is possible to detect and stop

DDoS flooding attacks at the intermediate networks.

2.1 DDoS problem definition & past incidents

Denial of Service (DoS) attacks, which are intended attempts to stop legitimate users from
accessing a specific network resource, have been known to the research community since the
early 1980s. In the summer of 1999, the Computer Incident Advisory Capability (CIAC)
reported the first Distributed DoS (DDoS) attack incident [9] and most of the DoS attacks
since then have been distributed in nature. Currently, there are two main methods to launch
DDoS attacks in the Internet. The first method is for the attacker to send some malformed
packets to the victim to confuse a protocol or an application on a compromised machine
(i.e., vulnerability attack [3]). The other method, which is the most common method, to
perform a DDoS attack is for the attacker to either:

(i) disrupt legitimate user’s connectivity by exhausting bandwidth, router processing
capacity or network resources (i.e., network/transport-level flooding attacks [3]) or

(ii) disrupt legitimate user’s services by exhausting the server resources (e.g., Sockets,
CPU, memory, disk/database bandwidth, and I/O bandwidth) (i.e., application-level flood-
ing attacks [10]).

Today, DDoS attacks are often launched by a network of remotely controlled, well or-
ganized, and widely scattered Zombies' or Botnet computers that simultaneously and con-
tinuously send a large amount of traffic and/or requests to the target system. The target
system either responds so slowly as to be unusable or crashes completely [3,11]. Zombies
or botnet computers are usually recruited through the use of worms, Trojan horses or back-
doors [1,12,13]. Employing the resources of recruited computers to perform DDoS attacks
allows attackers to launch a much larger and more disruptive attack. Furthermore, it be-
comes more complicated for the defense mechanisms to recognize the original attacker due
to the use of counterfeit (i.e., spoofed) IP addresses by zombies under the control of the

attacker [14].

!Those devices (e.g., computers, routers, etc.) controlled by attackers are called zombies or bots which
derives from the word "robot.” The term bots is commonly referred to software applications running as an
automated task over the Internet (Wikipedia, ”Internet bot”)

10

Many DDoS flooding attacks had been launched against different organizations since
the summer of 1999 [9]. Most of the DDoS flooding attacks launched to date made the
victims’ services unavailable, leading to revenue losses and increased costs of mitigating the
attacks and restoring the services. For instance, in February 2000, Yahoo! experienced one
of the first major DDoS flooding attacks that kept the company’s services off the Internet for
about 2 hours and resulted in a significant loss in advertising revenue [15]. In October 2002,
9 of the 13 root servers® that provide the Domain Name System (DNS) service to Internet
users around the world shut down for an hour due to a DDoS flooding attack [16]. Another
major DDoS flooding attack occurred in February 2004 that made the SCO Group website
inaccessible to legitimate users [17]. This attack was launched by using systems that had
previously been infected by the Mydoom [17] virus. The virus contained code that instructed
thousands of infected computers to access SCO’s website at the same time. The Mydoom
virus code was re-used to launch DDoS flooding attacks against major government news
media and financial websites in South Korea and the United States in July 2009 [18, 19].
One of the recent DDoS flooding incidents occurred on December 2010; a group calling
themselves ” Anonymous” launched orchestrated DDoS flooding attacks on organizations
such as Mastercard.com, PayPal, Visa.com and PostFinance [20]. The attack brought down
the Mastercard, PostFinance, and Visa websites.

Recent advances in DDoS defense mechanisms put an end to the era during which script-
kiddies could download a tool and launch an attack against almost any website. In today’s
environments, attackers use more complicated methods to launch a DDoS attack. Despite all
of the efforts towards decreasing the number of DDoS attack incidents, they have expanded
rapidly in the frequency and the size of the targeted networks and computers. In a recent
survey which was commissioned by VeriSign, it was found that 75% of respondents had expe-
rienced one or more attacks during July 2008-July 2009 [22]. Furthermore, Arbor Networks?
recently published a paper that also reports similar results. In their results, they showed
that 69% of the respondents had experienced at least one DDoS attack from October 2009
through September 2010, and 25% had been hit by ten such attacks per month [23]. Accord-

2DNS root servers translate logical addresses such as www.google.com into a corresponding physical IP
address, so that users can connect to websites through more easily remembered names rather than numbers.
3 Arbor networks include 111 IP network operators worldwide.

11

ing to Prolexic Technologies, which offers services to protect against DDoS attacks, there
are 7000 DDoS attacks observed daily and they believe this number is growing rapidly [24].
DDoS attacks are also increasing in size, making them harder to defend against. Arbor
Networks found that there has been around 100% increase in the attack size over 2010, with
attacks breaking the 100Gbps barrier for the first time [23]. Therefore, protecting resources
from these frequent and large DDoS attacks necessitates the research community to focus
on developing a comprehensive DDoS defense mechanism that can appropriately respond to

DDoS attacks before, during and after an actual attack.

2.2 DDoS attacks: scope and classification

The distributed nature of DDoS attacks makes them extremely difficult to combat or trace-
back. Attackers normally use spoofed (fake) IP addresses in order to hide their true identity,
which makes the traceback of DDoS attacks even more difficult. Furthermore, there are secu-
rity vulnerabilities in many Internet hosts that intruders can exploit. Moreover, these days,
attackers are targeting the application layer by employing techniques that are very difficult
to detect and mitigate. One of the necessary steps towards deploying a comprehensive DDoS
defense mechanism is to understand all the aspects of DDoS attacks. Various classifications
of DDoS attacks have been proposed in the literature over the past decade [3,4,9,25-27,29].
In this survey, we are interested in providing a classification of DDoS flooding attacks based
on the attacked protocol level. We review various DDoS flooding incidents of each category,
some of which have been well reviewed /analyzed in [3,4,9,25-27,29] and the rest are recent
trends of DDoS flooding attacks. In this thesis, we mainly focus on DDoS flooding attacks
as it is one of the most common forms of DDoS attacks. Vulnerability attacks, in which at-
tackers exploit some vulnerabilities or implementation bugs in the software implementation

of a service to bring that down, are not the focus of this thesis.

12

As we mentioned earlier, DDoS flooding attacks can be classified into two categories as

follows based on the attacked protocol:

1. Network/transport-level DDoS flooding attacks

2. Application-level DDoS flooding attacks

2.2.1 Network/transport-level DDoS flooding attacks

These attacks have been mostly launched using TCP, UDP, ICMP and DNS protocol packets.
There are four types of attacks in this category [3,29]:

2.2.1.1 Flood attacks Attackers focus on disrupting legitimate user’s connectivity by
exhausting victim network’s bandwidth (e.g., Spoofed /non-spoofed UDP flood, ICMP flood,
DNS flood, VoIP Flood and etc. [25,28]).

2.2.1.2 Protocol exploitation flood attacks Attackers exploit specific features or
implementation bugs of some of the victim’s protocols in order to consume excess amounts
of the victim’s resources (e.g., TCP SYN flood, TCP SYN-ACK flood, ACK & PUSH ACK
flood, RST/FIN flood and etc. [25,28]).

2.2.1.3 Reflection-based flood attacks Attackers usually send forged requests (e.g.,
ICMP echo request) instead of direct requests to the reflectors; hence, those reflectors send
their replies to the victim and exhaust victim’s resources (e.g., Smurf and Fraggle attacks)

[25,29].

2.2.1.4 Amplification-based flood attacks Attackers exploit services to generate

large or multiple messages for each message they receive to amplify the traffic towards the
victim. Botnets have been constantly used for both reflection and amplification purposes.
Reflection and amplification techniques are usually employed in tandem as in the case of

Smurf attack where the attackers send requests with spoofed source IP addresses (Reflection)

13

to a large number of reflectors by exploiting IP broadcast feature of the packets (Amplifica-
tion) [25,29].

All of the above attack types with the detailed explanation of their incidents are presented
in detail in [3,25,28,29]; hence, we skip further explanation of these attacks; instead we focus
on the application-level DDoS flooding attacks as they are expected to be the future trend
of DDoS flooding attacks since they are stealthier than network/transport-level flooding

attacks and they masquerade as flash crowds.

2.2.2 Application-level DDoS flooding attacks

These attacks focus on disrupting legitimate user’s services by exhausting the server re-
sources (e.g., Sockets, CPU, memory, disk/database bandwidth, and I/O bandwidth) [10].
Application-level DDoS attacks generally consume less bandwidth and are stealthier in na-
ture when compared to volumetric attacks since they are very similar to benign traffic. How-
ever, application-level DDoS flooding attacks usually have the same impact to the services
since they target specific characteristics of applications such as HT'TP, DNS, or Session Initi-
ation Protocol (SIP). Here we briefly describe the DNS amplification flooding attack and the
SIP flooding attack as they are two of the famous application-level reflection/amplification
flooding attacks. Then we classify various flavors of application-level flooding attacks that
employ the HTTP protocol and we closely look at each of them; since these attacks are

consistently reported as the major types of recent DDoS flooding attacks [31].

2.2.2.1 Reflection/amplification based flood attacks [3,29] These attacks use the
same techniques as their network/transport-level peers (i.e., sending forged application-level
protocol requests to the large number of reflectors). For instance, the DNS amplification
attack employs both reflection and amplification techniques. The attackers (zombies) gen-
erate small DNS queries with forged source IP addresses which can generate a large volume
of network traffic since DNS response messages may be substantially larger than DNS query
messages. Then this large volume of network traffic is directed to a victim system to paral-

yse it. Another application-level attack example that employs reflection technique is VoIP

14

flood [28]. This attack is a variation of an application specific UDP flood. Attackers usually
send spoofed VoIP packets through SIP at a very high packet rate and with a very large
source IP range. The victim VoIP server has to distinguish the proper VoIP connections
from the forged ones which consumes the resources drastically. VoIP floods can overwhelm a
network with packets with randomized or fixed source IP addresses. If the source IP address
has not been changed the VoIP flood attack mimics traffic from large VoIP servers and can

be very difficult to identify since it resembles good traffic.

2.2.2.2 HTTP flooding attacks [10,28,30,32] There are four types of attacks in this
category:

A. Session flooding attacks: In this type of attack, session connection request rates from
the attackers are higher than the requests from the legitimate users; hence, this exhausts the
server resources and leads to DDoS flooding attack on the server process. One of the famous
attacks in this category is the HTTP get/post flood attack (a.k.a., Excessive VERB) [28] in
which attackers generate a large number of valid HTTP requests (get/post) to a victim web
server. Attackers usually employ botnets to launch these attacks. Since each of the bots can
generate a large number of valid requests (usually more than 10 requests a second) there
is no need for a large number of bots to launch a successful attack. HTTP get/post flood
attacks are non-spoofed attacks.

B. Request flooding attacks: In this type of attack, attackers send to sessions more number
of requests than usual and leads to a DDoS flooding attack on the server process. One of
the well-known attacks in this category is the single-session HTTP get/post flood (a.k.a.,
Excessive VERB single session) [28]. This attack is a variation of HTTP get/post flood
attack which employs the feature of HT'TP 1.1 to allow multiple requests within a single
HTTP session. Hence, the attacker can limit the session rate of an HT'TP attack and bypass
session rate limitation defenses of many security systems.

C. Asymmetric attacks: In this type of attack, attackers send to sessions high-workload

requests. Here we enumerate some of the famous attacks in this category.

15

C.1. Multiple HTTP get/post flood (a.k.a., Multiple VERB Single Request) [28]: This
attack is also a variation of HT'TP get/post flood attack. A attacker creates multiple HTTP
requests by forming a single packet embedded with multiple requests and without issuing
them one after another during a single HTTP session [28]. This way attacker can still
maintain high loads on the victim server with a low attack packet rate which makes the
attacker nearly invisible to netflow anomaly detection techniques. Also, attackers can easily
bypass deep packet inspection techniques if they carefully select the HT'TP VERB.

C.2. Faulty Application [28]: In this attack, attackers take advantage of websites with
poor designs or improper integration with databases. For instance, they can employ SQL-like
injections to generate requests to lock up database queries. These attacks are highly specific
and effective because they consume server resources (memory, CPU, etc.).

D. Slow request/response attacks: In this type of attack, attackers send to sessions num-
ber of high-workload requests. There are number of famous attacks in this category that we
describe in the following.

D.1. Slowloris attack (a.k.a, Slow headers attack) [33]: Slowloris is a HTTP get-based
attack that can bring down a Web server using a limited number of machines or even a single
machine. The attacker sends partial HTTP requests (not a complete set of request headers
[34]) that proliferate endlessly, update slowly, and never close. The attack continues until all
available sockets are taken up by these requests and the Web server becomes inaccessible.
In this attack, usually attackers use their genuine IP addresses and not the spoofed ones.

D.2. HTTP fragmentation attack [28]: Similar to Slowloris, the goal of this attack is
to bring down a Web server by holding up the HTTP connections for a long time without
raising any alarms. Attackers (bots) (non-spoofed) establish a valid HTTP connection with a
web server. Then they fragment legitimate HT'TP packets into tiny fragments and send each
fragment as slow as the server time out allows. Using this approach, by opening multiple
sessions on each bot, the attacker can silently bring down a Web server with just a handful
of bots.

D.3. Slowpost attack (a.k.a, Slow request bodies or R-U-Dead-Yet (RUDY) attack) [35]:
Wong and Brennan presented a very similar attack to Slowloris that send HTTP post com-

mands slowly to bring down Web servers. The attacker sends a complete HT'TP header

16

that defines the ”content-length” field of the post message body as it sends this request for
benign traffic. Then it sends the data to fill the message body at a rate of one byte every two
minutes. This way the server waits for each message body to be completed and meanwhile

Slowpost attack proliferates and causes the DDoS on the Web server.

Attack Sources @

Further upstream intermediate
network

Upstream intermediate network <

saspanuj A301n00 u013r333g
006 2pwWiN S,a5uafap S0qQ Afs110s 13133q SWSIUDYIIW 3SUOS3I PUD UOIIUINIIG
S35Da.0U] JOD1I0 SO0GQ P JO J]PPIW 8Y3 Ul S39370d [DWIIOU JO 19qUINN

Figure 2.1: Different locations for performing DDoS detection and response.

D.4. Slowreading attack (a.k.a, Slow response attack) [36]: Shekyan presented another
type of attack in this category which works by slowly reading the response instead of slowly
sending the requests. This attack achieves its purpose by setting a smaller receive window-
size than the target server’s send buffer. The TCP protocol maintains open connections even
if there is no data communication; hence, the attacker can force the server to keep a large

number of connections open and eventually DDoS the server.

17

The message here is that DDoS, like most malicious security threats, is multidimensional.
One must be prepared to detect and counter both the more well-known attacks that aggres-
sively assault systems and the ingenious creations that will slip in and undermine systems

before you know what hit them.

2.3 DDoS defense: scope and classification

Usually by the time a DDoS flooding attack is detected, there is nothing that could be done
except to disconnect the victim from the network and manually fix the problem. DDoS
flooding attacks waste a lot of resources (e.g., processing time, space, etc.) on the paths
that lead to the targeted machine; hence, it is the ultimate goal for every DDoS defense
mechanism to detect them as soon as possible and stop such attacks as near as possible to
their sources. Figure 2.1 shows that detection and response can be performed in different
places on the paths between the victim and the sources of the attack. As depicted in the
diagram, a DDoS flooding attack resembles a funnel in which attack flows are generated in
a dispersed area (i.e., sources), forming the top of the funnel. The victim, at the narrow
end of a funnel, receives all the attack flows generated. Thus, it is not difficult to see that
detecting a DDoS flooding attack is relatively easier at the destination (victim), since all the
flows can be observed at the destination. On the contrary, it is difficult for an individual
source network of the attack to detect the attack unless a large number of attack flows are
initiated from that source. Obviously, it is desirable to respond to the attack flows closer to
the sources of the attacks, but there is always a trade-off between accuracy of the detection
and how close to the source of attack the prevention and response mechanism can stop or
respond to the attack.

Moreover, the number of normal packets that reach the victims even when the victims
are under a DDoS attack increases when response mechanisms drop the attack packets closer
to the sources of the attack. Otherwise, as attack flows reach closer to the victims, packet

filtering mechanisms drop more legitimate packets that are destined to the victims®.

5During large scale DDoS attacks, victims or their immediate upstream networks drop all the packets

18

Hybrid DDoS Defense Mechanisms

Source-based DDoS Defense
| Mechanisms

Access router

[5

Figure 2.2: A classification of the defense mechanisms against network /transport-level DDoS

flooding attacks based on their deployment location in a simple network of ASs.

Several mechanisms to combat DDoS flooding attacks have been proposed to date in
the literature [3,4,25-27,29]. In this section we classify the defense mechanisms against two
types of DDoS flooding attacks that we presented in section 2.2 using two criteria. We believe
that these classification criteria are important in devising robust defense solutions. The first
criterion for classification is the location where the defense mechanism is implemented (i.e.,
Deployment location). We classify the defense mechanisms against network /transport-level
DDoS flooding attacks into four categories: source-based, destination-based, network-based,
and hybrid (a.k.a. distributed) and the defense mechanisms against application-level DDoS
flooding attacks into two categories: destination-based, and hybrid (a.k.a. distributed) based
on their deployment location. Figure 2.2 shows the classification of the defense mechanisms
against network/transport-level DDoS flooding attacks based on their deployment location
in a simple network of AS. There is no network-based defense mechanism against application-

level DDoS flooding attacks since the application-level DDoS flooding attack traffic is not

destined to the victims.

19

accessible at the layer 2 (switches) and layer 3 (routers) devices. Classification of DDoS
defense mechanisms based on their deployment location was first presented in [9] and it is
used by some other surveys as one of their classification criteria [3,11,14,29]. In this survey,
we extend this classification criterion by adding a hybrid category and analyzing several

recent DDoS defense mechanisms in each category.

DDoS Flooding Defense Mechanisms

N

Deployment location (A) Point in time that defense takes place (B)
/ \ Before the attack
_’
Defense mechanisms against network/transport- Defense mechanisms against application- (6.1)
level DDoS flooding attacks (A.1.) level DDoS flooding attacks (A.2.)
Ly During the attack
(B.2.)
H» Source-based (A.1.1.)
— > Destination-based (A.2.1.) After the attack
M Destination-based (A.1.2.) (8.3)

- Hybrid (A.2.2.)

M Network-based (A.1.3.)

> Hybrid (A.1.4.)

Figure 2.3: A taxonomy of defense mechanisms against DDoS flooding attacks

The second criterion for classification is the point of time when the DDoS defense mech-
anisms should act in response to a possible DDoS flooding attack. Based on this criterion
we classify both defense mechanisms against application-level and network/transport-level
DDosS flooding attacks into three categories (i.e., three points of defense against the flooding
attack): before the attack (attack prevention), during the attack (attack detection), and after
the attack (attack source identification and response) [3]. However, a comprehensive DDoS
defense mechanism should include all three defenses since there is no one-size-fits-all solution

to the DDoS problem. Our contribution to the last classification criterion is to classify and

20

enumerate most of the recent defense mechanisms against DDoS flooding attacks into the
aforementioned categories. Figure 2.3 shows the above mentioned taxonomy of the defense

mechanisms against DDoS flooding attacks.

2.3.1 Classification based on the deployment location

2.3.1.1 Defense mechanisms against network/transport-level DDoS In the fol-
lowing, we extensively discuss the defense mechanisms against network /transport-level DDoS
flooding attacks in each of the categories of the first classification criterion.

A. Source-based mechanisms: Source-based mechanisms are deployed near the
sources of the attack to prevent network customers from generating DDoS flooding attacks.
These mechanisms can take place either at the edge routers of the source’s local network
or at the access routers of an AS that connects to the sources’ edge routers [9]. Various
source-based mechanisms have been designed to defend against DDoS flooding attacks at
the source; some of the major ones are as follows: Ingress/Egress® filtering at the sources’
edge routers [48], D-WARD [51, 52], MUIti-Level Tree for Online Packet Statistics (MUL-
TOPS) [53] & Tabulated Online Packet Statistics (TOPS) [54], and MANAnet’s Reverse
Firewall [55].

Source-based defense mechanisms aim to detect and filter the attack traffic at the sources
of the attack; however, they are not entirely effective against DDoS flooding attacks. There
are three main reasons which make these mechanisms a poor choice against DDoS flooding
attacks. First, the sources of the attacks can be distributed in different domains making
it difficult for each of the sources to detect and filter attack flows accurately. Second, it
is difficult to differentiate between legitimate and attack traffic near the sources, since the
volume of the traffic may not be big enough as the traffic typically aggregates at points closer
to the destinations. Finally, the motivation for deployment of the source-based mechanisms
is low since it is unclear who (i.e., customers or service providers) would pay the expenses
associated with these services. Hence, pure source-based mechanisms are not efficient and

effective against DDoS flooding attacks.

6Tt is called either Ingress or Egress depending on where you stand in the network and apply the filters.

21

B. Destination-based mechanisms: These mechanisms are deployed at the destina-
tion of the attack (i.e., victim). In the destination-based defense mechanisms, detection and
response is mostly done at the destination. There exist various destination-based mecha-
nisms that can take place either at the edge routers or the access routers of the destinations’
AS. The destination-based DDoS defense mechanisms can closely observe the victim, model
its behavior and detect any anomalies. Some of the major destination-based DDoS defense
mechanisms are as follows: IP Traceback mechanisms [56-61], Management Information
Base (MIB) [63], Packet marking and filtering mechanisms [66,67,69], and Packet dropping

based on the level of congestion(e.g., Packetscore [70]).

Most of the destination-based mechanisms cannot accurately detect and respond to the
attack before it reaches the victims and wastes resources on the paths to the victims; hence,
they are not capable of detecting and responding to the DDoS attack traffic properly. There-
fore, network-based DDoS defense mechanisms have been proposed to address this problem
and to help both source and destination based mechanisms to carry out their duties more

accurately.

C. Network-based mechanisms: These mechanisms are deployed inside networks
and mainly on the routers of the ASs [71]. Detecting attack traffic and creating a proper
response to stop it at intermediate networks is an ideal goal of this category of defense
mechanisms. Some of the main network-based DDoS defense mechanisms are as follows:
Route-based packet filtering [73,148], and Detecting & filtering malicious routers [74] (e.g.,
Watchers [75]).

Network-based mechanisms usually lead to high storage and processing overhead at the
routers. These overheads get even worse if each router does redundant detection and re-
sponse through the path to the destination [79], which can present a significant burden.
Various researchers have proposed different approaches to reduce the amount of storage and
consumption of CPU cycles for detection and response at the routers such as Bloom fil-
ters [71] [80], Packet sampling [81], etc. But these approaches are not sufficient when routers
still do redundant jobs. Moreover, reducing the amount of redundant detection and response
between the routers requires coordination among them [79]. Different communication proto-

cols have been proposed to coordinate attack detection and response among the routers [9].

22

However, network-based defense mechanisms that have been proposed thus far are not ef-
fective and efficient due to their large overhead of network communication. For instance,
the lack of bandwidth during DDoS attacks may limit the protocol for communication and

cause network-based mechanisms to fail.

D. Hybrid (Distributed) mechanisms: In most of the previously discussed cate-
gories of DDoS flooding defense mechanisms (source-based, destination-based, and network-
based), there is no strong cooperation among the deployment points. Furthermore, detection
and response is mostly done centrally either by each of the deployment points (e.g., source-
based mechanisms) or by some responsible points in the group of deployment points (e.g.,
network-based mechanisms). Hence, we call these categories of DDoS defense mechanisms
centralized. As opposed to centralized defense mechanisms, hybrid defense mechanisms are
deployed at (or their components are distributed over) multiple locations such as source,
destination or intermediate networks and there is usually cooperation among the deploy-
ment points. For instance, detection can be done at the victim side and the response can
be initiated and distributed to other nodes by the victim. Some of the hybrid DDoS de-
fense mechanisms are as follows: Hybrid packet marking and throttling/filtering mechanisms
(e.g., Aggregate-based Congestion Control (ACC) [82], Pushback [82], Attack Diagnosis (AD)
and parallel-AD [84], and TRACK [85]), DEFCOM [86], COSSACK [87], Capability-based
mechanisms [88-95], Active Internet Traffic Filtering (AITF) as a filter-based (datagram)
mechanism [96,97], and Stoplt [94].

In [95,98], TVA as a capability-based mechanism is compared to Stoplt as a filter-based
mechanism under similar assumptions and practical constraints. They compare six different
DDoS flooding mitigation systems, including TVA and Stoplt. They use simulations on
realistic topologies and cover different attack strategies in their research. The outcome
of their research is summarized in Figure 2.4 [95,98]. In Figure 2.4, attacks’ power is a
generalized term which is defined in [98] based on: number of attackers (i.e., number of
bots), and size of attack (i.e., packet size); As the number of attackers and their packet
sizes increase the attack power increases. Effectiveness is also measured [98] based on the
legitimate hosts’ TCP transfer performance (i.e., percentage of completed TCP transfers).

As the number of completed transfers increases the mechanisms that have been employed

23

are more effective. As Yang et al. showed in this figure, when the attackers’ power is low,
both filters and capabilities work well, although filters work slightly better. As the attackers’
power increases, filters become ineffective when they cannot be properly installed, and then
capabilities become ineffective when attackers can get capabilities from colluders. When the
attackers’ power is extremely high, both filters and capabilities become ineffective, and there

should be some fail-safe mechanisms (e.g., fair queuing) in place to resolve the problem.

Filters become ineffective

< when they cannot be installed
T Capabilities become ineffective
when attackers can get capabilities

)
A -\ - - - _ - =
()
C ------------------------------
)]
=
15| Both work but Filters perform Both become ineffective and some
qﬂqj) better than Capabilities fail-safe mechanisms are needed
]

% — — Filters

3 Capabilities H

Low Attacks’ Power High

Figure 2.4: Capability-based (capabilities) vs. datagram-based (Filters) mechanisms [95].

Discusston: Since attackers cooperate to perform successful attacks, defenders must
also form alliances and collaborate with each other to defeat the DDoS attacks. The DDoS
defense community is currently more involved in proposing novel hybrid DDoS defense mech-
anisms and most of the recently proposed mechanisms belong to the hybrid category. No
single deployment point (centralized) can successfully defend against DDoS because of the
fundamental challenges we enumerated for each of the deployment points. A hybrid (Dis-
tributed) defense deployment is the best way to combat DDoS Attacks. We have enumerated
various hybrid defense mechanisms in this section; they are comprised of multiple defense
nodes deployed at various locations that cooperate with each other towards attack prevention,
detection, and response. Detecting DDoS attack as soon as possible and before it reaches the
victims, identifying the attack sources, and finally stopping the attack as close as possible
to the attack sources is the ultimate goal of DDoS defense mechanisms; we strongly believe

that this can be best achieved through hybrid (Distributed) DDoS defense mechanisms.

24

Table 2.1: Summary of features, advantages, and disadvantages of defense mechanisms

against network /transport-level DDoS flooding attacks based on their deployment location

Features

Disadvantages

Advantages

Sources are distributed among different
domains; hence, it is difficult for each
of the sources to detect and filter

attack flows accurately

There is a cooperation among various

defense components

Trusted communication among various
distributed components in order to

cooperate/collaborate

3 Difficult to differentiate legitimate |)
2) Aims to detect and respond (i.e., filter)
S | Detection and response are deployed at | and DDoS attack traffic at the sources,
8 to the attack traffic at the source and
£ | the source hosts since the volume of the traffic is not .
g before it wastes lots of resources
w0 big enough
Low motivation for deployment;
since, it is unclear who would pay the
e
‘g expenses associated with these services
@
i
=
3|3
o :§ They cannot accurately detect and re- | Easier and cheaper than other mecha-
1
g Detection and response are deployed at | spond to the attack before it reaches | nisms in detecting DDoS attacks due to
'S
§ the destination hosts (i.e., victims) the victims and wastes resources on the | access to the aggregate traffic near the
S
"5 paths to the victim destination hosts
Q
High storage and processing overhead
~ at the routers
v) Aims to detect and respond to (i.e., fil-
g | Detection and response are deployed
e)))))) ter) the attack traffic at the intermedi-
¥ |at the intermediate networks (i.e., | Attack detection is difficult be-
e ate networks and as close to source as
E routers) cause of lack of availability of sufficient
2 i] i possible
aggregated traffic destined for the
victims
Complexity and overhead due to co-
Detection and response are deployed | operation and communication among
| at various locations: detection usually | distributed components scattered all
3
§ occurs at destinations & intermediate | over the Internet Less vulnerable and hence robust
S
= | 'S | networks, and response usually occurs against DDoS attacks
Q -~
@ . . .
g 5 at the sources & upstream routers near | Lack of incentives for the service
b= N—
-E 3 the sources providers to cooperate/collaborate More resources are available to
L8
R S tackle DDoS attacks
T

25

Combining source address authentication (to prevent IP spoofing), capabilities, and fil-
tering would be the most effective and efficient solution due to the robustness of capabilities
and the relative simplicity of a capability-based design. However, there will be a trade-off
between performance and accuracy in any DDoS defense solution and the goal is to min-
imize the gap between performance and accuracy. Table 4.1 summarizes the features of
the four categories of defense mechanisms against network/transport-level DDoS flooding
attacks that we classified in this section and enumerates the advantages and disadvantages

of each category.

2.3.1.2 Defense mechanisms against application-level DDoS In the following, we
extensively discuss the defense mechanisms against application-level DDoS flooding attacks
in each of the categories of the first classification criterion.

A. Destination-based (server-side) mechanisms: Most of the application layer
protocols are organized in terms of client-server model. A server is a process that implements
a specific service (e.g., DNS server, Web server). A client is a process that requests a service
from a server. As we mentioned earlier, destination-based defense mechanisms are deployed
at the destination of the attack (i.e., victim), which is the server of the application layer
protocols’ client-server model or the reverse proxy’ when we consider a web cluster hosting
different web applications. Most of these mechanisms closely observe the server and model
its clients’ behavior so that they can detect any anomalies and drop/rate limit the malicious
requests. Some of these major mechanisms against application-level DDoS flooding attacks
are as follows: Defense against Reflection/Amplification attacks (e.g., DAAD [99], VFDS
[100]), DDoS-Shield [10,101], Anomaly detector based on hidden semi-Markov model [102],
and DAT [103].

B. Hybrid (Distributed) mechanisms: Hybrid defense mechanisms are those mech-
anisms that there is a collaboration/cooperation between both clients and servers in the
application layer protocols’ client-server model to detect and respond to the attacks. For

instance, detection is done at the victim (web server/reverse proxy) and the response is

"The reverse proxy is a type of proxy server that retrieves resources on behalf of a client from one or
more servers

26

initiated and distributed to the client-sides by the victim. Some of the hybrid mechanisms
against application-level DDoS flooding attacks are as follows: Speak-up [104], DOW (De-
fense and Offense Wall) [105], Differentiate DDoS flooding bots from human (e.g. [106],
CAPTCHA [107], and [108]), Admission control and congestion control [109], TMH (Trust
Management Helmet) [110], and Hybrid detection based on trust and information theory
based metrics [111].

Discussion: Detecting and responding (rate limit/blocking) the application-level DDoS
flooding attacks at the servers/reverse proxies is not effective enough since attack traffic could
already affect the victims. As we pointed out in section A. 1.5, hybrid defense mechanisms are
the best way to combat DDoS flooding attacks since all of the defense nodes collaborate with
each other to defeat coordinated DDoS flooding attacks. We have enumerated some of the
recent state of the art hybrid defense mechanisms against application-level DDoS flooding
attacks in this section and since recent attack incidents proved that current mechanisms
have not been fully successful, advanced defense mechanisms with novel features are yet to
be deployed. Here, we briefly discuss some of those required features:

(i) Defense mechanisms must be capable of detecting the attacks independent of the
attack’s exact nature of operation since predicting and detecting all possible attacks by the
attackers is hard.

(77) Enhanced detection mechanisms should be in place to better distinguish between
the legitimate and malicious requests. Using metrics such as the request rate, the packet
headers, or the contents of the request may not be sufficient enough.

(i4i) Response mechanisms should be more adaptive in a sense that legitimate users can
claim their fair share of resources. In other words, more request throttling mechanism which
assign more server resources to the legitimate clients should be in place than the request

blocking mechanisms.

27

2.3.2 Classification by the point in time (i.e., between the start and end of a

DDoS attack) that defense takes place

2.3.2.1 Before the attack (attack prevention) The best point in time to stop a
DDoS attack is at its launching stage. In other words, attack prevention is the best DDoS
defense solution. The prevention mechanisms can be deployed at the attack sources, inter-
mediate networks, destinations or combination of them. Most of the prevention mechanisms
aim to fix security vulnerabilities (e.g., insecure protocols, weak authentication schemes,
and vulnerable computer systems) that can be exploited to launch DDoS attacks. Several
prevention mechanisms have been proposed in the literature [112]. There are some general
prevention mechanisms that should be employed almost everywhere (e.g., servers, hosts, and
intermediate networks) and in as many places as possible by both end hosts and service
providers. Some of these general prevention mechanisms are as follows:

A. System & Protocol security mechanisms to increase the overall security of the systems:
For instance, by preventing illegitimate accesses to the machines, removing bugs, updating
installed protocols, installing software patches, removing unused software, etc [3].

B. Fail-safe protections: Anticipation in case something goes wrong (e.g., replication
of services and applications in diverse locations in case DDoS attack occurs successfully,
business continuity and disaster management plans, etc.).

C. Resource allocation & accounting [3]: Providing resources to counter DDoS attacks
and control users’ access based on their privileges and behaviors [113-115].

D. Reconfiguration mechanisms: These mechanisms alter the topology of either the vic-
tim network to add more resources to tolerate the DDoS attack (e.g., resource replication
services [116]) or the intermediate network to isolate the attack sources (e.g., attack isolation
strategies) [3].

E. Installing firewalls and improved Intrusion Detection € Prevention Systems (IDPSs):
All of the end hosts are encouraged to install IDPSs to prevent them from being compromised

by the adversaries.

28

F. Employing local filters (e.g., Ingress/Egress [48], History-based IP filtering [66], hop-
count filtering [67], Pi [69], route-based packet filtering [73,148], etc.) and globally coordinated
filters (e.g., ACC [82], Pushback [82], [83], AD and parallel-AD [84], TRACK [85], etc.) to
block attack flows before their bombardment is another important category of the prevention
mechanisms against DDoS attacks.

G. Load balancing [112] and Flow control are two other mechanisms to prevent DDoS
attacks. The former improves both the performance and mitigation against DDoS attack,
and the latter prevents servers from going down.

H. Server-side specific security considerations: One of the main problems regarding
application-level flooding attacks is that there is a lack of security mechanisms or secu-
rity policies in place to address the servers vulnerabilities against application-level DDoS
flooding attacks. Such security mechanisms or policies can protect servers from various at-
tacks. For instance, Shekyan [36] suggested the following policies as the best protections for

the servers on handling the write readiness for active sockets:

e Do not accept connections with abnormally small advertised window sizes.

e Do not enable persistent connections and HTTP pipe-lining unless performance really
benefits from it

e Limit the absolute connection lifetime to some reasonable value

8 on name servers from external sources and

As another example, disabling open recursion
only accepting recursive DNS originating from trusted sources has been proposed as an
effective prevention mechanism to diminish amplification vector of DNS amplification attacks
[117]. Similar security mechanisms or security policies for different servers such as: Web
servers, application servers, database servers, etc. should be defined and should be in place
by considering current vulnerabilities of the servers against various application-level DDoS
flooding attacks.

I. Finally, service providers can have strategies in place to better identify their legitimate

users. For instance, they can put dynamic pricing to network resource usages and charge

their customers differently for the use of different resources [27]. Another effective service

8Name servers on the Internet that have recursion enabled and provide recursive DNS responses to anyone
(a.k.a. open resolvers).

29

provider strategy was recently employed by Cisco in their IPS 7.0 code upgrade [47] . TIPS
7.0 upgrade has global correlation feature that can be configured on every service provider
IPS sensors so that they are aware of the network devices with a reputation for malicious
activity, and can take action against them. This feature is useful when service providers’
network is under attack from a botnet DDoS attack since sensors can drop all the traffic
coming from bad reputation sources. Furthermore, this whole process is very inexpensive
since it occurs before the signatures are used.

Prevention mechanisms aim to provide systems with increased security. However, these
mechanisms can never completely remove the threat of DDoS attacks since they are always

vulnerable to novel attacks for which signatures and patches are not available.

2.3.2.2 During the attack (attack detection) The next step in defending against
DDoS attacks is attack detection, which happens during the attack. The detection mecha-
nisms can be also deployed at sources, intermediate networks, destinations or combinations
of them.

There are various mechanisms to detect DDoS attacks. Some of the detection mechanisms
detect attack flows when the network links are congested to a certain level [70] [118]. Other
mechanisms detect DDoS flooding attack traffic (not vulnerability attacks’) when anoma-
lous patterns are discovered in both the network/transport-level traffic or application-level
traffic (e.g., MIB information analysis [63], D-WARD [51,52], MULTOPS [53], TOPS [54],
[121-123], DDoS-Shield [10,101], DAT [103]. There are many IDPSs that are based on these
detection mechanisms. They employ data mining and artificial intelligence mechanisms for
more accurate detection. These mechanisms monitor some features/headers of the traffic
flows at various locations and points in time. Basically, they learn the normal behavior of
either the network/transport-level or application-level traffic. Then, based on the informa-
tion they monitored and collected they could detect any changes on the traffic patterns and
usage patterns of the resources. Based on the analysis in [119], anomaly detection algo-
rithms to detect a DDoS flooding attacks could be classified depending on either monitored

parameters [120] or statistical technique used (e.g., change point detection [121], wavelet

9Vulnerability attacks are mostly detected by employing databases of known signatures.

30

analysis [122]) or granularity level of the analysis [123].

As we discussed earlier, the most practical place to detect DDoS flooding attack is at the
victims’ side since abnormal deviations cannot be easily found until the attack turns to its
final stage. Even after the attack is detected, it is difficult for the victims to launch an efficient
response mechanism due to numerous malicious packets that have been aggregated at the
victims’ side. Therefore, defending DDoS flooding attacks should be initiated at earlier points
in time and as near as possible to the sources of the attacks. Detecting (defending) at either
intermediate networks or sources of the attacks have two main advantages: (1) the detection
is more concealed since it is deployed in a separate location from attack target and (2) the
detection mechanism is less vulnerable to DDoS attacks. However, accurate detection is not
easy or it is even impossible to achieve since there is not enough evidence to detect attacks
at these stages (e.g., source and upstream routers). Two fundamental challenges to detect
DDosS flooding attacks in time and as near as possible to the attack sources are: (1) the lack
of a wide deployment of DDoS defense mechanisms at different points of the Internet, and (2)
the lack of collaboration and cooperation among distributed deployed defense mechanisms
in order to increase the detection accuracy, decrease unnecessary redundant tasks (due to
lack of coordination), and, finally, to increase the performance efficiency of DDoS defense
mechanisms. In case of application-level DDoS flooding attacks, all of the current detection
mechanisms are deployed at the destination (servers) since it is not possible to perform
detection at the layer 2/layer 3 intermediate networks. However, it will be possible to stop
application-level DDoS flooding attacks at the intermediate networks if some layer 2/layer
3 extractable features of these attacks are found through studying these attacks and their

in-depth architecture.

2.3.2.3 After the attack (attack source identification and response After a DDoS
attack is detected, the defense system should identify the source of the attack and block the
attack traffic. Today, most of the DDoS response mechanisms cannot completely prevent or
stop DDoS attacks. Therefore, minimizing the attack impact and maximizing the availability
of services is the main focus of all after the attack mechanisms. Moreover, law enforcement

agencies must collaborate and cooperate with each other in order to gather and submit

31

evidences that could be used to prosecute attackers. It is necessary for all the Internet
providers to understand that even if a particular provider could be able to secure its own
assets, it does not secure itself against DDoS attacks as other compromised hosts of other
providers could still be used to launch attacks on it. Therefore, without collaborating with
others to make sure their assets are also secured, defending against DDoS attack is almost
ineffective.

There are two main categories for most of the after the attack mechanisms:

A. Attack source identification: The first category of after the attack mechanisms is
responsible to identify the source of the attack. For instance, an attacker uses host X
to launch an attack by representing the spoofed source address of host Y, IP traceback
mechanism must find out the real source address of the attacker which is host X. This can
be accomplished if there is a way of traversing all the routers from X to the victim in the
reverse order or marking the legitimate paths or packets so that spoofed or illegitimate ones
are identifiable. Towards this, traceback mechanisms [56-61] have been proposed in the
literature.

B. Initiating a proper response: The second category of after the attack mechanisms is
responsible to initiate a proper response to the attack. Most of the DDoS defense mechanisms
apply throttling (rate limit) or packet filtering on upstream routers and hosts for the traffic
coming from those identified attack flows (e.g., spoofed IP addresses) after identifying the
source of the attack. For instance, history-based IP filtering [66], hop-count filtering [67],
Pi [69], AD [84], TRACK [85], and Stoplt [94,98] employ packet filtering upon detecting
DDoS attacks and ACC [82], Pushback [82], [83], PAD [84], AITF [96], and DEFCOM [86]
employ throttling upon detecting DDoS attacks. Other mechanisms specially in the case of
application-level DDoS flooding attacks employ some encouragement models in which servers
are asking the legitimate clients to increase their session rates to crowd out the malicious

clients (e.g., Speak-up [104], and DOW [105]).

32

2.4 Summary

In this chapter, we presented a comprehensive classification of various DDoS flooding attacks
and defense mechanisms along with the advantages and disadvantages of these defense mech-
anisms based on where and when they detect and respond to DDoS flooding attacks. An
ideal comprehensive DDoS defense mechanism must have specific features to combat DDoS
flooding attacks both in real-time and as close as possible to the attack sources. These

features are as follows:

1. More nodes in the Internet should be involved in preventing, detecting, and responding to
DDoS flooding attacks (i.e., Hybrid (Distributed) defense). As we discussed earlier, the
detection accuracy is high at the victim end but it is not robust; victims cannot tolerate
the high volume of DDoS traffic. Stopping the attacks at the source could be the best
response option but it is very difficult as the volume of the traffic at the sources is not
significant to differentiate between legitimate and malicious traffic. Furthermore, the
collateral damage is high at intermediate networks because there is not enough memory
and CPU cycles to profile the traffic. Therefore, central mechanisms in which all the
defense components (i.e., prevention, detection, and response) are deployed at the same

place, are not practical against DDoS flooding attacks.

2. There should be collaboration and cooperation among the key defensive points within and
between service providers in the Internet. The main challenge towards achieving this goal
is the need for some economic incentives among different service providers in order to

achieve highly cooperative defense mechanisms.

3. More reliable mechanisms are required to authenticate the source of the Internet traffic
so that malicious users could be identified and held accountable for their activities (i.e.,

Anti-spoofing mechanisms).

4. Trusted communication mechanisms for cooperation and collaboration among various
distributed components are needed. For instance, in the pushback mechanism, rate limit

requests to the upstream routers could be sent by a malicious point in the network.

33

We strongly believe that combining source address authentication, capability mecha-
nisms, and filtering mechanisms could be the most effective and efficient way to address the
DDoS flooding attacks in a distributed cooperative/collaborative DDoS defense mechanism.
More development and deployment of distributed defense mechanisms from researchers and
Internet service providers respectively is what we expect to see in the near future (short to

medium term). In a longer term we expect to see:

e The cooperation and collaboration among Internet service providers to monitor the traf-
fic, detect, and stop the DDoS flooding attacks close to their sources, especially with
the rapid growth of collaborative environments such as Cloud Computing [124] and the
Internet of Things (IoT) [125-127].

e Cross layer traffic analysis and defense (i.e., looking at the information at multiple pro-

tocol layers simultaneously to detect and respond to the attacks)

34

3.0 Traffic Monitoring Mechanisms: Current Practice & Challenges

In order to better understand the contributions of this thesis, in this chapter, we first re-
view and compare two different methods of traffic monitoring in Section 3.1. Then, in
Section 3.2, we review some possible mechanisms currently available to network operators
to enforce future traffic monitoring policy requirements for different network management
applications and discuss their challenges and recent trends of proposed solutions to address
those challenges. Next, in Section 3.3, we review one of the recently proposed traffic mon-
itoring mechanisms that is closely related to our proposed traffic monitoring mechanism in
terms of policy enforcement approach. Finally, in Section 3.4, we summarize the required
features of the traffic monitoring mechnaisms suitable for the next generation of distributed
DDoS flooding defence mechanisms. Hereby, we motivate and briefly introduce our proposed

traffic monitoring mechanism.

3.1 Packet sampling vs. Flow sampling (a.k.a. Flow monitoring)

Today, most of the router vendors use packet sampling with different sampling rates (e.g., De-
terministic sampling, random sampling, time-based sampling [129] [128]). This way, routers
select a subset of packets and aggregate the sampled packets into flow reports at the end of
each monitoring window. The packet sampling mechanisms have their inherent limitations.
For instance, there are known biases toward sampling larger flows (e.g., [130-132]) and sev-
eral studies have questioned its faithfulness for many management applications [130-132].
Moreover, some new flows will not be covered when the memory sizes (caches) of the moni-

toring devices are full. Also, generated flow reports at the end of the monitoring time window

35

do not necessarily correspond to the order in which the flow traffic arrived at the monitoring
devices [133].

More recently, there have been tremendous efforts towards addressing the limitations
of the packet sampling approaches (i.e., their biases toward sampling larger flows and less
coverage for small flows) by proposing yet another trend of traffic monitoring approaches
namely flow sampling [134-136]. In flow sampling approaches, flows are picked randomly
instead of packets. In other words, for each packet, router checks if it is responsible for
tracking this packet’s flowkey, defined over one or more fields of the 5-tuples of the IP
header. If yes, the router updates the appropriate counter (statistics) for that flow. If not,
the flowkey for this packet is selected with probability p, and the router keeps an exact count
for this selected flowkey subsequently. This needs per-packet counter updates and because
of that the counters are kept in SRAM. The router responsibilities on what flows to monitor
is done randomly or deterministically through a flow selection process. The probability p for

each flowkey in router X can be calculated as follows [136]:

_ NumF lows x
~ NumPKTs x

p (3.1)

in which, NumFlows x is the number of flows that are possible to monitor on router X
considering the router’s memory constraint. NumPKT's x is the total number of anticipated
packets on router X for a specific time interval.

Figure 3.1 depicts how flow sampling and packet sampling methods monitor the traffic for
nine flows with different flow rates (in pkts/sec) in a fixed monitoring time-window (resulted
in total of 30 packets). In case of random packet sampling, the packet sampling rate is
equal to 1 in 5 packets, and in case of random flow sampling, the flow sampling rate of all
the flows is equal to 1 in 5 flows. Figure 3.1 shows how flow sampling methods eliminate
the biases toward sampling larger flows that all the packet sampling methods suffer from.
Moreover, Figure 3.1 shows that with flow sampling it is possible to increase the coverage of
total number of flows that their packets are getting sampled which is an important feature
for some of the traffic monitoring applications such as: monitoring the patterns of traffic
anomalies or DDoS flooding attack flow coverages [137]. However, monitoring devices are

constrained by their resources (e.g., memory and CPU) and in large traffic volume cases

36

some of the traffic flows may not be monitored by the monitoring mechanisms and only a
selection of flows will be monitored during each monitoring time window. This selection of
flows is most of the time done in a completely random fashion. One of the main challenges
of some of the traffic monitoring mechanisms is if it is possible to decide and assure the
monitoring of specific flows. In other words, the prioritization of the monitoring coverage

for specific flows is very critical /desirable.

Packet

S,

Flow 1, 7 pkts Flow 4, 2 pkts < Flow Report
]| pkts [P Il Flow 7, 3 pkts 00 low Repor
. Flow 2, 7 pkts . Flow5,2pkts || Flow 8, 2 pkts < | bRAM B
[] Flow3,3 pkts [B] Flow 6, 2 pkts B Flow 9, 2 pkts >128MB, N\a\‘\l

y l v | Y

BN O e e E. @ Flow

Selection

Random Packet Sampling
Sampling rate: 1 in 5 packets

Missed flows: 6 out of 9, D.-. D- (~55%) Flow sampling

A3 —

P\ddy¢
b by g &
ER M ENENENEEN ENEEEEO S aEeEEE.

N

Random Flow Sampling
Flow sampling rate: 1 in 5 flows

Missed flows: 3 outof 9,][]l (~33%)

Updating flow table for the consequent packets of the same flow | 1‘ I Adding the static fields <&=>

Packet sampling based on the packet sampling rate ¢
OR Flow sampling based on the responsible flowkeys

Figure 3.1: Flow sampling vs. Packet sampling

3.1.1 Discussion: Prioritized flow monitoring

Recently, researchers have attempted to prioritize the flow coverage for some of the traffic
monitoring applications [136,138]. For instance, cSamp [136] assigns monitoring responsibil-

ities in such a way that the assignment ensures the minimum coverage for all the flows as a

37

high-level monitoring objective/policy. We argue that for the distributed detection compo-
nents of any future distributed DDoS defense mechanism to distributively detect attack flows
at the intermediate network level, it is important to ensure that all the flows destined for
a given destination (i.e., possible DDoS flooding attacks) are monitored all together in one
place so that the distributed detection mechanism in place can analyse these flows. Hence,
guaranteeing the monitoring coverage for those flows (as a priority) should be part of a high-
level traffic monitoring objective/policy for the traffic monitoring mechanisms employed by

the next generation of DDoS flooding defense mechanisms.

3.2 Traffic monitoring as a network management task

Nowadays, addressing the challenging network management tasks such as: traffic monitoring,
secure communication, and performance optimization and their high-level policy goals is very
crucial for data-centers, enterprise networks, and even individual ISPs. For instance, net-
work operators may want either very good monitoring coverage to capture end-to-end traffic
patterns’ anomaly, or effective configurations to provide the best end-to-end performance for
their customers.

As computer networks get more and more complex and dynamic, and as traffic patterns
evolve, network management tasks such as traffic monitoring become increasingly challeng-
ing. Because, such changes in computer networks and traffic patterns may require new
functionalities and high-level policies that network operators are responsible for and strug-
gle with enforcing them. Enforcing network operators’ high-level traffic monitoring poli-
cies/objectives (e.g., maximizing total flow coverage, minimum coverage for specific flows,

load balancing, etc.) is possible through:

38

1. Device-centric approaches: Each monitoring device (e.g., routers) is configured to sam-
ple flows/packets (employing packet/flow monitoring mechanisms [128]) individually and
independently of other monitoring devices to achieve the network operators’ requested
monitoring policies/objectives. There are different device-centric approaches for the net-
work operators to configure monitoring devices in order to enforce their high-level poli-
cies/objectives that we will enumerate next. However, since in all of the device-centric
approaches there is no coordination among the monitoring devices as what their monitor-
ing responsibilities are (e.g., what flows to monitor), some of the monitoring devices may
perform the same monitoring task (e.g., the flows/packets are monitored redundantly)
which causes a huge overhead and leads to a tremendous decrease in the monitoring
coverage. Moreover, there is a tremendous effort required by the network operators to

configure each of the monitoring devices to enforce their monitoring policies/objectives.

2. Network-wide approaches: Recent trends in network management have inspired network-
wide monitoring [136,139-142] as opposed to device-centric monitoring in which, all the
monitoring devices are managed and coordinated to achieve various high-level network-
wide traffic monitoring policies/objectives. Moreover, other recent network management
proposals have shown that the centrally managed network-wide traffic monitoring mech-
anisms could reduce both the operational costs and the management complexity of such
network management tasks [136,143-145]. Network-wide approaches address the afore-
mentioned shortcomings of the device-centric approaches (e.g., redundant monitoring
tasks, and per-device configuration to achieve high-level network-wide objectives). For
instance, coordination among the monitoring devices is achieved by means of commu-
nication among the monitoring devices [146] (i.e., monitoring devices send an image of
what they are monitoring to each other); however, this would lead to large communi-
cation overhead. As another example, Bloom filters have been employed to reduce the
redundant measurements or there is a trend of related work focused on the placement
of monitoring devices at appropriate locations to cover the paths while using minimum

monitoring devices [147-149].

Next, we briefly review various device-centric and network-wide approaches in the literature.

39

3.2.1 Device-centric approaches

Device-centric approaches can be categorized into four categories (The functionality and cost

of deployment increases from the first category to the last):

3.2.1.1 Existing router primitives: In this category, network operators use techniques
that work with existing router primitives (i.e., built-in support) provided by different router
vendors (e.g., Cisco, Juniper) to monitor the traffic. Moreover, ISPs and enterprise net-
works also develop various configuration and analysis tools to help in achieving the required
functionalities out of the existing router primitives. For instance, there are different pro-
posed techniques to infer interesting traffic activity patterns from existing measurement
feeds [140,150]. Techniques in this category are the easiest and cheapest to develop, and
they are the most commonly used since no additional support is required from the net-
work elements. However, the quality and quantity of the monitored data is bounded by the

available router primitives.

3.2.1.2 Additional middleboxes: When there are new capabilities required by various
new monitoring applications that are not provided by the existing network elements, net-
work operators can deploy middleboxes that are mostly developed by third party vendors.
However, these temporary solutions themselves can soon become inapplicable due to possible
new traffic monitoring applications with new additional capabilities. Moreover, since these
middleboxes are proprietary solutions, they can easily become black-boxes to the network

operators [136].

3.2.1.3 Enhancing current router primitives: Another alternative is for the moni-
toring device vendors to upgrade and enhance their device-centric primitives to reflect the
required functionalities of the network operators. For instance, there have been several pro-
posals to enhance the monitoring mechanisms of the routers (e.g., [151-153]). However, this
requires network operators and router vendors to commit to a fixed set of required features

which is risky since these features can soon become inapplicable.

40

3.2.2 Network-wide approaches

There have been various proposals for network-wide approaches as opposed to device centric
approaches for traffic monitoring in the literature [147-149]. More recently, the emergence
of SDN [154] as one of the major efforts towards creating the future Internet provides net-
work operators and developers with newer capabilities and opportunities to create novel
networking applications and to explore newer opportunities that were not possible before.
SDN architecture decouples the software that controls the network devices (i.e., brain) from
the hardware that forwards the packets (i.e., muscle). The key enablers for this are open
and clearly focused interfaces that allow developers to program how their applications con-
trol and interact with devices and the network data plane. Network providers who leverage
these enablers can achieve greater network intelligence, resulting in networks that can adapt
better to network infrastructural changes and different networking contexts, have better
capabilities to provide higher service levels, are easier to manage, and that allow for the
deployment of newer flexible and highly scalable network architectures [155]. Hence, nowa-
days, programmable network devices or SDN enabled monitoring devices could be the basis
for most of the network-wide approaches to address the aforementioned challenges of the

device-centric approaches (e.g., [156-158]).

For instance, Kekely et al. in their recent publication in Infocom 201/ [159], propose
Software Defined Monitoring (SDM), a novel hardware accelerated monitoring mechanism
for flexible flow-based application level monitoring as one of the above-mentioned high-
level policies that is required for the next generation of DDoS flooding defense mechanisms.
Their proposed approach relies on high-level monitoring policies implemented in the software
in conjunction with a configurable hardware accelerator. In other words, the hardware
accelerator is an application-specific processor tailored for stateful flow processing with the
capability to keep the states in the software layer if needed. The traffic monitoring tasks
or objectives/policies rest in the software layer and they can easily control how much detail
should be kept in the hardware layer for each flow. Hence, the measurement of non-important
traffic is offloaded to the hardware layer, while the high-level traffic monitoring tasks over the

important traffic is done in the software layer. Authors believe that their proposed approach

41

allows for creating flexible monitoring systems capable of deep packet inspection at high
throughput. Moreover, their pilot implementation in FPGA is shown capable of performing
100Gb/s flow traffic measurement augmented by a selected application-level protocol parsing.

Sekar et al. propose cSamp as a network-wide traffic monitoring enforcement policy
and by casting the network-wide traffic monitoring enforcement problem as a network-wide
resource management problem. Next, we review cSamp and perform a case study to bet-
ter understand: how its flow sampling structure outperforms traditional packet sampling
mechanisms, and how its network-wide approach eliminates the majority of the problems
with the device-centric approaches. We study cSamp traffic monitoring mechanism that is
closely related to our proposed traffic monitoring mechanism. Both cSamp and our proposed
mechanism deploy similar policy enforcement (network-wide) approach to enforce different
monitoring objectives/policies. If there can be different traffic monitoring policies to achieve
different objectives, cSamp and our proposed mechanism are two of those traffic monitoring

policies.

3.3 cSamp: A centrally managed system-wide flow monitoring mechanism

Here, we briefly review cSamp, one of the recently proposed traffic monitoring mechanisms
that deploys a centrally managed network-wide traffic monitoring policy/objective enforce-
ment approach.

Sekar et al. propose cSamp [136] that treats a network of routers within an AS as
a system of routers that are managed and coordinated centrally in order to accomplish a
high-level traffic monitoring objective /policy of maximizing the total flow-coverage across all
the Origin-Destination (OD)-pairs ! (3_T; x C;) subject to ensuring the optimal minimum
fractional coverage per OD-pair (mmz{lCl}) Figure 3.2 shows an assignment for an OD; with
20 flows with maximum of 80% flow coverage (total of 16 out of 20 flows) that is calculated

through the optimization formulation of cSamp. As shown, not all the flows of OD pair OD;

'Number of flows that are expected to enter an AS through an ingress router and leave an AS through
an egress router and these flows are specified by their ingress and egress routers

42

can be covered considering the router constraints in this specific scenario.

Motivated by the recent proposals on centrally managed network-wide monitoring sys-
tems, cSamp’s centralized system and its use of hash-based sampling lead to coordination
among all the routers within the AS in terms of their monitoring responsibilities and with-
out exploiting any specific communication protocol. Hence, cSamp significantly reduces the
communication overhead which is otherwise required to coordinate all the routers in terms
of their monitoring responsibilities within each AS. Moreover, cSamp considers router con-
straints in each monitoring time window to maximize the minimum flow coverage for all the

flows.

Problem maxtotgivenfrac(a):

MaximizeZ(Ti x (), subjectto
i

=== Origin-Destination (OD); Vi, z (dij x T:) < L (1)
iR EP;
Tap Hac Vi, C; = Z (iij (2)
TrafficMatrix(TM) =| T 3RER
i () . Vi, Vi, diy >0 3)
i, C <1 @)
i, G > a)
302 9
Routing information =——> RI-> RZ-> R3 l,A 354 25% OD; =20
AS2’ Center .~ 9.7
AS2 - g 4w/
Ingress/Egress > __’

Router Ingress/Egress

Router

Ingress/Egress
Router

Figure 3.2: cSamp: a working example

As also shown in Figure 3.2, the optimization engine of cSamp uses the traffic matrix and
the routing information as inputs in each monitoring time window to compute the optimized
distribution of monitoring responsibilities among all the routers within the AS. The output

of the optimization engine is then translated into sampling manifests or a list of hash ranges

43

for each OD pair and then manifests are sent to all of the routers within the AS. Hence,
at the beginning of each monitoring time window, routers already know how many flows of

which OD pair to monitor.

3.3.1 Case Study: cSamp’s vs. other packet/flow sampling mechanisms

In this section, we perform a case study to better understand the benefits of cSamp (as a
network-wide flow sampling) over traditional packet/flow sampling mechanisms. In doing
so, we implement a prototype of cSamp and reproduce the results of the experiments that
cSamp performed in [136] for 5 Real-world topologies to also validate the correctness of our
cSamp’s prototype implementation. Table 3.1 shows the parameters of these five topologies
that we employ for our experiments. These parameters are the estimated mazimum number
of routers (R), flows (F), and unique destination IP addresses (D) for 5 Real-world topologies.
In other words, these parameters represent the worst case scenario in terms of the size of the

monitoring problem.

Table 3.1: The parameters of the experiment (Estimated maximum number of routers (R),

flows (F), and unique destination IP addresses (D) for 5 Real-world topologies)

Number of
AS number Name (POPs) Number of Number of Destination
Routers Flows
IPs
1221 Telstra 61 305 44.36 x 106 44.36 x 106
(Australia)
1239 Sprintlink 43 215 31.27 x 106 31.27 x 106
(US)
3356 Level3 (US) 52 260 37.81 x 108 37.81 x 106
3257 Tiscali 50 250 36.36 x 106 36.36 x 106
(Europe)
4755 Internet2 11 55 8 x 106 8 x 106

The estimated number of destination IP addresses is equal to maximum number of flows

with different destination IP addresses in each monitoring time window. Hence, as done

44

in [136] for cSamp, we also use a baseline traffic volume of 8 million IP flows for Internet2 with
11 PoPs (there is roughly 5 routers per PoP [136])(per five-minute monitoring time window)
to scale the total number of flows by the number of routers in each of the topologies. For
instance, Telstra with roughly 305 (61*5) routers has roughly % x 8 = 44.36 million flows.
Moreover, we built cSamp’s OD-pairs by considering all possible pairs of PoPs and employ
the shortest-path routing to compute the PoP-level path per OD-pair. We employ the static
intermediate system-intermediate system (IS-IS) weights and link weights for shortest-path
routing for these topologies.

We compare cSamp with uniform packet sampling with the sampling rate of 1-in-100
packets, uniform packet sampling with the sampling rate of 1-in-50 packets, constant-rate
flow sampling with the sampling rate of 1-in-100 flows, and constant-rate flow sampling with
the sampling rate of 1-in-50 flows. cSamp’s LP works with the Origin-Destination (OD)
concept. Each OD can be defined as the number of flows that enter an AS from the same
gateway router (Origin) and exit the AS from the same gateway (Destination). So, origin
and destination in each OD do not imply the origin and destination of the flows within that
OD and only imply the entrance and exit gateways within an AS. In order to provide the
cSamp’s LP with the OD information for its monitoring assignment decision, we added a
function on the edge routers to pre-process each incoming packet and implant its OD-flow
identification to its header so that later on. We, step by step, followed cSamp’s on how to
implant OD-flow identification to the packets. The results of our experiments were almost
the same as what is reported in [136].

In our simulation, for all the flow sampling and packet sampling mechanisms, for each
topology, we use the same: traffic matrix, routing information, number of flows, and flow
size distribution 2. For each topology, we compute the total flow coverage obtained with
different packet sampling or flow sampling mechanisms. Figure 3.3a shows the results. The
total flow coverage of cSamp is much higher than other flow /packet sampling mechanisms for
all of the topologies. cSamp’s flow coverage is larger than other flow sampling mechanisms
since it’s architecture allows for fractional flow coverage of the flows on the same path

on separate routers which is not the case for other flow sampling mechanisms. Moreover,

2We, assume that the flow size measured in number of packets is Pareto-distributed.

45

other packet sampling and flow sampling mechanisms suffer from the wasted amount of
redundant flows/packets that are monitored (i.e., redundant flow reports) which is shown in
Figure 3.3b. cSamp’s central coordination structure eliminates the redundant flow/packet

monitoring overhead.

60 -

O Flow Sampling (1-in-100) O Flow Sampling (1-in-50) M@ Packet Sampling (1-in-100)
£3 Packet Sampling (1-in-50) cSamp

50 ~

N
o

w
o

N
o

\

N\
.
.
.
.
§

Total Flow Coverage (%)

=
o

Internet2 Level3 Sprintlink Telstra Tiscali
(a) Total Flow Coverage

20

O Flow Sampling (1-in-100)
18 - O Flow Sampling (1-in-50)
@ Packet Sampling (1-in-100)

16 r B Packet Sampling (1-in-50)

14 +

12 -

10 -

Redundant/Duplicate Flow Report
(%)
o]

Internet2 Level3 Sprintlink Telstra Tiscali

(b) Redundant/Duplicate Flow Reports

Figure 3.3: Comparing cSamp with other packet sampling and flow sampling mechanisms

46

3.3.2 Discussion:

As we mentioned earlier, traffic monitoring mechanisms can be tailored to achieve various
high-level or low-level objectives/policies. However, one of the ideal objectives to achieve
in most of the traffic monitoring mechanisms should be to cover as many attack flows as
possible in order to provide a clearer picture of network status for different traffic analysis
applications. We believe it is fair to compare traffic monitoring mechanisms with each other
in terms of their success in providing the best flow coverage when it comes to DDoS flooding
attack flow coverage. cSamp’s goal is to cover as many flows as possible while guaranteeing
the maximum minimum flow coverage for all the flows within each monitoring time window.
Another important benefit of cSamp is to eliminate redundant flow monitoring by means of
its network-wide coordination within each AS. However, cSamp is not specifically designed
for DDoS flooding flow coverage. Therefore, it has some deficiencies when it comes to
monitoring DDoS flooding attacks at the intermediate network that motivated us towards
our proposed traffic monitoring mechanism. We enumerate these deficiencies here and they
will also be highlighted when we discuss the experimental results later.

First, cSamp assumes that its monitored flows/packets are reported to a centralized
server within an AS after each monitoring time window for analysis (i.e., centralized analy-
sis). Therefore, it has a major limitation in terms of its role in enabling the faster reaction
to the attack flows such as DDoS flooding attack flows. Moreover, collecting all the mon-
itored flows/packets centrally increases the communication overhead drastically. Second,
cSamp only guarantees the minimum optimal coverage for all the flows within each Origin-
Destination (OD) pair while satisfying the routers’ resource constraint. However, in case of
DDoS flooding attacks, we believe that, the traffic monitoring mechanism could be tailored
in such a way that it could prioritize the monitoring of possible DDoS flooding attack flows

over other flows (i.e., Maximize DDoS flooding attack flow coverage as an objective).

47

3.4 Summary

In this chapter, we focused on traffic monitoring, which is one of the key network management
tasks. We studied two existing types of traffic monitoring methods namely packet sampling
and flow sampling that are employed in different traffic monitoring mechanisms. We pointed
out the limitations of existing packet sampling methods as opposed to flow sampling methods
for network security and anomaly detection applications by means of several measurements
and by employing one of the recently proposed well-performed flow sampling traffic moni-
toring mechanisms (cSamp) in a case study. Moreover, our literature review showed that
network-wide policy enforcement mechanisms, in which several network management tasks
could be cast as network-wide resource management problems, is a better alternative than
device-centric policy enforcement mechanisms to be employed by the network operators.

In addition, we emphasized that it is really important for the next generation DDoS
defense mechanisms to ensure that the majority of the attack flows are monitored in each
and every AS and its the key motivation for the work in this dissertation. In doing so,
guaranteeing the flow coverage for the majority of such flows while satisfying the monitoring
devices’ resource constraints (i.e., memory constraints in this thesis) is a valid and vital
traffic monitoring objective/policy to be enforced by monitoring mechanisms that will be
employed by the next generation of DDoS defense mechanisms.

Finally, we argue that a centrally managed network-wide traffic monitoring mechanism
that coordinates monitoring responsibilities among various monitoring devices and eliminates
the redundant flow monitoring overhead, while satisfying the resource constraints of the
monitoring devices and prioritizing the coverage of the DDoS flooding attack flows, can
enable early detection of DDoS flooding attacks through distributed DDoS flooding detection
mechanisms that could be deployed in each of the monitoring devices; hence, this reduces
the communication overhead caused by employing the centralized DDoS flooding detection
mechanisms. Next, we introduce our proposed traffic monitoring mechanism that attempts

to satisfy the aforementioned goals.

48

4.0 DiCoTraM: A Distributed and Coordinated DDoS flooding attack

tailored flow Traffic Monitoring

4.1 Introduction

In order to address the key requirements for the next generation of DDoS flooding defense
mechanisms that we summarized in Chapter 3, in this Chapter, we propose DiCoTraM,
a DDoS flooding attack tailored, coordinated, and network-wide traffic monitoring mecha-
nism within each AS. DiCoTraM has a centralized traffic monitoring assignment component
(Task Assignment Server(TAS)) that assigns monitoring responsibilities within each AS in
such a way that those flows intended for the same destination are analyzed together in
one place. DiCoTraM enables distributed DDoS flooding detection mechanisms in detecting
DDoS flooding attacks at upstream ASs further from the victims’ AS.

The rest of this chapter is organized as follows. In Section 4.2, we present DiCoTraM
in detail. Section 4.3 compares the performance of the proposed MIP formulation with the
proposed scalable heuristic. In Section 4.4, a modified version of the scalable heuristic that
is capable of dynamic flow monitoring assignment by pre-processing the input to the assign-
ment process before running the assignment is presented and its performance is evaluated
through a set of experiments. Section 4.5 compares DiCoTraM with other packet sampling
and flow monitoring mechanisms in terms of total flow coverage and DDoS flooding at-
tack flow coverage for various real-world topologies. In Section 4.6, we present an extended
version of DiCoTraM which provides network administrators with the required information
to determine the list of candidate monitoring devices to upgrade for achieving better flow
coverage as part of their short-term/long-term network planning by tracking the additional

memory requirements of the monitoring devices to fully covering the traffic lows. We also

49

performed some experiments to demonstrate the effectiveness of the proposed modification.

Finally, in Section 4.7, we summarize and conclude this chapter.

4.2 DiCoTraM: an overview

Updated Routing AS4’s Server
Information

AS2’s Server
AS2

AS1’s Server Ingress/Egress

............

AS3’s Server

Distribution of
responsibility list

\
Responsibility List d v ¥
‘ Updated Flow Reports ‘

— => Reporting traffic changes
from all the border routers ¢

Figure 4.1: DiCoTraM: An architectural overview

As depicted in Figure 2.1, a DDoS flooding attack resembles a funnel in which attack flows
are generated in a dispersed area (i.e., sources), forming the top of the funnel. The victim, at
the narrow end of the funnel, receives all the attack flows generated. Thus, it is not difficult
to see that detecting a DDoS flooding attack is relatively easier at the destination (victim),
since all the flows and the correlation among them can be observed at the destination.

Therefore, in order to increase the chances for distributed (hybrid) DDoS flooding defense
mechanisms to detect such attacks further upstream, DiCoTraM mimics the role of the victim
for the flows heading to the same destination at the upstream ASs. In doing so, DiCoTraM

assigns the flow monitoring responsibilities to each of the routers within an AS in such a way

20

that all the flows intended for the same destination are monitored at the same router. As
we mentioned earlier, DiCoTraM enables routers with distributed DDoS flooding detection
capabilities to detect DDoS flooding attacks at their early stages at the intermediate network
level.

Figure 4.1 illustrates the overall architecture of DiCoTraM. Each AS has a number of
ingress/egress routers as well as several access routers. We designate a server as a task
assignment server (TAS) within each AS. The TAS is responsible for assigning monitoring
responsibilities to all the routers within its AS at the beginning of each monitoring time
window . TAS uses the current traffic matrix and routing information as inputs of its
assignment algorithm for the next monitoring time window. The outcome of DiCoTraM’s
assignment decision for the next monitoring time window is a responsibility list for each
router, which TAS distributes to the routers. A router’s responsibility list is the list of
flows that are assigned to that router for the next monitoring time window to monitor. Each
router maintains a flow table 2 on the combination of SRAM and DRAM as we explain in
Subsection 4.2.1.

As we mentioned earlier, DiCoTraM would be suitable to be employed as part of a hybrid
DDoS defense mechanism (e.g., DCD architecture [160]). Hence, TASs could also be respon-
sible for pulling or receiving alerts that are generated by the distributed DDoS flooding
detection mechanism employed by the routers within an AS (as CAT servers in [160]). How-
ever, different challenges would be necessary to address if TASs were to communicate their
reported alerts or their efficient response policies (for various situations) with each other,
as part of a hybrid DDoS defense mechanism. For instance, TASs communication requires
to be synchronized. In the current version, we assume there is no communication between
the TASs and TAS’s main responsibility is within the scope of an individual AS. Moreover,

we assume that TAS is implemented on a single machine/router; however, an alternative

approach would be to run TAS on multiple machines for load balancing and fault tolerance.

'We set monitoring time window to 5 minutes in our current implementation. However, the monitoring
time window can be reduced based on the size of the network.
2A set of all the flows that it is currently monitoring.

o1

In DiCoTraM, each router maintains specific statistics for its flows in SRAM as we
explain in Subsection 4.2.1. In doing so, for any monitored flow, the router either (a) creates
a new entry if there is no flow entry already in the flow table or (b) updates the counters
of the corresponding entry in the flow table (if the aggregation of the flow’s destination IP
with the existing destination IP prefix in the flow table is possible®). Moreover, aggregating
the flows that are intended to the same destination IP as one aggregated flow with the
same destination IP prefix and maintaining the statistics for that aggregated flow in SRAM,
reduces the number of entries in SRAM. The destination IP field for the aggregated flow is
an IP prefix of all the aggregated flows. All the ingress/egress routers within each AS are
responsible for reporting traffic dynamics to the TAS so that it can update the responsibility
lists promptly for subsequent monitoring time windows. Routing information will also be
updated through flow-based monitors such as OSPF monitors [161].

We previously proposed a Linear Programming (LP) formulation to assign monitoring
responsibilities to the monitoring devices in such a way that such monitoring mechanism
could enable distributed DDoS flooding detection mechanisms in detecting DDoS flooding
attacks through the routers within an AS assuming that the memory size of the routers
was infinite [79]. Also, we had the load balancing of monitoring responsibilities as an ob-
jective/policy to be enforced in our previous work. Here, we reformulate and improve our
previous monitoring mechanism by incorporating the memory limitations of the routers and
by proposing an advanced high-level DDoS flooding attack tailored objective/policy. Our
current objective is to maximize the total flow monitoring coverage for all the flows while
prioritizing the coverage of possible DDoS flooding flows.

We assume that each router has ~128MB of DRAM as the minimum default DRAM
capacity of most of the current routers. As discussed in [162], we also assume that only 8MB
out of total of 12MB SRAM size is available for retaining flow states on each router and
each router’s memory size (i.e., SRAM) is limited to 8MB (i.e., m,). Since DRAM capacity
is not currently as scarce as SRAM on the routers and the required DRAM capacity for our
proposed mechanism is much lower than DRAM’s default capacity (=128MB), we only look

at SRAM capacity as a constraint in our proposed monitoring mechanism; however, consid-

3In this case, the destination IP prefix is updated with the newly aggregated destination IP prefix.

52

ering DRAM capacity as a constraint in our proposed work (if required in future) is easily
implementable. We discuss routers’ memory constraints in detail in Section Subsection 4.2.1.

We propose a Mixed Integer Programming (MIP) formulation that improves our previ-
ously proposed LP formulation in terms of performance. The new MIP formulation aims
at finding a feasible solution. A feasible solution for our assignment algorithm determines
the monitoring responsibilities of all the routers for the next monitoring time window by
maximizing the flow monitoring coverage of all the flows while prioritizing the coverage of
possible DDoS flooding flows at the same router and when the memory size of the routers is
limited.

Next, we first discuss the routers’ memory constraints within the ASs in Subsection 4.2.1.
Then, we describe the assumptions we make in Section 4.2.2. We present the notation
adopted in Subsection 4.2.3. Our set-up process to provide data required as input to the
assignment MIPs for determining the monitoring responsibilities is presented in section 4.2.4.
Finally, our network-wide assignment of the monitoring responsibilities is presented in sec-

tions 4.2.5.

4.2.1 Discussion: Router memory constraints

The accuracy and scalability of traffic measurement techniques employed for various purposes
(e.g., QoS provisioning, accounting, etc.) are usually bounded by the memory sizes of the
monitoring devices (e.g., a router’s memory).With migration of networks from 1Gbps to
10Gbps and most recently to 40Gbps in all the networked environments (e.g., ISPs, Internet
core, and data centers), significant increase in traffic flows is expected. Monitoring these flows
effectively and in a scalable manner on slow (around 50 ns), large (up to 1GB), and cheap
DRAM memory modules or fast (around 5 ns), relatively small (up to 12MB out of which
8MB is available to use [162]), and expensive SRAM memory modules of the measurement
devices has been challenging [163].

Cisco’s NetFlow [129] used to keep 64-byte per flow state in DRAM which had required
updating DRAM for each packet per flow and was not found to be scalable (i.e., high loss

rates) as the number of traffic flows increased. Hence, packet sampling approaches that

93

increment per flow counters only for sampled packets has been implemented as an enhance-
ment to NetFlow, but these sampling approaches have led to inaccurate estimations. Estan
et. al, in [163], propose two scalable algorithms that use SRAM to store per flow entries
to address both the inaccuracy of sampled NetFlow and the slow DRAM accessibility of
NetFlow. As suggested in [164], the amount of SRAM needed to hold on to the flow states
can be further reduced by using a combination of SRAM and DRAM on each router [165].
Similarly, there are other proposals that try to offload most of the static flow fields to DRAM
and hold dynamic fields relevant to counting per flow states in SRAM [136].

In our experiments, we also only maintain important fields of each flow that are relevant
to counting per flow states in SRAM. We keep two lists of incoming and outgoing flows in
SRAM. In the incoming flows list, we only keep a 4-byte packet counter, a 4-byte packet
size, a 4-byte destination IP (or aggregated destination IP prefix), and a 1-byte incoming
router port for each flow. Since most of the DDoS flooding detection mechanisms require the
packet counts and packet sizes of the outgoing packets of suspicious flows in the outgoing
flows list, we keep a 4-byte packet counter, a 4-byte packet size, a 4-byte destination IP (or
aggregated destination IP prefix), and a 1-byte outgoing router port for each flow. Since
we are aggregating the flows that are headed to the same destination IP as one aggregated
flow with an IP prefix of all the aggregated flows, we can save more on SRAM space and
our adopted detection algorithms also perform well with the aggregated flow states. In our
monitoring mechanism, we only need ReqMem;,* bytes of SRAM for flow f on router r.

RegMemy, is defined as follows:
ReqMemyg, = [(npin) £ + (MDout) £.r] - 13 bytes (4.1)

Where, (npin) £ and (npout) .- are number of incoming and outgoing ports of the routers that
each flow enters or leaves through on its path. The total number of ports on each router is
variable (e.g., typically 4, 8, or 16 ports). When flows are aggregated, (npi,) s and (npout) f.r

are the maximum number of incoming and outgoing ports for the aggregated flows based on

4If we assume that each PoP in the network is expected to hold up to 500,000 flow records and If there
is roughly 5 routers per PoP [136], 10 interfaces per router, and 13 bytes per flow record, this requires
500,000 * 13
SRR g 130 KB SRAM per linecard, which is well within the 8 MB technology limit suggested

5% 10
by [162].

o4

the paths of all the aggregated flows. In our experiments, for each flow or aggregated flows,
the number of incoming and outgoing ports are known for the simulated topology. The rest
of the flow fields such as: a 4-byte source IP, a 4-byte aggregated destination IP prefix (if
any), and a 4-byte actual (i.e., not aggregated) destination IP are maintained in DRAM. A
4-byte aggregated destination IP prefix that we add to all the aggregated flows on DRAM

enables the retrieval of various source IP addresses of the aggregated flows later.

4.2.2 Assumptions

For DiCoTraM, we assume the following:

e Each flow has a fixed route and there is no bifurcation of traffic flows.

e ASs are only multi-homed to multiple ASs (not multi-homed to a single AS) .

4.2.3 Notation

In this section, we introduce the notation adopted in order to formulate each of the MIPs
in our proposed mechanism. Figure 4.2 shows a sample topology of an AS with six routers,
five flows, three source IP addresses, and six destination IP addresses to depict the notation.
Here, we introduce the notation:

Sets and parameters:

e F = Set of all the flows within a given AS.
e R = Set of all the routers within a given AS.

e D = Set of all the destination [P-addresses of the flows within a given AS.

e f € F is represented as a tuple (sy, df, pr, ReqgMemy),
where,
sy = Source IP address.
dy = Destination IP address.
ps = Set of routers within a given AS that are in the path of flow f, p; CR.
ReqMemy, = [(npin) £ + (MDout) £.r] - 13 bytes Vr C py

SMulti-homed ASs are ASs that maintain connections either to a single or multiple ASs in order to keep
their Internet connectivity in case of a complete connection failure of one of their AS connections [166]

95

S SourcelP_Y 5f3= SourcelP_Y
dﬁ: DestIP_7 df3= DestIP_1
pe= {r2, r3, r4, r6} Pp= {r2, r3, r4, r5}

sp;= SourcelP_X
S T A dgy= DestlP_3
sf4= SourcelP_Z r2 Ps={rl, r3, r4, r5}
} }

d/4= DestIP_3 Sp= SourcelP_X
dg,= DestlP_1
pp=1{rl, 3, r4, r5}

Pps= {r3, r4, r5
Ly = SourcelP_X
d = DestIP_3
pf5 {r1, r6}

AS 1 Sf = SourcelP_M
- dge=DestlP_3
Pf& {r1, r6}
_ syg= SourcelP_U
m,;=8 MB 1 dg= DestlP_6
— Prs= {r1, r6}
FD =0
DestiP_6 R={r1,r2,r3 r4,r5,r6}
FDpestip 1= (f3, f21} F=1{f1, 2,13, f4, f5, f6, 7, 8}
| @} e D = {DestIP_1, DestIP_2, ..., DestlP_6}
S, S S DestlP_7

FDpestip 3= {{f1, f4}, {f5, f6}, {f1, fé}, {f1, 5}, {f1, f5, f6} }

P

s, S, S3
R(S;)={r3,r4,r5} R(S,)={r1,r6} R(S,)={r1, r6}

Figure 4.2: Topology of an AS illustrating the used notation.

e FD, = {S51,5,..} C 27 such that V.S; € FDy, the following holds:
- |SZ| Z 27 and
— For each f € 5;, dy = d, and

~Let R(S) = () py: then|R(S)| > 1
feS;

— ReqgMemg, , = feg?’%ﬁpf(npm) frt+ semax f(npout) £ - 13 bytes
i.e., each S; is a subset of the power set of flows in F with at least two flows that have
the same destination and share at least one router on their paths to that destination.
FDy is a set of all such subsets (i.e., S;). Moreover, R(S;) is a subset of the routers in R
that flows in S; € FD, share on their path to destination d. For instance, in Figure 4.2,
FDpestip, = {51,52,53, 54,55}, where S1 = {f1, fa}, So = {fs, fe}, etc. Moreover,
R(S1) = {r3,r4,r5}, R(S2) = {rl,r6}, and etc. As another example, FDpesrp, = 0

since there is only one flow to Destl F;.

e m, > 0 is the current capacity /memory space of router r. In Figure 4.2, m,3 = 8 MB.

o6

Variables:

1, if all the flows in S; € FDy are assigned to a router r € R(S;);
® TS, rd=
0, otherwise.
1, ifflow f € F is assigned to router r € py;
® Yrr =

0, otherwise.

Parameters:

1, ifflow f € Fisin S; € FD,
d af vSi =
0, otherwise.

4.2.4 The Set-up Process

There are various inputs that should be initialized for our MIP formulations in the TASs.
These inputs include the following: set of all the routers (R), set of all the flows (F), and
the set of all the destination IP addresses (D). These inputs are directly available through
the flow reports and the routing information. Each flow has a source IP, destination IP, and

a dedicated path. Furthermore, other inputs are: FDy, and R(S;) for each S; € FD,.

In order to better understand the scale of the MIP assignment problem, Table 4.1, an
extended version of Table 3.1, shows the estimated number of flows (F) and destination
IP addresses (D) based on the number of Points of Presence (POPs) for the ten real-world
topologies (ISPs) measured in a study in 2002 by Rocketfuel [167]. We have estimated the

number of routers for each topology (R) (assuming 5 routers per POP [136]).

The estimated number of destination IP addresses is equal to maximum number of flows
with different destination IP addresses in each monitoring time window. Hence, as done
in [136] for cSamp approach, we also use a baseline traffic volume of 8 million IP flows for
Internet2 with 11 POPs (per five-minute monitoring time window) to scale the total number
of flows by the number of routers in each of the topologies. For instance, Telstra with
roughly 305 routers has roughly % X 8 = 44.36 million flows; hence, the estimated number

of different destination IP addresses for Telstra is 44.36 million IP addresses.

o7

Table 4.1: The estimated maximum number of routers (R), flows (F), and unique destination

IP addresses (D) for 10 Real-world topologies

Number of
AS number Name (POPs) Routers Number of Number of
(R) (F) (D)
1221 Telstra 61 305 44.36 x 108 44.36 x 106
(Australia)

1239 Sp’zg‘g)mk 43 215 31.27 x 106 31.27 x 106
1755 (gfr‘(’;;) 25 125 18.18 x 108 18.18 x 106
7018 AT&T (US) 108 540 78.54 x 108 78.54 x 108
3356 Level3 (US) 52 260 37.81 x 108 37.81 x 106
2914 Verio (US) 121 605 88 x 106 88 x 106
3257 (gfri%l;) 50 250 36.36 x 106 36.36 x 106
3967 Exodus (US) 23 115 16.72 x 108 16.72 x 106
4755 Internet2 11 55 8 x 108 8 x 108
6461 Abovenet (US) 21 105 15.27 x 106 15.27 x 109

4.2.5 Proposed MIP formulation

Our general goal here is to maximize the flow monitoring coverage within each AS and
for each monitoring time window while satisfying the memory constraints of the routers
and prioritizing the flow coverage of possible DDoS flooding attack flows. In doing so, the
proposed MIP first assigns as many flows, that are intended for the same destination (i.e.,
Probable DDoS flooding attack flows), as possible to be monitored at one of the routers on
the path of those flows to their destination. Then, for the rest of the flows, the MIP assigns

as many flows as possible to the routers on flows’ paths to their destinations.

o8

Given the earlier notation and definitions, maximizing the flow monitoring coverage

problem can be formulated as follows:

max Z Z Z "TS;rd T Zzyf (4.2)

x K y b 74
Siomd 2 I 4o D S, FDy reR(S;) reR feF

subject to,

Z Z ReqMemsg, , - g, ».a + Z ReqMemyg, - ypr —my, <0 Vr € R (4.3)
deD S;eFDy feF

Y ws.a>1 VvieD (4.4)

S;€FDy reR(S;)

> s ,a<1 Vd e D, VS, € FD; (4.5)
T’ER(SZ')

D Y < VieF (46)
reR

Z Z ars, - g rd=1 VdeD,VfeF (4.7)

S;€FDy reR(S;)

1—nyT>Z Z Z Qs * TS, rd VieF (4.8)

rerR deD S;€FDg reR(S;)
Ts; rd € {O, 1} VS, € FDg,Vr € R(SZ),\V/d eD (49)
yrr €{0,1} VreR,VfEF (4.10)

The objective function in (4.2) is to find the maximum number of flows that will be
monitored during the next monitoring time window. The set of constraints in (4.3) ensures
that both (i) the flows intended to a given destination are assigned to one of their common

routers on their paths, and (ii) the rest of the flows are assigned to the rest of the routers

29

considering the current capacity of the routers °. The set of constraints in (4.4) ensures that
at least one S; is selected among all the S;s that are in FD, for all the destinations. The set
of constraints (4.5) and (4.6) ensures that S;s that are in FDy for all the destinations and
the rest of the independent flows are assigned to at most one router, respectively. The set of
constraints in (4.7) forbids the selection of two distinct S;s that constitutes common flows
for all the destinations. The set of constraints in (4.8) implies that one flow is going to be
an independent flow unless it is covered as part of one of the selected S;s, for all the flows.
Finally, the set of constraints in (4.9) and (4.10) define zg, , 4 and yy,, as binary variables.

Without loss of generality, we assume that for each destination (d) there exists a collection
of flows (S;) and a common router (r) on the paths of flows in S; such that the memory
capacity of router r is enough to fulfil the memory requirements of all the flows in S;.

We could reduce the known NP-complete problem of PARTITION [168] to the above
MIP formulation in (4.2)-(4.10). Hence, the proposed MIP is a NP-hard problem.

4.2.6 Proposed heuristic

Computer networks are changing rapidly and our proposed DiCoTraM mechanism should
accommodate the dynamic nature of the network. However, computing and distributing the
responsibility lists by employing our proposed MIP formulation requires few minutes and
sometimes more on large topologies (as we show later in Table 4.2 and Table 4.3); hence, our
MIP formulation do not scale well. In order to provide an alternative solution that reduces
the computation time (scales better), in this section, we propose a heuristic to produce the
responsibility lists. In our experiments, as we explain later in section 4.3, we compare our
proposed MIP formulation with our proposed heuristic, for various scenarios with different
topology sizes, in a limited time window. We show that the proposed heuristic is not that
far off from the optimum solutions for most of the scenarios in which the MIP could find the

optimum solution on-time.

6Qur objective function (4.2) makes sure that the flow coverage is maximized

60

In order to explain our proposed heuristic, we use the notation in section 4.2.3 and also

define set B as follows:

B=|JFDy (4.11)

deD

i.e., B is the set of all S; € FD, for all d € D.

Algorithm 1 The proposed heuristic algorithm

Inputs: B ,m,,F

Output: Assigned, Covered, also sending out the routers’ responsibility lists
1: Sort B by the size of its elements (;) in a descending order

2: Assigned =0

3: Covered =0

4: for all z; € B and z; N Covered = () do

5 Assignedr = 1

6 for all r € R(z;) and Assignedg =1 do

7: if m, > ReqMemy, » then
]:
9

Assign flows in z; to router r
Update router r’s capacity = using formulation 4.1

10: Remove all f € z; from F
11: Assigned = Assigned + |z;|
12: Covered = Covered U x;
13: Assignedr = 0

14: for all f € F do
15: if ‘pf| =1 and mrep; > ReqgMemy , then

16: Assign flow f to router r

17: Update router r’s capacity =~ = using formulation 4.1
18: Remove f from F

19: Assigned + +

20: Covered = Covered U f

21: for all f € F do
22: Assignedr = 1
23: for all r € py and Assignedg =1 do

24: if m, > ReqgMemy,, then

25: Assign flow f to router r

26: Update router r’s capacity =~ = using formulation 4.1
27: Assigned + +

28: Covered = Covered U f

29: Assignedr =0

In our scalable heuristic, first, we create set B. Next, we sort B in a descending order
based on the size of its elements (i.e., z;) for various destinations (i.e., the largest |.S;| will
be on top of the sorted list).

For each element z; € B and for each of the routers on R(x;), we calculate ReqMem,, ,
through the formulation we presented in section 4.2.1. Then, we assign all the flows that
belong to x; to one of the routers that belongs to R(x;). Next, for the rest of the flows,
we also calculate ReqgMem(f,r) for each of the routers on their p;. Then, we first assign

flows that only have one router on their p; to ensure their coverage. Finally, we assign the

61

rest of the flows (as many as possible) to one of the routers on their p;. Algorithm 1 is the

pseudo-code of the proposed heuristic algorithm that runs on each TAS.

4.3 Scalability analysis: MIP vs. the proposed heuristic

As we explained earlier, the proposed MIP formulation is a NP-hard problem. Achieving an
efficient and scalable solution for a NP-hard problem using available solvers is challenging
and it really depends on the size of the problem, time limitations, and its parameters. In
our experiments, we have used Gurobi optimizer [169] to implement the MIP formulation.
The MIP formulation is implemented in C++ code using the Gurobi callable library. MIP
problems are generally solved using a branch-and-bound algorithm. Gurobi optimizer also
implements an improved branch-and-bound algorithm to solve the MIP problems. Since
the monitoring time window is fixed to 5 minutes in our DiCoTraM implementation, it is
ideal to have the responsibility lists available to all the routers within the monitoring time
window (< 5 minutes). Hence, we assume the time limitation for both our proposed MIP
formulation and our proposed heuristic is bounded to 4-minute (240 seconds). As it is shown
in Table 4.2 and Table 4.3, in our experiments, there were scenarios that the proposed MIP
formulation could find optimal solution within the time limit (i.e., where it solved in < 240
seconds) or in other words it was scalable and there were many scenarios that it could not
find the optimal solution within the time limit (i.e. where it took > 240 seconds) or in other

words, it was not scalable.

In order to show that our proposed alternative heuristic performs reasonably well in
terms of the problem computation time and solution closeness to the optimal in comparison
with the MIP formulation in both the scenarios where MIP provides the optimal solution
and for the scenarios where MIP can not find the optimal solution, we run Gurobi to solve
the MIP formulation with 4 minutes as the time limit and run the heuristic with the same

4 minutes time limit for the experimental set-up we explain next.

62

4.3.1 Experimental set-up:

We choose three real-world topologies namely Internet2, Ebone (Europe), and AT&T (US)
from [167]. For each topology, we randomly generate different problem sizes with: fixed
number of flows (F), fixed number of routers (R), fixed number of destination IP (D), and
fixed memory size for the routers (m,). Then, for each problem size with the fixed number of
flows, we generate 5 problem instances by randomly generating tuples (sz,ds, py) for each of
the flows in each problem instance. Then, we implement straight forward algorithms in C++
to generate the rest of the required inputs that are introduced in section 4.2.4 for each run of
our MIP formulation. We restate here that all of the experiments are bounded to 4-minute
time limit as the monitoring time window is assumed to be 5 minutes and responsibility
lists should be made available to all the routers within the monitoring time window (< 5
minutes).

Moreover, we generated flow’s tuples in such a way that for the half of all the destination
IP addresses of the flows on each monitoring time window, there is at least two flows going
to each of those destination IP addresses for which there is at least one router in common
on their paths. NS-2 [170], a widely used network simulator, has been chosen to generate

these topologies with the desired traffic inputs on them.

4.3.2 Experimental results:

Table 4.2 and Table 4.3 show the performance comparison between our heuristic and the
Gurobi 5.5 solver’s result in solving our MIP for 3 real-world topologies with various problem

sizes and problem instances for each topology on a desktop PC system with Intel Core 2

Duo E6700 2.66 GHz CPU.

Table 4.2: Performance evaluation: Proposed heuristic vs. Gurobi 5.5

Scalable Deviation . . .
Topology r D Ins. Heuristic from Closeness Gurobi Optimality
No. Optimal (%) (sec.) Gap (%)
(sec.) (%)
1 1.14 34 - 15.37 0.00
2 1.85 2.2 - 20.32 0.00
1 x 108 0.6 x 106 3 1.7 0 - 24.4 0.00
4 1.65 0.3 - 20.57 0.00
5 8.37 2.2 - 24.28 0.00
1 1.27 0 - 31.22 0.00
2 1.36 2.7 - 33.43 0.00
2 x 108 1.2 x 108 3 1.60 3.4 - 32.17 0.00
4 1.15 0.2 - 31.23 0.00
Internet2 (R = 5 1.37 1.5 - 34.31 0.00
1 12.03 2 - 51.96 0.00
2 2.13 0 - 56.11 0.00
3 x 106 2.1 x 109 3 2.65 0 - 87.16 0.00
4 2.43 1.6 - 91.14 0.00
5 22.30 2.0 - 94.1 0.00
1 323 2.3 - 154.27 0.00
2 3.13 1.6 - 150.35 0.00
5 x 109 3.4 x 108 3 3.85 0.5 - 157.21 0.00
4 13.53 0.8 - 152.16 0.00
5 4.11 - 0.7 > 240 21.47
1 3.12 1.5 - 63.71 0.00
2 23.33 2.6 - 69.0 0.00
3 x 106 1.9 x 108 3 3.50 1.8 - 72.36 0.00
4 3.21 0 - 63.66 0.00
5 3.37 0.8 - 79.25 0.00
1 14.51 2.7 - 126.25 0.00
2 4.24 2.1 - 121.51 0.00
6 x 106 4.8 x 106 3 4.58 3.4 - 136.21 0.00
4 24.14 3.8 - 130.61 0.00
Ebone (Europe)
(R = 125) 5 4.49 2.1 - 114.31 0.00
1 5.43 1.2 - 169.9 0.00
2 15.91 1.5 - 195 0.00
9 x 106 7.8 x 106 3 11.05 - 2.9 > 240 30.69
4 37.60 2.6 - 187.77 0.00
5 25.95 - 1.6 > 240 28.72
1 6.87 41 - 197.85 0.00
2 7.03 - 5.8 > 240 35.80
11 x 106 | 8.5 x 108 3 10.60 - 4.2 > 240 37.24
4 9.43 - 3.3 > 240 36.10
5 17.30 - 0.9 > 240 37.43

Table 4.3: Performance evaluation: Proposed heuristic vs. Gurobi 5.5 (continued...)

Scalable Deviation .))
Topology F D Ins. Heuristic from Closeness Gurobi Optimality
No. Optimal (%) (sec.) Gap (%)
(sec.)
(%)

1 36.96 3.8 - 201.13 0.00

2 17.14 - 1.7 > 240 40.95

11 x 106 | 9.0 x 106 3 7.60 - 2.8 > 240 24.24
4 31.34 - 1.2 > 240 42.56

5 27.67 - 3.6 > 240 35.87

1 49.14 - 2.2 > 240 48.32

2 19.23 - 3.7 > 240 27.10

18 x 106 | 12.1 x 106 3 28.89 - 1.9 > 240 38.24
4 39.35 - 4.2 > 240 49.51

AE%&:T 5%? 5 45.21 - 3.2 > 240 39.16
1 107.23 1.6 N 232.96 0.00

2 141.68 - 1.0 > 240 32.30

25 x 106 | 17.6 x 108 3 62.05 - 3.1 > 240 43.24
4 52.41 - 2.5 > 240 23.98

5 53.30 - 1.4 > 240 45.59

1 116.43 N 2.2 > 240 39.00

2 117.24 - 4.2 > 240 50.24

37 x 106 | 21.9 x 108 3 107.80 - 2.1 > 240 41.07
4 97.03 - 2.5 > 240 49.30

5 118.88 - 4.2 > 240 33.21

Gurobi reports optimality gap (between 0-100%) for the problems that it can not provide
the optimal solution within the time limit. The closer is optimality gap to 0 the closer is the
solution to optimal solution. In order to compare the quality of the results of the proposed
scalable heuristic, we calculate Deviation from optimal * as the deviation of the heuristic
solution value from the optimal MIP value for the scalable scenarios of the MIP problem.

For the scenarios that Gurobi could not solve the MIP within the time limit, we calculate
Closeness as the deviation of the heuristic solution value from the MIP value that is available
at the end of the time limit (although it is not optimal). The results show that Gurobi cannot
solve the majority of our problem instances within the time limit. However, the proposed
scalable heuristic solves all of the problem instances in no more than 141 seconds and it is
faster than the proposed MIP in most of the scenarios. Moreover, the quality of the results

of our scalable heuristic shows that it is not far off from the MIP solution.

4.4 Modified heuristic with input pre-processing capability

Although the current version of our proposed heuristic outperforms our MIP formulation,
the time it takes for the heuristic to solve the problem instances is still high and need to
be reduced. Presently, TAS runs our heuristic every 5 minutes for the whole set of inputs
calculated from the flow reports and the routing information. However, some of the flows
may be long-term and they will be active for quite sometime without any significant changes
on their traffic volume and routing; hence, it sounds reasonable to keep the same routers to
monitor those flows. In other words, there is no need to change the monitoring assignment
of such flows in the next runs of the assignment algorithm as long as there is no signifi-
cant changes on the flows’ routing information or traffic volume and more importantly as
long as the coverage required for DDoS flooding attack flows is met. In this section, we
present a modified version of our previously presented heuristic that is capable of dynamic

flow monitoring assignment by pre-processing the input to the assignment process before

7 (Optimal solution) — (Heuristic solution)

(Optimal solution)

66

running the assignment. Basically, our goal is to run the assignment only for the set of new
or modified flows and skip the unnecessary flow monitoring re-assignment process for the
set of flows for which nothing has been changed from the last flow monitoring assignment
period. However, since the flow monitoring reassignment at the beginning of each monitoring
time-window (current heuristic) ensures the maximal distributed DDoS flooding flow cover-
age, our modified heuristic should still meet such requirement by sacrificing/tolerating some
degradation (¢ > 0) in DDoS flooding flow coverage, which we call the DDoS monitoring

coverage tolerance, as it is defined as follow:

DDoSCovy~* — DDoSCovy™ <e VdeD (4.12)
Assuming t,,ty,ts,- - ,t, be the discrete monitoring time windows, DDoSCouv™" is

the total number of covered flows heading to destination d to the total number of flows
that are heading to destination d in the previous monitoring time window (i.e., t,,_1) and
DDOSCOUZ"_Q is the total number of covered flows heading to destination d to the total
number of flows that are heading to destination d in the previous previous monitoring time
window (i.e., t,_2). In equation 4.12, we call € the uncovered DDoS flooding flow tolerance.
The uncovered DDoS flooding flow tolerance is: the tolerance to the number of DDoS flooding
flows that are not covered by the traffic monitoring mechanism or the tolerance to the
reduction on the DDoS flooding flow coverage of the traffic monitoring mechanisms. The
uncovered DDoS flooding flow tolerance (¢) can be defined experimentally either as a general
tolerance threshold defined with the same value for all the flows or it can be defined with
various values for each group of flows that are heading to each destination IP address (i.e.,
d € D) depending on the Service Level Agreements (SLAs) that different service providers
have with their customers.

In our modified heuristic, we pre-process the input to eliminate the reassignment of the
long-term flows that are still active without any changes on their tuples. In doing so, first, we
look at the long-term flows that are heading to the same destination and are still active for the
current monitoring time-window (InterSect). The comparison of the DDoS flooding attack
coverage for the past two monitoring time-windows for such flows based on the predefined

threshold (¢€), as explained in 4.12; determines if such flows should be reassigned or their

67

current assignment suffices. Next, we perform the same monitoring assignment for the rest
of the flows like our previously presented heuristic. We create set B and sort it in descending
order based on the size of its elements (i.e., x;) for various destinations (i.e., the largest |.S;|
will be on top of the sorted list). For each element z; € B and for each of the routers on
R(x;), we calculate ReqMem,,, through the formulation we presented in section 4.2.1.
Then, we assign all the flows that belong to x; to one of the routers that belongs to R(x;).
Next, for the rest of the flows, we calculate ReqgMem(f,r) for each of the routers on their
ps. Then, we first assign flows that only have one router on their p; to ensure their coverage.
Finally, we assign the rest of the flows (as many as possible) to one of the routers on their
py. Algorithm 2 is the pseudo-code of the modified heuristic algorithm that runs on each

TAS.
Algorithm 2 Modified Heuristic with Input Pre-processing Capability

Inputs: m,, F, Fin-1 FDy, .Fﬁ"il,DDoSC'ovzl"fz, 30: if F # 0 then
DDOSCO’U;"_l ,e>0 31: ———— Monitoring Assignment ———
Output: Assigned, Covered, Fin—1 ,.7::"71 , DDoSC’ovzln’fz7 32: Sort B by the size of its x;s in a descending order

tn t
DDo.S'C'O'U;"*l7 sending out the routers’ responsibility listsd9: ~ DDoSCov;" ? +— DDoSCov,*"! Vd € D
34: for all z; € B and x; N Covered = () do

1: Assigned =0 35: Assignedr =1
2: Covered =0, InterSect = wa]:—v- =0 36: for all r € R(z;) and Assignedg = 1 do
3 . . Preprocessing The Input —— 37 if m, > ReqgMemy, » then
4: if]'—."._1‘ # 0 then . 38: Assign flows in z; to router r
5: Initialize InterSect as F'n—1 N F 39: Update r’s capacity = using 4.1
6: for all f € IntetrSect do . 40: Assigned = Assigned + |z;]
7: if DDOSCovd’;f2 — DDOS-'C’OU({]’C’*1 < ¢ then 41 Covered = Covered U x;
8: forallSie]:Ddf and f € S; do 42: Fr=FrUf
9- Assignedp — 1 43: Assignedr =0
10: for all € R(S) and f € Fhn- 44: Remove all f € z; from F
: flA 'Td ldz n r 45: for all f € F do
anc Assignear = 1 4o 46: if |ps| =1 and > ReqM th
11: if S; N Covered = () then 6 ! |pf ! and Mrepy = FCGRTCEMS,r BREN
:) . . 47: Assign flow f to router r
12: Update r’s capacity = using 4.1 48: Update ity = using 4.1
13: Assigned = Assigned + |S;| : pdater's capacity using <.
. _ 49: Assigned + +
14: Covered = Covered U S; 50- Covered = Covered U f
15: DDoscou;”;*l = DDoscou;”;*l USi g1 Fo=FoUf
]] . r=Jr
16: Fr=FrUS; 52: Remove f from F
17: Assignedr = 0 53: for all f € F do
18: Remove S; from FDy, 54: Assignedr =1
19: Remove all f € S; from F and InterSect 55: for all r € py and Assignedg =1 do
20: for all f € InterSect do 56: if m, > ReqMemy,, then
21: Assignedr = 1 57: Assign flow f to router r
29. for all » € p; and f €]:in—l and 58: Updfate r’s capacity = using 4.1
Assignedr =1 do 59: Assigned + +
23: Update r’s capacity = using 4.1 (63(1) gover]e:d :fCovered uf
24: Assigned + + : r=/rU
25: Covered = Covered U f 62: Assignedr =0
26: Fr=F-Uf 63: Fin-1 = Covered
27: Assignedr =0 64:]—‘ﬁ"71 =Fr
28: Remove f from F and InterSect Vrer 4feC dd d
. to1 overed|dy =
. _ : Calculate DDoSC =
29: Generate B = dLeJD FDq 65 Ggeae oo oY, #f € TempF|dy = d

68

4.4.1 Experimental set-up:

In order to compare the performance of our proposed modified heuristic with our original
heuristic, which is equivalent to our modified heuristic with the uncovered DDoS flooding
flow tolerance equal to zero (e = 0), we perform an experiment that we explain in detail here
in this section.

In this experiment, we choose AT&T (US) topology with R = 540 with initial F =
11 x 10® with D = 9 x 10° which is one of the challenging problem sizes in our previous
experimental results in Table 4.2. We perform an hour long simulation and gradually increase
the size of the problem (number of flows and destination IP addresses) to F = 15 x 10% and
D = 11 x 10%. In this set-up we assume destination X is the DDoS flooding attack target
for which there is initially 10° flows with that destination IP at the start time. This amount
doubles up to 2 x 10° at minute 20 and increases again to 3 x 10° at minute 40 in our
simulation set-up. For the rest of the flows, we randomly generate tuples (sg,df,py) and
calculate ReqMemy, for all the router in p; for each f. Moreover, we generate the flow’s
tuples in such a way that for the half of all the destination IP addresses of the flows on
each monitoring time window, there is at least two flows going to each of those destination
IP addresses for which there is at least one router in common on their paths. Then, we
generate the rest of the required inputs that are introduced in section 4.2.4. We use NS-
2 [170] to generate these topologies with the desired traffic inputs on them. We restate
here that all of the experiments are bounded to 4-minute time limit as the monitoring time
window is assumed to be 5 minutes and responsibility lists should be made available to all
the routers within the monitoring time window (< 5 minutes). This set-up is used with
our MIP formulation as the monitoring assignment and it finds an optimal solution within
the time limit or the best solution it can obtain within the time-limit. Both optimal and
non-optimal solutions are recorded to compare with our proposed heuristics. We also employ
both our heuristic and its modified version as the monitoring assignment mechanisms and

record their flow coverage with their computation time.

69

We compare the MIP formulation, the heuristic algorithm, and the modified heuristic
algorithm ® in terms of their total flow coverage. Moreover, we compare the heuristic and
the modified heuristic in terms of their computation time and skip the MIP formulation’s
computation time since in all of the scenarios for all the heuristics perform much better
than the MIP in terms of their computation time. Finally, we compare the heuristic and
the modified heuristic in terms of their DDoS flooding flow coverage and exclude the MIP
formulation’s results since it covers all of the DDoS flooding flows that original heuristic
covers. Our comparisons are performed in two different scenarios. In the first scenario, we
assume that the initially generated 11 x 10% flows and their destinations (including initial
1 x 10° flows heading to destination X) are not changed for the duration of the experiment
as the representation of the scenario in which most of the flows are long-term. This scenario
is where the elimination of the monitoring responsibility reassignment reduces the whole
assignment computation time the most. In the second scenario, we assume that half of the
initially generated flows and their paths (including initial 1 x 10 flows heading to destination
X) are regenerated every 10 minutes representing a more dynamic scenario in which most of

the flows are short-term.

4.4.2 Experimental results:

As we mentioned earlier, we expect our experimental results to be convincing in highlighting
the benefits that our modified heuristic brings to the table in reducing the time it takes for
the assignment computation by tolerating a reduction on the DDoS flooding flow coverages.
The performance of all our experiments is bounded by the resources of a desktop PC system
with Intel Core 2 Duo E6700 2.66 GHz CPU that we used in our experiments.

Figure 4.3 shows the monitoring assignment computation time for both the short-term
and long-term scenarios. In Figure 4.3a, where the majority of the flows are long-term,
computation time significantly decreases in cases where the modified heuristic is employed.
However, in Figure 4.3b, where the majority of the flows are short-term, computation time

is higher than the long-term flow scenario since there are more new flows as inputs for

8with e = 0.05 and € = 0.1

70

the monitoring assignment process which increases the size of the problem. Moreover, in
both of the scenarios, the higher the uncovered DDoS flooding flow tolerance is the lower
the computation time of the monitoring assignment will be. This is shown in both figures
through the comparison between two modified heuristics with different uncovered DDoS
flooding flow tolerance (e = 0.05 and € = 0.1). The one with the greater uncovered DDoS
flooding flow tolerance has the lower computation time than the one with lower uncovered
DDoS flooding flow tolerance.

Figure 4.4 shows the flow coverage for DDoS flooding flows heading to destination X for
both the short-term and long-term scenarios. In both of the figures, our original heuristic
covers 100% of the DDoS flooding flows to destination X as it performs the monitoring
assignment for all the flows and for every monitoring time windows. Hence, we compare
the performance of our modified heuristic with the original heuristic in terms of the DDoS
flooding flow coverage in order to show the sacrifices in terms of DDoS flooding flow coverage
that service providers should be willing to tolerate to reduce the monitoring assignment
computation time. In Figure 4.4a, where the majority of the flows are long-term, DDoS
flooding flow coverage decreases at minute 20 where the number of DDoS flooding flows
to destination X doubles up. In minute 25, none of the modified heuristics with different
uncovered DDoS flooding flow tolerances passes its uncovered DDoS flooding flow tolerance
threshold comparing their DDoS flooding flow coverages for the two previous monitoring time
windows. This reduction in DDoS flooding flow coverage continues until minute 40 that the
number of DDoS flooding flows heading to destination X increases again. At minute 40, there
is another reduction in DDoS flooding flow coverage which causes the modified heuristic with
lower uncovered DDoS flooding flow tolerance to perform the reassignment for all the flows
heading to destination x at minute 45. This causes a significant increase in DDoS flooding
flow coverage for that modified heuristic as it is shown. However, the modified heuristic
with the higher uncovered DDoS flooding flow tolerance still has low DDoS flooding flow

coverage.

71

Computation time (s)

Computation time (s)

60

50

40

30 |

20

10

60

50

40

30

20

10

¢ Modified Heuristic (e= 0.05)
B Modified Heuristic (e= 0.1)

Heuristic (Modified Heuristic with e=0)

*
.
¢ .
¢ S m S
*
* [
23 [
n = n m
[
10 20 30 40 50 60
Monitoring Time windows (every 5 minutes)
(a) Long-term static flows
¢ Modified Heuristic (e= 0.05)
B Modified Heuristic (e= 0.1)
®
Heuristic (Modified Heuristic with e=0) -
A .
*
. - u
* [
[
i *
*
[| [|
*
[
10 20 30 40 50 60

Monitoring Time windows (every 5 minutes)
(b) Short-term dynamic flows

Figure 4.3: Monitoring assignment computation time.

72

DDoS Coverage (%)

DDoS Coverage (%)

100

95

(o)
o

0o
v

[o]
o

75

70

100

95

90

0o
]

[0]
o

75

70

Modified Heuristic (e= 0.05)
Modified Heuristic (e= 0.1)

™ Heuristic (Modified Heuristic with e=0)
| G B S Rl

10 15 20 25 30 35 40 45 50 55 60

Monitoring Time windows (every 5 minutes)

(a) Long-term static flows

Modified Heuristic (e= 0.05)
¥ Modified Heuristic (e= 0.1)

1 Heuristic (Modified Heuristic with e=0)
n [| n n n

10 15 20 25 30 35 40 45 50 55 60

Monitoring Time windows (every 5 minutes)
(b) Short-term dynamic flows

Figure 4.4: DDoS flooding flow coverage.

73

) 0)
2 8 7
[0} (]
< <
£ k=
2 \n 3
— o n — ©
n —_ N —_ +
o — K2 o i 4]
S o § o i S s S
[} (]
L4 2 @ R
o o © o o 3
BB & " {2 3 £
‘TC T T o - ‘T O
33 8 2 3 3 ¢
T M\ s I T /M\
Uil s © o o £ rrrzzzzzzzzz77222222222777 R R
E & B S £ E & B
T T 5 wn T T 5
. o o [0} n . o o [J]
. S > T " W 2 77 s s &
oW | M S nm @ o« om
/El [}
- S
o = m
® S %
£
" 3 m LIS S ST LSS S SIS LSS S S S S S S S ST S S S SSSS
N m =
=70]
= g
o &1
N .m —
s &
SN~—
77777 I PP I I I 22222227772 LI VLI LI A2 2222222222222 2 LA L S SAA A S S A S LSS S S S
- S
)
~
wn
()
1
o o o o o o o o o o o o
wn < o o~ — n < o™ o i

(%) abo.iano) [pros (%) aboiano) [pros

60

55

50

45

40

35

30

25
74

0

2
(b) Short-term dynamic flows

5

1
Monitoring Time windows (every 5 minutes)

Figure 4.5: Total flow coverage.

10

However, in Figure 4.4b, where the majority of the flows are short-term and more dynamic
in nature, there will be more situations where the monitoring assignment is performed for
most of the flows heading to destination X, which both increases the monitoring assignment
computation time (as it was shown in Figure 4.3b) and the DDoS flooding flow coverage.
Moreover, the modified heuristic with € = 0.1 covers less DDoS flooding flows as it tolerates
the absence of more DDoS flooding flows.

Figure 4.5 shows the total flow coverage for both the short-term and long-term scenarios.
Comparing Figure 4.5a and Figure 4.5b, the total flow coverage for the modified heuristic
with different uncovered DDoS flooding flow tolerances is really close to the original heuristic
(closer to optimal) in the short-term flow scenario compared to the long-term flow scenario.
This is mainly because of more monitoring reassignments due to more new flows (i.e., less

pre-processing).

4.5 DiCoTraM vs. other monitoring mechanisms

The main network-wide objective of DiCoTraM is to maximize the flow coverage while con-
sidering both the routers’ resource limitations and satisfying the maximized DDoS flooding
attack flow coverage. Hence, in this section, we compare DiCoTraM with other traditional
packet/flow sampling mechanisms in terms of the total flow coverage and DDoS flooding
attack flow coverage to highlight the benefits of DiCoTraM over other previously proposed

traffic monitoring mechanisms.

4.5.1 Total flow coverage

In doing so, we conduct a series of simulation experiments on 5 well-known topologies (the
same experiments we performed in our previously explained case study for cSamp). The
parameters of these five topologies that are employed in our experiments are previously

explained in subsection 3.3.1 and they are shown in Table 3.1.

75

60

OFlow Sampling (1-in-100) O Flow Sampling (1-in-50) @ Packet Sampling (1-in-100)
B Packet Sampling (1-in-50) B cSamp DiCoTraM

50 -
\%

N\

S
o

\

\ \

% %

w
o

N
o

N\

Total Flow Coverage (%)

7

TR

A R R R AR

=
o

\%
§é
N
|
-
-
-
|
W
|
.
.
.
.
u-%é

7
TR
7
TR

Internet2 Level3 Sprintlink Telstra Tiscali

Figure 4.6: Total Flow Coverage: DiCoTraM vs. other packet/flow sampling mechanisms

As we mentioned earlier in subsection 3.3.1, we have implemented cSamp (validated our
implementation) to compare with DiCoTraM ?. We have compared DiCoTraM with: cSamp,
uniform packet sampling with the sampling rate of 1-in-100 packets, uniform packet sampling
with the sampling rate of 1-in-50 packets, constant-rate flow sampling with the sampling rate
of 1-in-100 flows, and constant-rate flow sampling with the sampling rate of 1-in-50 flows.

In our simulation, for all the flow/packet sampling mechanisms, for each topology, we
use the same: traffic matrix, routing information, number of flows, and flow size distribution
10 For each topology, we compute the total flow coverage obtained with different packet
sampling or flow sampling mechanisms and the results are shown in Figure 4.6. The total
flow coverage of DiCoTraM is very close to cSamp for Level? and Tiscali, and it is greater
than cSamp for the rest of the topologies. c¢Samp and DiCoTraM both have larger total
flow coverages than either of other packet/flow sampling mechanisms. As it was the case for
cSamp and it is true in case of DiCoTraM, other packet/flow sampling mechanisms suffer
from the wasted amount of redundant flows/packets that are monitored (i.e., redundant flow

reports and wasted bandwidth to report them) which was shown in Figure 3.3b. The central

9We used the modified heuristic with e = 0.05
10We, also like [136], assume that the flow size measured in number of packets is Pareto-distributed.

76

coordination structure in both DiCoTraM and cSamp eliminates the redundant flow/packet

monitoring overhead.

100 ¢

(o)
o

§ N

N\

(0]
o

§

N\

AR
Vi

AT

\
§
60 \%
O Flow Sampling (1-in-100) O Flow Sampling (1-in-50) @ Packet Sampling (1-in-100)
>0 B Packet Sampling (1-in-50) cSamp DiCoTraM

7

N

AT

DDosS Flooding Flow Coverage (%)
N
o

H
o
|
|
I

o

Internet2 Level3 Sprintlink Telstra Tiscali

Figure 4.7: DDoS flooding flow coverage: DiCoTraM vs. other packet/flow sampling mech-

anisms

4.5.2 DDoS flooding attack flow coverage

In order to show the major benefit of DiCoTraM in providing the higher DDoS flooding attack
flow coverage, in the same simulation set-up and for each topology, we generate 1 x 10° flows
destined for the same destination (possible DDoS flooding attack flows) and distribute them
along various paths towards the destination. The number of flows heading to the same
destination is chosen carefully so that it is possible for the monitoring mechanisms to cover
all of the flows considering the routers’ capacities and other constraints. Then, we compare
DiCoTraM with other traffic monitoring mechanisms in terms of their coverages of 1 x 10°
flows destined to the same destination. The higher the flow coverage for the flows destined

for the same destination, the better suited is the monitoring mechanism for DDoS flooding

7

defense mechanisms. Figure 4.7 shows the results. As we expected, DiCoTraM covers all of

the DDoS flooding flows and outperforms all other traffic monitoring mechanisms.

4.5.3 Discussion:

As we mentioned earlier, one of the ideal traffic monitoring objectives to achieve in most of
the traffic monitoring mechanisms is to cover as many attack flows as possible in order to
provide a clearer picture of the network status for different traffic analysis/attack detection
applications. In case of DDoS flooding attack flow coverage, we argue that it is fair to
compare different traffic monitoring mechanisms in terms of their success in providing the
best DDoS flooding flow coverage. Since DiCoTraM is tailored in such a way that the
DDoS flooding flow coverage is prioritized and maximized, it outperforms all other traffic
monitoring mechanisms in terms of DDoS flooding flow coverage without sacrificing too much
in its performance in terms of total flow coverage compared with other traffic monitoring

mechanisms.

4.6 Network planning & memory requirements

As we pointed out in subsection 4.2.1, the total flow coverage in any autonomous system
or enterprise network is bounded by the memory capacities (constraints) of the monitoring
devices. Hence, all of the network traffic monitoring mechanisms (e.g., cSamp, DiCoTraM)
consider the memory constraints of the monitoring devices. Moreover, we have made it clear
that increasing the flow monitoring coverage leads to providing a clearer picture of what
is happening inside the network to the detection mechanisms and consequently leads to a
better protection for enterprise networks against dangerous attacks such as DDoS flooding
attacks.

Nowadays, memory modules are much cheaper than what they were a decade ago; hence,
adding reasonable amount of additional memory to the monitoring devices to increase the

flow coverage of an enterprise network is feasible. Hence, upgrading some of the heavily

78

loaded (bottleneck) routers that lead to low flow coverage could be considered as a reasonable
network planning strategy. However, the amount of required additional memory for each
router is not fixed and it should be determined dynamically according to the structure of
the network (e.g., topology, traffic history, and etc.). Moreover, the bottleneck routers that
caused the low flow coverage also needs to be determined dynamically according to the

structure of the network (e.g., topology, traffic history, and etc.).

Therefore, in order to provide the network administrators with such valuable information
for their short-term or long-term network planning, we propose an off-line MIP formulation
that relaxes the memory constraints of the routers within an AS and calculates the maximum
amount of additional memory required for each router in order to cover all its assigned flows.
The bottleneck routers, as we defined earlier, are among the routers with the maximum
required additional memories. The goal of the proposed MIP is not to suggest an immediate
or dynamic change of the network structure to cover all the flows. However, as we mentioned
earlier, we strongly believe that the information that our off-line MIP could provide to
the network administrators can help them in their short-term/long-term network planning
and in determining the bottleneck routers that cause poor traffic monitoring coverage. For
instance, in our experiments in this chapter, we show that increasing the memory capacity
of (updating) the short percentage of heavily loaded routers, that are determined as the
bottleneck routers, with their maximum required additional memory during days, weeks, or
months can lead to an increased total traffic monitoring coverage which is an acceptable

strategy within an enterprise network.

The amount of additional required memory for each router can be queried by ASs’
administrators at any given time or it can be reported to them upon passing some predefined
thresholds (e.g., Total flow monitoring coverage, DDoS flooding attack monitoring coverage).
We assume that administrators query the system for the list of required additional memories.
As we mentioned earlier, we perform some experiments to show that the amount of additional
memory is not significantly large and upgrading a few heavily loaded routers maybe sufficient

and feasible for service providers as a short-term adjustment.

At the beginning of each monitoring time window, TASs run our previously proposed

MIP formulation for monitoring assignment presented in section 4.2.5 to assign monitoring

79

responsibilities to the routers within an AS. If the current memory capacity of some of the
routers are not sufficient enough to assign flow monitoring responsibilities to them, TASs
run our second off-line MIP which relaxes the memory constraints of the routers and keep
the maximum required memory for each of the routers in a list and update them after each
run of the MIP formulation.

TASs keep a list of maximum additional required memory for all the routers. Each time
TASs run the off-line MIP, they update the list for each router if the amount of memory
requirement for that router should be increased more than its current amount based on the
outcome of the current MIP run (i.e, the maximum amount of additional memory for each
router is maintained on this list).

ASs’ administrators will be provided with the updated list of the maximum additional
memories of all the routers upon request or whenever the amount of additional required
memory (u,) passes some predefined threshold for at least one heavily loaded router. Next

we present our proposed off-line MIP formulation.

4.6.1 Off-line MIP formulation

Given the notation and definitions (summarized in 4.2.3), the problem of finding the mini-

mum additional memories for each router can be formulated as follows:
min » g1, (4.13)
subject to,

Z Z ReqMemsg, , - xg, r.a + Z RegMemy, -y, — (my + 1) <0 VreR
deD S;eFDy feF

(4.14)

YD wsea=t VdeD (4.15)

S;€FDg4 reR(S;)

80

Y s ea=1 Vd € D, VS; € FD;, (4.16)

reR(S;)

>y =1 VfeF (4.17)
reR

Z Z agps, - T rd=1 Vd e D, VfeF (4.18)

S;€FD4reR(S;)

1_ny,7"22 Z Z afs, *Ts; r.d VfE.F (419)

reER deD S;eFDy T‘GR(SZ‘)
s, ra € {0,1} VS, € FDy,Vr € R(S;),Vd € D (4.20)
yrr €40, 1} VreR,VfeF (4.21)

The objective function in (4.13) is to find the minimum sum of additional required
memories for all the routers. The set of constraints in (4.14) ensures that both (i) the
flows intended to the same destination are assigned to one of their common routers on their
paths, and (ii) the rest of the flows are assigned to the rest of the routers relaxing the
capacity constraints of the routers. In (4.14), we assume that there is one aggregated flow
entry (5;) for all the flows intended to the same destination IP. The set of constraints in
(4.15) ensures that at least one S; is selected among all the S;s that are in FD, for all the
destinations. The set of constraints (4.16) and (4.17) ensures that S;s that are in FD, for all
the destinations and the rest of the flows are assigned to at least one router, respectively. The
set of constraints in (4.18) forbids the selection of two distinct S;s that consists of common
flows for all the destinations. The set of constraints in (4.19) implies that one flow is going
to be an independent flow unless it is covered in one of the selected S;s for all the flows.

Finally, the set of constraints in (4.20) and (4.21) define zg, , 4 and yy, as binary variables.

81

Without loss of generality, we assume that for each destination (d € D) there exist a
collection of flows (5;) and a common router () on the paths of flows in S; such that the
memory capacity of router r is enough to fulfil the memory requirements of all the flows in
S;.

We could reduce the known NP-complete problem of PARTITION [168] to the above
MIP formulation in (4.13)-(4.21). Hence, the proposed MIP is a NP-hard problem.

4.6.2 The modified heuristic with network planing capability

Since our proposed MIP formulation for network planning is also solving a NP-hard problem,
it does not scale well. Hence, we further change our modified heuristic (Algorithm 2 in
section 4.4) to calculate the amount of additional required memory needed for network
planning purposes, presented in Algorithm 3.

Our modified heuristic with network planing capability keeps track of the maximum
additional memory requirement of the monitoring devices to cover all the flows and also
provides the list of routers with the maximum additional memory requirements as the bot-
tleneck routers during a desired time period (e.g., day, month, etc.). Next, we perform a set
of experiments to evaluate the network planning capability of such information in scenarios
with or without DDoS flooding attack to show how network administrators could benefit

from such information in their short-term/long-term network planning.

82

Algorithm 3 Modified heuristic algorithm with the network planning capability

Inputs: m,, F, Fin—-1, FDy,]:infl,DDoscovltinfg’

DDO.S'C’OU(?“1 e > 0, uMa=

Output: Assigned, Covered, Fin—1 ,]—'ﬁ’“l , DDoSCov;"*z,

= e e e e

DO B B DO B DD

29

30:
31:

32:
33:
34:
35:
36:
37:

1 if Fin—1 # () then
Initialize InterSect as Fin—-1 N F
for all f € InterSect do
if DDOSCO’UZ’;72 — DDoSCovZ’}fl < ¢ then
for all S; € .7:'Ddf and f € S; do
Assignedr =1
for all » € R(S;) and f € Fint
and Assignedr = 1 do

= N R N

20:

N DO
N =

DDoSCov;”’_l,u,{‘/I‘”“’, sending out the routers’
responsibility lists

. Assigned = 0, Additional =0
: Covered = (), InterSect =0, F, =0

Preprocessing The Input

if S; N Covered = () then
Update r’s capacity = using 4.1
Assigned = Assigned + |S;]
Covered = Covered U S;
DDoSCovZ"f1 = DDOSCOUZ’“1 usS;

f f

Fr=FrUS;
Assignedr =0

Remove S; from FDy "

Remove all f € S; from F and InterSect

for all f € InterSect do
Assignedr =1

all » € py and f € .7-—:"71 and

Assignedr = 1 do
Update r’s capacity = using 4.1
Assigned + +
Covered = Covered U f
Fr=FrUf
Assignedr =0

Remove f from F and InterSect

¢ Generate B= |J FDy

deD

if F # 0 then

Monitoring Assignment

Sort B by the size of its z;s in a descending order
DDOSCO’UZ — DDoSCov}i vd € D
for all z; € B and z; N Covered = () do
NotAssigned = 0
Assignedr = 1
for all r € R(z;) and Assignedr =1 do

38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77
78:
79:
80:

81:

82:

83:
84:
85:

if m, > ReqMemyg, » then
Assign flows in z; to router r
Update r’s capacity = using 4.1
Assigned = Assigned + |z;|
Covered = Covered U z;
Fr=FrUf
Assignedr =0
Remove all f € z; from F
NotAssigned = 1
if NotAssigned =0 then
Additional = Additional + |z;|
for all r € R(z;) do
pr = pr + ReqgMemy, r
for all f € F do
NotAssigned =0
if |pf| =1 and Mrepy > ReqgMemy then
Assign flow f to router r
Update 7’s capacity = using 4.1
Assigned + +
Covered = Covered U f
Fr=FrUf
Remove f from F
NotAssigned =1
if NotAssigned = 0 then
Mrepy = Mrepp + RegMemy,,
Additional + +
for all f € 7 do
Assignedr = 1
NotAssigned =0
for all r € py and Assignedg = 1 do
if my > ReqMemy , then
Assign flow f to router r
Update 7’s capacity = using 4.1
Assigned + +
Covered = Covered U f
Fr=FrUf
Assignedr =0
NotAssigned = 1
if NotAssigned = 0 then
Additional + +
for all r € py do
Hr = pr + ReqgMemy

Ftn—1 = Covered

tn—1
-7:7'n =]:r
Vrer

C dld; =d
Calculate DDOSCO’UZn_l _ #F € Covered|dy
vaen #f € TempF|dy =d

for all »r € R do

if pr > pMe® then

' = pr

83

4.6.3 Experimental set-up & results:

In this section, we perform two sets of experiments employing the AT&T (US) topology with
R = 540. We generate two simulation set-ups. First, we initially add F = 11 x 10° with
D = 9 x 10° and increase the number of flows gradually within 24 hours to F = 55 x 10°
and D = 45 x 10°. The number of flows and destination IP addresses are increased to values
close to their maximum estimated values as we explained in Table 4.1 and as a worse-case
scenario in terms of the size of the problem or the number of distinct traffic flows in the
AT&T (US) topology. We run this simulation set-up with the modified heuristic with the
network planning capability (with e = 0.05), explained above, for 24 hours. We query the list
of maximum additional memories for the routers within this topology every hour. Hence, for
each router, we have 24 values as its maximum additional required memory for each hour.
We also keep the total flow coverage for the duration of the simulation. Moreover, we keep
the generated inputs (every 5 minutes) of the monitoring assignment heuristic for this 24
hour simulation in order to have the same simulation set-up to run our other experiments

with the same set-up in this section.

In our second simulation set-up, we have the same simulation set-up with an additional
assumption that the destination X is under DDoS flooding attack at hour 19 and for an
hour. The DDoS flooding attack starts at hour 19:00 with 10° flows heading to destination
IP X, the number of flows doubles up to 2 x 10° at time 19:20, and the number of flows
increases again to 4 x 10% at time 19:40. We run the second simulation set-up also with the
same modified heuristic as our previous set-up and for 24 hour. Like our first simulation, we
query the list of maximum additional memories for the routers every hour, keep the total

flow coverage for 24 hours, and keep the generated inputs to the heuristic.

Next, for each router, we calculate the maximum of 24 queried maximum additional
required memory values and sort the routers in a descending order based on their maximum
additional required memory values. Figure 4.8 shows the distribution of the maximum
additional required memory of the routers during the 24 hour for both of the simulation set-
ups for the AT&T (US) topology and as the number of flows increases during the simulation.

In Figure 4.8a, ~ 31% of the routers require additional memories and only 5% of the routers

84

require more than 1MB of memory. However, in Figure 4.8b, the number of routers that
require additional memory increases to ~ 33% and the percentage of the routers that require
more than 1MB of memory increases to 8.7% since the DDoS flooding attack on destination
X causes some of the routers on the attack path to pass their capacity constraints to cover
all the flows by satisfying the DiCoTraM goals.

As we mentioned earlier, tracking the additional memory requirements of the routers to
monitor all the flows passing through them in different time periods (e.g., days, weeks, etc.)
is useful for network planning purposes. Here, we perform another set of experiments to
show that by upgrading the memory capacities of only small percentage of the routers in
the At&T topology for the same experiment we could significantly increase the total flow
coverage. Our experiment is based on the assumption that the routers with the maximum
additional required memory are the ones that could be possibly the bottleneck routers.
Hence, we rank the routers that are listed as the ones that require additional memory in a
descending order and based on the amount of memory they require. Then, we repeat both
of the experiments (i.e., with and without DDoS flooding attack) that we explained above
by upgrading the memory capacities of top 1% and 2% of the routers with their reported
largest additional required memory. We compare the total flow coverage of both of these
cases (1% and 2% of routers memory capacities are upgraded) with the previous case where

all the routers were bounded by their memory constraints.

85

[

I
o

o
o

1N
kS

Maximum Aditional Required Memory
(mB)

o
N

o

201 241 281 321 361 401 441 481 521

Number of Routers

(a) Without DDoS flooding attack

1.8

Maximum Aditional Required Memory (MB)

201 241 281 321 361 401 441 481 521

Number of Routers

(b) Under DDoS flooding attack

Figure 4.8: Distribution of the maximum additional required memory per router for 24 hour

for the AT&T topology.

86

70

60 o e AU

50

40 e~

30

20
—Modified Heuristic (No Upgrade)

Total Flow Coverage (%)

10 —Modified Heuristic (1% of the routers' memory sizes are upgraded)

Modified Heuristic (2% of the routers' memory sizes are upgraded)

T T T T T T T T T T T T T T

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

Monitoring Time Window (Hour)
(a) Without DDoS flooding attack

70

60

50

40

30

20

—Modified Heuristic (No Upgrade)

Total Flow Coverage (%)

10 —Modified Heuristic (1% of the routers' memory sizes are upgraded)

Modified Heuristic (2% of the routers' memory sizes are upgraded)

0

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

Monitoring Time Window (Hour)
(b) Under DDoS flooding attack

Figure 4.9: Total flow coverage during the 24-hour for the AT&T topology.

87

Figure 4.9 shows the total flow coverage during the 24 hour for both of the simulation
set-ups for the AT&T (US) topology and the number of flows increases during the simulation.
As shown in Figure 4.9a and 4.9b, in both with and without DDoS flooding attack scenarios,
upgrading a small number of monitoring devices (i.e., upgrading the memory sizes of 1% and
2% of the monitoring devices to their maximum requested memory sizes) increases the total
flow coverage significantly. During our simulation, the total flow coverage increases up to 6%
when only 1% of the routers’ memory sizes are upgraded to their maximum requested memory
sizes and it increases up to 11% when only 2% of the routers’ memory sizes are upgraded
to their maximum requested memory sizes. The maximum additional memory required for
the routers reported in our experiment was less than 1.9 MB which sounds pretty reasonable
and feasible in terms of upgradability for network operators with the current state of the art
memory modules.

Hence, we show that short-term and long-term network planning considerations in or-
der to facilitate autonomous systems in defending against dangerous attacks such as DDoS
flooding attacks is possible and useful. The network planning could be managed in such
a way that only small percentage of the monitoring devices are upgraded to achieve larger
total flow coverages; since full low coverage, as our current objective in calculating the list
of maximum additional memories for the routers, is the worse case scenario and not all the

autonomous systems necessarily require that much flow coverage.

4.7 SUMMARY

In this chapter, we presented the design and proof of concept implementation of DiCoTraM
as a novel traffic monitoring mechanism to address the challenges of current traffic monitoring
mechanisms with regards to the problem of DDoS flooding attack. DiCoTraM is a resource
constraint aware, DDoS flooding attack tailored, network-wide traffic monitoring mechanism
that centrally coordinates the monitoring responsibilities among the monitoring devices and
distributes their responsibilities periodically among all the monitoring devices within each

AS. DiCoTraM’s coordination structure eliminates the redundant flow monitoring overheads

88

due to lack of coordination. Moreover, DiCoTraM enables distributed detection of DDoS
flooding attacks at the router-level.

We compared and evaluated the performance of DiCoTraM with various other traffic
monitoring mechanisms in terms of metrics such as: total flow coverage, redundant flow
reporting, and DDoS flooding attack flow coverage in order to show its effectiveness through
a set of experiments. The experimental results showed that DiCoTraM covered more DDoS
flooding attack flows, and it had reasonably large overall flow coverage compared to others.
Moreover, we analyzed and improved DiCoTraM’s scalability through a step-by-step evolved
heuristic algorithm; we performed various experiments that could confirm this claim.

Finally, in order to provide the network administrators with the required information
to determine the list of candidate monitoring devices to upgrade for achieving better flow
coverage as part of their short-term /long-term network planning, we extended DiCoTraM to
also track the additional memory requirements of the monitoring devices to fully covering
the traffic flows.

Next, we evaluate the effectiveness of DiCoTraM with cSamp, that outperforms most of
the other traffic monitoring mechanisms, with regards to supporting effective, early detection
of DDoS flooding attacks (i.e., at the intermediate network) by employing two existing
detection mechanisms over them. We compare the effectiveness of DiCoTraM with that of
cSamp by comparing the detection rates and false positive rates achieved when the selected

detection mechanisms are employed over DiCoTraM and cSamp.

89

5.0 DiCoTraM’s Impact on DDoS Flooding Attack Detection Mechanisms

In this section, we compare the effectiveness of DiCoTraM with cSamp with regards to
supporting effective, early detection of DDoS flooding attacks. In doing so, we employ
two existing DDoS flooding detection mechanisms over DiCoTraM and cSamp. Then, we
compare the effectiveness of DiCoTraM with that of cSamp by comparing the detection rates
and false positive rates achieved when the selected detection approaches are employed over

DiCoTraM and cSamp.

5.1 Case study 1: Distributed Change-point Detection (DCD) architecture

We have adopted the DCD architecture presented in [160] in our first case study. The
router-level traffic surge detection algorithm of the DCD architecture requires super-flow
level information as its input. Each super-flow comprises of all the flows with the same
flow key (e.g., same destination). Since only DiCoTraM and cSamp could provide such
information, we only compare these two flow sampling mechanisms as employed monitoring
mechanisms in DCD architecture. We made minor modifications to the DCD’s local sub-
tree construction algorithm as we explain next. We adopted DCD architecture since it was
proven to be successful in detecting suspicious DDoS flooding attacks [160,171] and because
the statistics DiCoTraM collects for each flow, could be easily fed to the DCD’s traffic surge
detection algorithm which works at the router level. We have explained the statistics that
routers collect in SRAM for each flow in section 4.2.1. We have also collected the same

statistics explained in section 4.2.1 for cSamp.

90

DCD architecture employs Change Aggregation Trees (CAT) to detect the abrupt traffic
changes across multiple ASs. DCD is built over Attack Transit Routers (ATRs) (routers in
Figure 4.1 !). Each AS has a CAT server (TAS servers in Figure 4.1) to aggregate the flooding
alerts reported by the ATRs. CAT servers construct local CAT sub-trees and collaboratively
detect DDoS flooding attacks by reporting their sub-trees to their neighbours along the super-
flow 2 paths in order to construct the global CAT tree at the victim end. Victim constructs
the global CAT tree and makes the final decision based on the threshold (#) defined by the
number of routers that raise alarms on the global CAT tree. CAT servers communicate with
each other through a Secure Infrastructure Protocol (SIP) (Secure communication channels
in Figure 4.1).

Since DiCoTraM monitors all the flows destined for the same destination (super-flows)
at one of the routers on their paths (super-flows paths) and it eliminates redundant traffic
monitoring of the flows among the routers, we need to provide the DCD’s local CAT sub-tree
construction algorithm with all other routers on the super-flows path that would also raise
the alarm so that it can generate the local CAT sub-trees. Hence, TASs, upon receiving the
alerts from the routers, update the input to CAT sub-tree construction and add router-IDs
of the routers on the super-flow path of each of the super-flow alerts.

Next, we briefly describe the DCD’s adopted router-level traffic surge detection algorithm
[160]. We omit the description of both local and global sub-tree construction algorithms and

refer readers to DCD architecture paper [160].

5.1.1 Adopted router-level traffic surge detection algorithm

Here we explain the traffic surge detection algorithm by explaining both the minor modi-
fications we made and details on how we employed the algorithm in our implementation.
Hence, first, we define the statistical parameters for the incoming traffic of each aggregated
flow at each of the router ports that are employed in the algorithm below.

The historical average of the incoming packets is defined as:

IN(ty,i) = (1 —a) - IN(ty_1,1) + - in(tm,) (5.1)

L All the routers are equipped with the traffic surge detection algorithm.
2All the packets/flows destined for the same network domain from all possible source IP addresses [160].

91

Assuming tq,t9, 3, -, t,, be the discrete monitoring time instances, in(t,,,?) is the number
of packets which router received on its port ¢ during the monitoring time slot m. The
detection mechanism queries SRAM for the updated flow table at each monitoring time
instance. For instance, if the monitoring time slot is 200ms, the detection mechanism queries
SRAM every 200ms. In our experiments, we change the monitoring time slot from 100ms
to 1s to comprehensively study the results, as it was studied in [160], to find the optimum
monitoring time slot. Increasing the monitoring time slot from 100ms to 1s only increases
the false positive rate and it does not change the number of alerts that are received. Hence,
the optimum monitoring time slot based on our experimental results is, as in [160], chosen to
be 100ms. «, where 0 < v < 1, is the sensitivity factor of the long-term average behaviour
to the current fluctuation of the traffic (i.e., in(t,,,1)).

The deviation of input traffic from the average at monitoring time slot m is defined as

follows:

Zin(tmy 1) = max{0, Zin(tm—1,1) + in(tm, i) — IN(t;,, i)} (5.2)

As explained in [160], the abnormal deviation from historical average of the incoming packets,

as an indicator of DDoS flooding attacks, is defined as follows:

(5.3)

DeviationFromAverage;, =

[is the router detection threshold which is based on router’s past experience. We also use
the range of 2 < 8 < 5 in our experiments as suggested in [160].

All the above mentioned statistics could be similarly defined for the outgoing traffic at
each router. Specifically, out(t,,,1), OUT (t,, 1), and Zoy;(tm,) are measured similarly.

DR;o(i, j) is defined to measure the ratio of the incoming packets from port ¢ that are
propagated to output port j for the incoming suspicious flows that have already passed the
threshold 3. In other words, DR;/o(i,j) is the ratio of traffic deviations among various
router ports. It has been shown in [160] that if DeviationFromAverage;, for specific flow
exceeds 3 and DRjo =~ 1, the traffic flow should be considered as suspicious DDoS flooding

attack traffic. We measure DR;/o for those flows by accessing the packet counters (which

92

resides on DRAM) of the outgoing traffic of those flows in all the router ports. DR;/o(i,7)

is defined as follows:

Zout (tma])

(5.4)

Each router runs the detection algorithm for each incoming aggregated flow (for each entry
on the flow table) on the flow’s incoming port on the router. Algorithm 4 is the pseudo-code

of the detection algorithm on each router.

Algorithm 4 Traffic surge detection at the routers [160]
Input: in(ty,, i), out(tm, i), IN(ty_1,1),
OUT(ty—1,1),and B

Output: Sending proper alerts to TASs
1: Calculate and update TN (t,,,7) and Z,(tm,1)
2: Calculate DeviationFromAverage;,
3: if DeviationFromAverage;, > then
4: Calculate DR;/0
5. if DRyj0 =~ 1 then

6: Send suspicious flow alert to TAS

DCD’s Limitation: One of the main limitations of the DCD architecture is its incapa-
bility in discriminating between the DDoS flooding attacks and the flash crowds (fluctuations
of the legitimate traffic) [160]; since the CAT server creates the same tree when there is a
flash crowd and could raise a false alarm (false positive). Hence, the false positive rate
would increase significantly if we would add some sources of flash crowds in our experiments
in this section. Chen et al. proposed to check the newly appeared source IP addresses and
their distribution to find a new metric in order to differentiate between the flash crowds
and the DDoS flooding attacks [160]. Next, we present a recently proposed DDoS flooding
detection mechanism that incorporated Chen et al.’s suggestion and could outperform DCD
architecture in terms of both detection rate and false positive, specially when there is flash

crowds.

93

5.2 Case study 2: Distributed DDoS Flooding Detection based on Total
Variation Distance (TVD)

In our second case study, as we mentioned before, we have adopted one of the recently
proposed DDoS flooding detection mechanisms proposed in [176]. Rahmani et al. could
show some promising results in terms of detection performance compared to other detec-
tion mechanisms. Moreover, Rahmani et al.’s mechanism, we call TVD from now on, is a
distributed DDoS flooding detection mechanism that flow monitoring mechanisms such as
DiCoTraM and cSamp could provide with more covered flows as opposed to packet sampling
mechanisms. TVD is a two-stage mechanism that detects DDoS flooding attacks and differ-
entiates non-legitimate flows from legitimate flows (i.e., flash crowds) based on the detection
of breaks in the distribution of connection sizes. Connection is defined in [176] as the ag-
gregate traffic between two IP addresses (i.e., a source IP and a destination IP address) and
the connection size is measured by the number of packets traversing the connection. The
concept of connection in TVD mechanism is the same as super-flow concept defined by Chen
et al. in [160].

We have implemented a prototype of the TVD mechanism and conducted a series of
experiments by employing DiCoTraM and cSamp as two flow monitoring mechanisms to
compare their impact in terms of TVD’s DDoS flooding attack detection. Similar to our
previous case study, DiCoTraM and cSamp were the best options as TVD’s traffic moni-
toring mechanism since TVD mechanism requires to analyze the super-flow level statistics
(connection-level) as its input and both DiCoTraM and cSamp could provide such statistics

without further processing of the monitored data to extract the super-flows or connections.

For each connection (supper-flow), TVD not only requires to monitor and count the
number of packets heading to the destination IP address of the connection but also requires
to monitor and count the number of packets coming from the source IP address of the
connection. Hence, both DiCoTraM and cSamp prototype implementations are modified to
collect the number of packets coming from the source IP addresses of each of the connections
in addition to the number of packets heading to the destination IP addresses of each of the

connections.

94

5.2.1 TVD’s detection algorithm

As we mentioned earlier, TVD has two stages. In the first stage, horizontal TVD, TVD
detects the abnormal disruption in the inflow (i.e., same source IP address) connections size
distribution by observing the connection size distribution of the same connections in two
consecutive monitoring time windows. The outcome of the first stage determines the list of
suspicious attack flows (i.e. surge flows) and Rahmani et al. also shown that these results
are better than entropy-based detection mechanisms. The metric that TVD uses to detect
abnormal disruption in the inflow connections size distribution (supper-flow size) is the hor-
izontal TVD between two consecutive monitoring time windows. Assuming ¢, ts,t3, - ,tm
be the discrete monitoring time instances, Source(t,,,?) is an array of normalized frequencies
of source address bin size distribution for the ith connection during the monitoring time slot
m. Considering only K common connections (repetitive connections) in two consecutive time
windows?, the horizontal TVD between two consecutive monitoring time windows is defined

as follow:

K
1
Horizontal pyvp = 3 Z | Source(t,,, i) — Source(t,—1,1) | (5.5)

i=1

The detection mechanism queries SRAM for the updated flow table at each monitoring
time instance to extract the required statistics for inflow traffic. In our experiments, we
chose the optimum monitoring time window, based on the results of our experiments, to be
equal to 100ms.

The second stage of TVD detection algorithm differentiates the DDoS flooding attack
flows from the legitimate traffic changes that causes a surge (a.k.a. flash crowds). DDoS
flooding attack flows lead to divergence between the number of packets sent to and received
from a specific destination. In order to measure this divergence, Rahmani et al. proposed
total variation distance between inflow and outflow connection size distributions for two
consecutive monitoring time windows. Usually, false positives occur when the size of one
or several legitimate connections are larger than the average size of all active connections.

Consequently, distinguishing between the flash crowds and DDoS flooding attacks when the

3Super-flows that last for two consecutive monitoring time windows

95

variation in the size of the aggregate incoming flows are not accompanied by a proportional
change in the number of active connections is very difficult. When there exist a legitimate
aggregate traffic flows, the variation of the aggregate traffic size from source to destination
is accompanied by a relative change in the opposite direction. However, when there is an
aggregate DDoS flooding attack flows, the aforementioned dependency vanishes and there
will be a disparity in the size of flows that are exchanged between the attacker and the
victim [51-53,176] and this is a sign of the beginning of the congestion caused by DDoS
flooding attacks. Rahmani et al. proposed a differentiation distance metric to detect the
divergence between the number of packets sent to and received from a specific destination
as vertical TVD during the current monitoring time window. Assuming t¢i,ts,t3, - ,t,, be
the discrete monitoring time instances, Source(t,,,) is an array of normalized frequencies
of source address bin size distribution for the ith connection during the monitoring time slot
m for all the N connections during the current monitoring time window. Destination(t,,,1)
is an array of normalized frequencies of destination address bin size distribution for the ith
connection during the monitoring time slot m for all the N connections during the current
monitoring time window. We assume that the ith connection corresponds to the same
pair of IP addresses (source and destination IP addresses) and that both Source(t,,,i) and
Destination(t,,, i) may be equal to zero. The vertical TVD during the current monitoring

time window is defined as follow:

N
1
Vertical pyvp = 3 Z | Source(t,,, i) — Destination(t,,,1) | (5.6)
i=1

Similar to horizontal TVD measurement, vertical TVD measurement occurs by querying
SRAM for the updated flow table at each monitoring time window (i.e., 100ms) to extract
the required statistics. The thresholds for vertical and horizontal distances as suggested by
Rahmani et al. should be determined based on the normal traffic.

TVD, like any other detection scheme, could not completely detect all the attacks but it

could significantly reduce the false positive rate and increase the detection rate.

96

5.3 Evaluations & experiments

The main objective of any traffic monitoring mechanism must be to cover as many attack
flows as possible; hence, we believe it is fair to employ both cSamp and DiCoTraM as traffic
monitoring mechanisms that feed the monitored flow information to the DCD architecture
and TVD detection mechanism and compare these two traffic monitoring mechanisms in
terms of how successful they are in covering as many DDoS flooding attack flows as possible,
which leads to higher detection rate * and lower false positive rate. Hence, we perform series

of experiments that we explain next.

5.3.1 Experimental set-up

We used DETER testbed [172] and DETER’s SEER tool [173] for our experiments. We
have created the topology presented in Figure 5.1 on DETER. We used Harpoon [174] traffic
generator tool and Packet flooder attack tool which are part of SEER on DETER testbed
to generate legitimate and malicious traffic from various legitimate and malicious sources in

our experiments.

Harpoon is designed to create background network traffic. Harpoon can characterize a
traffic trace and generate a sequence of packets with the same timing characteristics but
with random data as packets’ payload. Harpoon also supports predefined statistical distri-
butions such as: minmax, gamma, pareto, exponential for generating traffic traces. In our
experiments, we employed exponential and pareto distributions randomly to create traffic
from various sources to target destination in order to create legitimate traffic load heading
to the target destination. Moreover, we used Harpoon to generate malicious traffic loads in

our experiments.

4Detection rate: Ratio of the number of malicious packets/flows that are detected (TP) to the total

TP
number of malicious packets/flows (M) — 57

97

Malicious traffic
source

Legitimate traffic
source

Ingress/Egress
Router

®ER

Communication
4 = == /[collaboration
channels among the
servers

Target AS(28 as10

DDosS flooding victim

N ,.
Destination A

Figure 5.1: DETER simulation set-up

Packet flooder attack tool of SEER is designed to generate various rates of TCP/UDP
(e.g., SYN, FIN, RST, ACK, PSH, URG) or ICMP packet floods from group of sources to a
DDoS flooding victim. We have generated three types of DDoS flooding attacks using packet
flooder, as it was suggested in [160], from the designated attack sources in our experiments

to flood our target destination that are explained as follow:

1. TCP SYN: TCP SYN flooding attacks are generated using fixed packet size of 64 bytes
with a fixed packet rate (packet rate is adjusted for each topology).

2. UDP/ICMP floods with 512B and 1024B packets sizes: Two types of UDP/ICMP}
flooding attacks are generated using fixed packet sizes of 512 and 1024 bytes with ad-

justed packet rates for each packet size setting.

We have implemented the simulation set-up shown in Figure 5.1 on DETER in which,
destination (A) in AS10 is under DDoS flooding attack. Since most of the packets in the
Internet can reach their destinations by traversing through 3 AS-hops (38.55%) or 4 AS-hops

98

(38.12%) [175], we chose the topology in Figure 5.1 in which destination (A) is 3 AS-hops
away from all the sources. In all of our experiments, we assume that there is a legitimate traf-
fic load to destination (A) that consumes ~ 50% of the destination’s bandwidth. Figure 5.1
simply depicts our DETER simulation set-up to launch DDoS flooding attacks against des-
tination (A) through 10 different ASs. The legitimate load originates from AS1, AS2, AS3,
AS5, and AS7 (12-13% of the total traffic each). We added malicious traffic loads originating
from AS1, AS3, AS4, and AS6 in our experiments.

Each node (i.e., router in our design) uses a classifier to sample the packets in NS-2. We
have modified the classifier to sample the packets at our defined sampling rates and to save

the fields and statistics, which we explained in Subsection 4.2.1, of the monitored packets

on SRAM and DRAM, respectively.

5.3.2 Performance evaluations

We run the simulation set-up in Figure 5.1 for one hour and separately employing DCD
architecture and TVD detection mechanism °. For each of the detection mechanisms we
employed cSamp and DiCoTraM separately. We run the simulation set-up for each detec-
tion mechanism and for each of the traffic monitoring mechanisms for 10 times. There is
a background traffic load to destination (A) that consumes =~ 50% of the A’s bandwidth.
We have generated five different mix of malicious/legitimate traffic that consume 60%, 70%,
80%, 90%, and 100% of the destination A’s bandwidth. In other words, we are overloading
(flooding) destination (A) by consuming 110%, 120%, 130%, 140%, and 150% of its band-
width. The mix of malicious/legitimate traffic are generated in such a way that half of the
traffic were malicious and the other half were legitimate. These scenario generate the case of
flash crowds to put TVD in test since it is capable of differentiating DDoS flooding attacks
from flash crowds. As we mentioned earlier, we run our simulation 10 times for each the

traffic mix scenarios (i.e., 60% , 70% , etc.). The bandwidth of the links for the destination
A were set at 100 MB/s.

5The correctness of our implementations of the DCD architecture and the TVD detection mechanism are
separately validated by replicating the results of some of the experiments that have been performed in [160]
and [176], respectively.

99

The malicious traffic and the legitimate traffic are known by their traffic sources so that
we can measure the detections rates and false positive rates of each set-up later (i.e., ground
truth). We added malicious loads (i.e., UDP/ICMP floods with 512b and 1024b packet sizes,
and TCP SYN flood) from AS1, AS3, AS4, and AS6, using Packet flooder attack tool of
SEER. We have also added legitimate traffic loads from AS1, AS2, AS3, AS5, and AS7,
using Harpoon traffic generator tool of SEER. The size of the buffer for all of the routers
during the simulation was kept constant and equal to SMB as in our previous experiments.

The packet rates (number of packets/second) for the packet flooder attack tool were
adjustable based on the size of the packets. In our experiments, based on the size of the
packets, packet rates of different flooding types were chosen as it is shown in Table 5.1.
Figure 5.2 shows the trade-off between the detection rate and false-positive rate for DCD
architecture and for three different types of DDoS flooding attacks employing DiCoTraM

and cSamp.

Table 5.1: Packet Flooder (Packet Size vs. Packet Rate)

Flood Type Packet Size Packet Rate
512 bytes | 20-22 KPkt/s
1024 bytes 11-12 KPkt/s
512 bytes 21-22 KPkt/s
1024 bytes 12-13 KPkt/s
TCP 64 bytes (fixed) | 60-62 KPkt/s

UDP

ICMP

Figure 5.2a, Figure 5.2b, and Figure 5.2¢ show the ROC curves including 95% confidence
interval for both detection rate (TPr) and false positive rate (FPr) 6 7 of the DCD archi-
tecture employing DiCoTraM and cSamp under TCP SYN with 64-bytes, and UDP/ICMP
attacks with 512-bytes and 1024-bytes. The reported results are based on o« = 0.1, 8 = 3.2,

6The 95% confidence interval is the interval in which the true area under the ROC curve lies with 95%
confidence

795% confidence interval (TPr/FPr) = average (TPr/FPr) of runs + 1.96 x Standard deviation
(TPr/FPr) of runs

100

and monitoring time slot = 100 ms in DCD architecture [160] by varying 6 from 0 to 9. The
aforementioned parameters are chosen because of their best results in our various experi-
ments. As seen in Figure 5.2, DiCoTraM performs significantly better than cSamp, specially
in terms of detection rate, as the DCD architecture’s 6 is changing to its optimum value
0 = 5 where the detection rate is reaching its maximum value. As we mentioned earlier,
DiCoTraM outperforms cSamp because of its higher DDoS flooding attack flow coverage.
In Figure 5.2a, the DCD architecture employing DiCoTraM, achieves a detection rate as
high as 99% and as low as 98% for high-rate (TCP SYN 64-bytes) DDoS flooding attack.
The amount of false positive rate increases from less than 5% to less than 15% as the amount
of traffic load to destination A increases to consumes 150% of the destination A’s bandwidth.
In Figure 5.2b, the DCD architecture employing DiCoTraM, achieves a detection rate as high
as 99% and as low as 97% for high-rate (UDP 512-bytes) DDoS flooding attack. Moreover,
the amount of false positive rate increases from less than 3% to less than 12% as the amount
of traffic load to destination A increases to consumes 150% of the destination A’s bandwidth.
For the low-rate UDP attacks (UDP 1024-bytes) for the DCD architecture that employs
DiCoTraM, as it is shown in Figure 5.2¢, the choice of a low CAT threshold (6 = 5) led to the
detection rate as high as 97% (when there is less malicious load) and as low as 92% (with the
maximum malicious load equal to 100%). The amount of false-positive rate also increases
from less than 5% to less than 13%. As we mentioned earlier, in the case of DCD architecture
that employs cSamp, the detection rates are decreased and false positive rates are increased
as opposed to the DCD architecture that employs DiCoTraM. The main reason behind this
is that cSamp covers the flows intended for the same destination fractionally (not necessarily
fully) over the routers on their paths. Hence, the traffic surge detection algorithm of those
routers may not detect a surge because specific fraction of flows may not pass the router’s
alarm threshold. Consequently, in all the figures, cSamp’s low flow coverage significantly
affects both the detection rate and the false positive rate of the DCD architecture and
DiCoTraM outperforms cSamp in terms of its resulting detection and false positive rates on

DCD architecture.

101

100

D N 0 W
o o o o

Detection Rate (%)
= N w ey w
o o o o o

o

100
90
80

N
o O

40

Detection Rate (%)
= N w w
o o o o

o

100
90
80

Detection Rate (%)
w B w (2] ~
o o o o o

N
o

10

—= roell—t—rr—ii ——r—r—t—r
—+—60%_DiCoTraM
100%_DiCoTraM
-#-60%_cSamp
100%_cSamp
10 20 30 40 50 60 70 80 90 100
False Positive Rate (%)
(a) TCP SYN 64-bytes
T B S W —
—+—60%_DiCoTraM
100%_DiCoTraM
-#--60%_cSamp
100%_cSamp
10 20 30 40 50 60 70 80 90 100
False Positive Rate (%)
(b) UDP 512-bytes
" _',—,-I—“' Bttt
——60%_DiCoTraM
100%_DiCoTraM
-#-60%_cSamp
100%_cSamp
10 20 30 40 50 60 70 80 90 100
False Positive Rate (%)

(c) UDP 1024-bytes

Figure 5.2: ROC curves including 95% confidence interval employing DCD architecture

102

Figure 5.3a, Figure 5.3b, and Figure 5.3c¢ show the ROC curves including 95% con-
fidence interval for both detection rate (TPr) and false positive rate (FPr) of the TVD
detection mechanism employing DiCoTraM and cSamp under TCP SYN with 64-bytes, and
UDP/ICMP attacks with 512-bytes and 1024-bytes. The reported results are based on the
monitoring time slot = 100 ms and by varying both Horizontal rvp and Vertical v p from
0 to 1 (in increments of 0.1). As it is shown in Figure 5.3, DiCoTraM performs signif-
icantly better than cSamp in terms of both detection rate and false positive rate, in all
the figures, when the amount of the thresholds are reaching their optimum values. The
Horizontal 7vp = 0.5 and Vertical ryp = 0.65 are the optimum values to reach the best
performance results in our experiments.

Again, as is shown in Figure 5.3, we can see that DiCoTraM has much better performance
than cSamp because of its higher DDoS flooding attack flow coverage. In Figure 5.3a and
Figure 5.3b, the TVD detection mechanism that employs DiCoTraM, achieves a detection
rate as high as 99.8% with less than 1% false positive rate for high-rate DDoS flooding attacks
(TCP SYN 64-bytes and UDP 512-bytes). Also, for the low-rate UDP flooding attacks (UDP
1024-bytes), employing TVD significantly improved both detection rate and false positive
rate. Employing the Horizontal vy p led to the detection rate as high as 98% and employing
Vertical 7vp led to the false-positive rate of less than 2%. An increased malicious load from
60% to 100% did not affect the detection rates significantly in all the figures for the case of
DiCoTraM as it aggregates all the flows heading to the same destination. As it is shown in
all of these figures, employing TVD significantly decreased the false positive rate since TVD
is capable of differentiating between DDoS flooding attacks and the flash crowds.

Employing TVD even decreased the false positive rates in all of the experiments (fig-
ures) for cSamp as well. However, DiCoTraM still outperforms cSamp in terms of its resulted
detection and false positive rates using TVD detection mechanism since cSamp covers less
DDoS flooding attack flows than DiCoTraM because the flows intended for the same desti-

nation are covered fractionally (not necessarily fully) over the routers on their paths.

103

100 ¢

Detection Rate (%)
= N w ey w D ~ o] o
o o o o o o o o o

o

100 ¢

A N 0 O
o o o o

Detection Rate (%)
= N w Y wv
o o o o o

o

100

Detection Rate (%)
= N w sy w D ~ o] (e}
o o o o o o o o o

o

Figure 5.3: ROC curves including 95% confidence interval employing TVD

-v:-u;_;_,_

T

—+—60%_DiCoTraM
100%_DiCoTraM

-#-60%_cSamp

100%_cSamp
0 10 20 30 40 50 60 70 80 90 100
False Positive Rate (%)
(a) TCP SYN 64-bytes
T st R it —
= -
1
- 1
e 2
|
]
14
C ——60%_DiCoTraM
‘-"}‘ 100%_DiCoTraM
=
4 -#--60%_cSamp
‘ ! 100%_cSamp
d
0 10 20 30 40 50 60 70 80 90 100
False Positive Rate (%)
(b) UDP 512-bytes
7*3 ————— ittt ettt
A
+
]
1
[
1
1
1
4
/I —+—60%_DiCoTraM
U
*‘ 100%_DiCoTraM
1]
1
¥' -#-60%_cSamp
/ 100%_cSamp
I”
0 10 20 30 40 50 60 70 80 90 100
False Positive Rate (%)

(c) UDP 1024-bytes

104

5.4 Support for earlier detection of DDoS flooding attacks

One of our key motivations for proposing DiCoTraM is to increase the DDoS flooding attack
flow coverage at the intermediate networks and closer to the sources of the attack; so that the
DDoS flooding defense mechanisms in place can analyze these covered attack flows, detect
the attacks, and eventually respond to these attacks earlier at the upstream ASs closer to
the sources of these attacks. In this section, we perform series of experiments in order to
evaluate DiCoTraM’s increased DDoS flooding attack flow coverage capability at their earlier
stages and closer to their sources.

For this purpose, we redo the same experimental set-up that we explained in section 5.3.1
and the same experiment we explained and performed in section 5.3.2 for the DCD archi-
tecture. In other words, for different attack traffic types (i.e., TCP SYN 64B, UDP flooding
512B, and UDP flooding 1024B) and for each of the two traffic monitoring mechanisms (Di-
CoTraM and cSamp), we run the simulation set-up 10 times. In each run, there are number
of routers that raised the alarm after running their local surge detection algorithm. The
raised alarms were either false positives or true positives. During each run of the simulation
set-up and for each router in our topology, we counted the number of times it raised an alarm
and the set of flows it raised an alarm for. At the end of each run of the simulation set-up
and by considering the results of the majority voting algorithm among the collaborating ASs,
we identified the routers that their raised alarms (for the suspicious flows) could successfully
lead to a collaborative detection.

As we explained earlier, DCD architecture collaboratively detects the DDoS flooding
attack flows by performing a majority voting like algorithm among the collaborative ASs
that reported those flows as suspicious flows. The majority voting algorithm decides on
whether the suspicious reported flows are the attack flows or not based on a predefined

threshold (#). This threshold is (f = 5) in our experiments.

105

Figure 5.4, on the DETER simulation-setup (Figure 5.1), shows the routers that were ef-
fectively involved in detecting the DDoS flooding attack flows for TCP SYN 64B DDoS flood-
ing attack type employing the cSamp monitoring mechanism after all runs of the simulation-
setup. As shown in Figure 5.4, the majority of the effective routers in detecting TCP SYN
64B attack are located on AS8, AS9, or AS10 and at most one AS-hops away from the

victim’s AS.

>
- -

Effectively involved in detection
(employing cSamp)

@ Malicious traffic
source

1
1 ‘ Legitimate traffic
/
-

—— o = = —

o - ———

source

e e e e e o= o = —— e = =

Ingress/Egress
DDosS flooding @ Router
victim

Figure 5.4: Routers effectively involved in detecting TCP SYN 64B flooding attack (employ-
ing cSamp)

106

Figure 5.5 shows the routers that were effectively involved in detecting the DDoS flood-
ing attack flows for TCP SYN 64B DDoS flooding attack type employing the DiCoTraM
monitoring mechanism after all runs of the simulation-setup. As shown in Figure 5.5, the
majority of the effective routers in detecting TCP SYN 64B attack are located on either
AS5, AS6, AS7, AS8, or AS9 and at most two AS-hops away from the victim’s AS which is

much closer to sources of the attacks than the results in Figure 5.4.

—— =

Effectively involved in detection
(employing DiCoTraM)

@ Malicious traffic
source
‘ Legitimate traffic

source

Ingress/Egress
DDosS flooding @ Router
victim

Figure 5.5: Routers effectively involved in detecting TCP SYN 64B flooding attack (employ-
ing DiCoTraM)

Note that most of the well-known ASs (e.g., AT&T, Sprintlink, etc.) are comprised of
large number of routers or monitoring devices and detecting DDoS flooding attacks even one
AS-hop (AS-hop level) earlier is a huge success; hence, these results are promising positive
results. DiCoTraM’s large DDoS flooding flow coverage at the intermediate network and

as close as possible to the sources of the attacks, in this case, leads to the DDoS flooding

107

attack detection at least one AS-hop earlier than the case of cSamp by employing the DCD
architecture.

We believe more work needs to be done in order to be able to generalize these results.
Various detection mechanisms need to be employed in different scenarios to ensure and vali-
date the results. In future, we are planning to evaluate DiCoTraM’s capability in supporting

early detection by employing more detection mechanisms and various scenarios.

108

5.5 Summary

In this chapter, we evaluated the effectiveness of DiCoTraM with cSamp (since cSamp’s
performance outperforms other traffic monitoring mechanisms) with regards to supporting
effective, early detection of DDoS flooding attacks (i.e., at the intermediate network). In
doing so, we implemented two of the existing DDoS flooding detection mechanisms, namely,
DCD architecture and TVD detection mechanism, where DiCoTraM and cSamp served as
the traffic monitoring mechanisms of both of these DDoS flooding detection mechnaisms.
Then, we compared both the detection rates and false positive rates achieved when DCD
architecture and TVD mechanism are employed over DiCoTraM and cSamp. As we men-
tioned earlier, these two DDoS flooding detection mechanisms were selected since they have
been shown to have good performance in detecting DDoS flooding attacks in the litrature.
Our experimental results show that DiCoTraM outperforms cSamp in all of our experiments
when they were employed as traffic monitoring mechanisms for both DCD architecture and
TVD detection mechanism. Moreover, in the same set-up and by employing DCD archi-
tecture, we evaluated and validated the DiCoTraM’s capability in early detection of DDoS
flooding attacks closer to their sources of the attacks (i.e., at upstream AS-hop levels closer

to the source ASs).

109

6.0 Conclusions and Future work

The work in this dissertation was motivated by two key observations we made in our lit-
erature review: (i) the incapability of the centralized DDoS flooding defense mechanisms
in detecting and stopping such attacks effectively and the expectation in seeing more dis-
tributed DDoS flooding defense mechanisms in short term, and (ii) the intrinsic challenges
of existing traffic monitoring mechanisms employed by the next generation of DDoS flooding
defense mechanisms, in enabling successful, early detection of DDoS flooding attacks at the

intermediate network:

e Coordination challenges of the device-centric approaches
e Low and costly flow coverage of the device-centric approaches

e Random flow coverage as opposed to prioritized flow coverage

We proposed a novel coordinated, network-wide, and DDoS flooding attack-tailored flow
monitoring mechanism (DiCoTraM) that could address the above key challenges of current
device-centric traffic monitoring mechanisms and helps effective, early detection of possible
DDoS flooding attack flows.

Next, we summarize our contributions in this dissertation and enumerate some potential

directions for future work.

110

6.1 Contributions

First, we studied the origin of DDoS flooding attacks, their variations, and present a survey
of existing solutions to the problem of DDoS flooding attacks. We summarized the list of
required features for the next generation of DDoS flooding defense mechanisms by catego-
rizing them into: short-to-medium term and long term. The most important requirement on
this list is to see more distributed DDoS flooding defense mechanisms in near future which
motivated us to conduct the research presented in this thesis. As our second step, we study
the existing traffic monitoring mechanisms and identify their various challenges within the
concept of DDoS flooding attack. The success in detecting DDoS flooding attacks in a dis-
tributed fashion is highly dependent on the quantity and quality of the distributed traffic
monitoring mechanisms that are being employed. Our review of the literature revealed var-
ious deficiencies in currently employed traffic monitoring mechanisms (e.g. uncoordinated
monitoring in device-centric approaches). Our key take out from this study was the need for
the next generation of DDoS defense mechanisms that ensure that the majority of the attack
flows are monitored/covered in each and every AS while satisfying the resource constraints
of the monitoring devices. Moreover, we highlighted the benefits of network-wide traffic
monitoring policy enforcement approaches over device-centric approaches.

We proposed DiCoTraM, a novel, centrally managed, network-wide traffic monitoring
mechanism to address the limitations of current traffic monitoring mechanisms with regards
to the problem of DDoS flooding attack. DiCoTraM coordinates monitoring responsibilities
among the monitoring devices while satisfying the resource constraints of the monitoring
devices. Moreover, DiCoTraM prioritizes the coverage of the DDoS flooding attack flows.
DiCoTraM’s coordination structure eliminates the redundant flow monitoring overheads due
to lack of coordination. Furthermore, DiCoTraM covers more DDoS flooding attack flows
which enables distributed detection of DDoS flooding attacks at the router-level and leads to
reduced communication overhead compared to centralized detection mechanisms. Central-
ized detection mechanisms centrally collect the monitored flows/packets for further analysis

at the end of each monitoring window which leads to huge communication overhead.

111

We presented a proof of concept implementation of DiCoTraM to show its applicabil-
ity. We reported the results of the experiments we performed to evaluate the performance
of DiCoTraM. We analyzed the scalability of DiCoTraM and improved it by proposing a
heuristic. Moreover, in order to reduce the computation time of the monitoring assignment
process in our proposed heuristic, we modified the heuristic by pre-processing the input to the
monitoring assignment process; consequently, the modified heuristic only run the monitoring
assignment process for the set of new or changed flows compared to the previous assignment.
In doing so, the modified heuristic kept the same assignment for the long-term flows as long
as the total DDoS flooding flow coverage was maintained or was not significantly fallen below
some predefined threshold.

We extended DiCoTraM to help the network operators in determining a list of candidate
monitoring devices to upgrade (i.e., memory upgrade) for achieving better flow coverage.
Extended version of DiCoTraM computed the amount of additional memory needed to fully
cover the traffic flows. We evaluated the memory consumption of the routers within a
well-known AS topology for both with and without DDoS flooding attacks by means of
simulations. Moreover, we performed a set of experiments in the same AS topology to
evaluate the effectiveness of the network planning capability that our extension provided in
terms of flow coverage in both with and without DDoS flooding attacks.

Finally, we evaluated the effectiveness of DiCoTraM with cSamp, that outperforms most
of other traffic monitoring mechanisms, with regards to supporting effective, early detection
of DDoS flooding attacks by employing two existing DDoS flooding detection mechanisms
over them. These two DDoS flooding detection mechanisms were selected since they had
been shown to perform well in detecting DDoS flooding attacks in the literature. We then
compared the effectiveness of DiCoTraM with that of cSamp by comparing the detection rates
and false positive rates achieved when the selected detection mechanisms (DCD architecture
and TVD detection mechanism) were employed over DiCoTraM and cSamp. Our results
showed that DiCoTraM outperformed cSamp in all of our experiments when they were
employed as traffic monitoring mechanisms of both DCD architecture and TVD detection

mechanism.

112

6.2 Limitations of Proposed Work

There are potential limitations of DiCoTraM; we overview them in this section.

Input dependency: DiCoTraM’s optimization formulation, like any other centralized
network management application that employs an optimization formulation to achieve its
network-wide objective (e.g., cSamp), is highly dependent on the accessibility and the ac-
curacy of its input parameters, namely: traffic matrices, routing information, and the tech-
nological capabilities of the monitoring devices (e.g., CPU, memory, etc.). Fortunately,
various traffic matrix estimation techniques [139,177,178] and routing tracking management
tools [179] have been proposed in the literature that are currently deployed in many net-
works for these purposes. Moreover, the capabilities of the monitoring devices are available
through their vendors or through straight-forward measurement techniques [180] that could
be performed on these devices to obtain these required capabilities. However, the accuracy
of the available inputs and the effects of inaccurate input parameters on the optimization
engines of any network management application (e.g., DiCoTraM) is still in question. For
instance, errors in estimated traffic matrices or inaccurate routing information due to recent
link failures/new nodes could lead to non-optimized solutions for the network management
applications that include those optimization models; hence, their high-level objectives will

not be achieved.

However, the effects of inaccurate inputs or approximate measurement may still lead to
reasonable results for various network management applications. For instance, as we have
shown in our scalability-improved proposed heuristic, we could still achieve reasonable results
by tolerating a certain performance degradation (i.e., predefined DDoS flooding tolerance
threshold) when we decided to pre-process the input, which would lead to a case of inaccurate
inputs, to reduce the computation time of the optimization formulation. The reported results
were not far off from the optimized results. It is possible to propose some specially tailored
heuristics for various network management applications that could workaround errors in
input estimates [136]. Moreover, an alternative approach is for the network administrators
to run the optimized solution to obtain the most accurate results when there is a change in

the network status or even periodically.

113

Scalability: One of the key challenges that we encountered in the DiCoTraM’s central-
ized optimization engine design which is also common in most of the centralized optimization
techniques (e.g., cSamp) is the scalability of the optimization engine when the problem sizes
are significantly large (e.g., large network topologies). For instance, as we showed in chapter
4, sometimes the problem size is too large that the optimization engine can not solve the
problem in a desirable time limit. However, most of the times, such scalability issues can be
handled through existing algorithmic techniques (heuristics) such as: Max-Flow or binary
search. For instance, for DiCoTraM, we could address its scalability challenge through our
proposed heuristic algorithm. Moreover, it is possible to reduce the input size by preprocess-
ing the input parameters, like what we proposed in our modified heuristic for DiCoTraM.
Furthermore, Sekar et. al proposed alternative approaches in which either the solutions
for expected configurations could be pre-computed (e.g., to adapt to predictable traffic dy-
namics) or distributed agents could run local algorithms with smaller problem sizes (smaller

input sizes) to achieve a global optimum objective [136].

Vulnerability: In random sampling traffic monitoring mechanisms, it is not easy for
the adversaries to determine which packets or flows are going to be monitored. However,
this is not the case for the centrally coordinated traffic monitoring mechanisms (e.g., cSamp,
DiCoTraM) and adversaries can evade the detection mechanisms easier [136]. In other words,
knowing the traffic monitoring configurations, especially with traffic monitoring mechanisms
like cSamp in which some of the hash ranges are fixed for large number of flows, attackers can
generate or redirect their traffic in such away that they can evade monitoring mechanisms;
consequently, they can evade detection mechanisms. However, the probability of a flow
that will not be covered, employing the coordinated sampling mechanisms, is really low as
opposed to random sampling mechanisms because of the significantly large flow coverage

that coordinated sampling mechanisms can provide.

Moreover, in case of DiCoTraM, assignments are mostly changing and they are random-
ized in nature (less deterministic) which would require significant efforts from the adversaries
in order to evade detection mechanisms. Moreover, the intrinsic funnel-like feature of the
DDoS flooding flows requires them to get aggregated at some points on their paths from

the attack sources to the victim as we mentioned in chapter 2; hence, the malicious traf-

114

fic will be eventually detected in the AS further down on the path from attack sources to
the victim since traffic monitoring mechanisms of downstream AS will be able to monitor
them. Furthermore, DiCoTraM’s monitoring configuration is dynamic and random since it
performs dynamic readjustments ! which makes it even harder for adversaries to determine
which packets or flows are going to be monitored.

Adoptability: Our proposed traffic monitoring mechanism can be employed by network
operators with the current device-centric set-ups only as a third-party middle-box 2. As we
highlighted in Chapter 3, the device-centric approaches are not capable of addressing the
future requirements of the network management applications in achieving various high-level
network management objectives and in enforcing these high-level management policies.

Nowadays, with the capabilities that recent trends in network management like SDN pro-
vides (separation of control plane from data plane led to various customizable control plane
applications) [155,157], network operators in network enterprises and ISPs are expected to be
capable of centrally specifying and achieving their network management objectives/policies
through transparent network management tools [158,159]. The development of various uni-
fied control interfaces that provide the network operators their required network-wide vis-
ibility to control and configure their networks centrally with various network management
tools/applications to achieve various high-level network management objectives (e.g., DiCo-

TraM), will increase and ease the adoption of the network management applications such as

DiCoTraM in near future [158,159].

I'Monitoring responsibility reassignments between the monitoring time windows by receiving feedback
from the system and when some predefined monitoring thresholds (i.e., reduced DDoS flooding flow coverage)
are passed.

20ne of the main limitations of middle-boxes is that their functionality is not visible and transparent to
network operators.

115

6.3 Future Work

There are several potential future directions related to the research presented in this disser-
tation that we briefly present them in this section.

Extending DiCoTraM to monitor statistics other than flow statistic: Some of
the Quality of Service (QoS) metrics (e.g., throughput, delay) cannot be monitored through
flow-level statistics that DiCoTraM is currently monitoring. Moreover, DiCoTraM, in its
current version, cannot provide all the statistics required for some pattern analysis appli-
cations. Hence, one future direction could be to extend DiCoTraM to monitor in a more
fine-grained manner and not only the flows’ 5-tuples [156].

Extending DiCoTraM to achieve other network management objectives: It is
possible to achieve/enforce various network management objectives/policies (e.g., traffic en-
gineering and network planning) through a network management task, like DiCoTraM, that
could integrate those objectives/policies. For instance, as we showed in chapter4, DiCoTraM
could coordinates traffic monitoring responsibilities among the routers by maximizing the
total flow coverage and also tracks the amount of minimum additional memory required
for full flow coverage as two integrated objectives. Hence, another possible future direction
could be to extend DiCoTraM in such away that it could achieve some other useful network
management objectives (e.g., maximizing the minimum flow coverage).

Providing a framework which includes multi-purpose network management
applications: With the new trends in SDN, various network management tasks (e.g., traffic
monitoring tasks) can be managed and optimally employed by the network operators within
their network enterprises. DiCoTraM could be one example of such tasks. Fach of these
various network management tasks will be the network management applications of such
framework. Such framework could also reduce the complexity of managing the networks
through an automated translation of network management policies (applications) into net-
work devices primitives. For instance, Sharma et. al, towards providing such framework,
proposed an an integrated network management and control system (i-NMCS) framework
that combines legacy network management functions such as discovery, fault detection with

the end-to-end flow provisioning and control enabled by SDN [181].

116

More productive resource provisioning: DiCoTraM is provisioning the memory re-
sources of the monitoring devices for incremental upgrades and several factors affect such
provisioning such as: routing dynamics, traffic changes, and etc. However, current resource
provisioning of DiCoTraM is only for one network management task namely traffic monitor-
ing and it only considers the memory resources of the monitoring devices. A promising future
goal would be to integrate other important network management tasks such as: traffic engi-
neering, performance optimization, and etc. with their specific resource requirements (e.g.,
CPU, memory, etc.) as part of a multi-purpose network management framework so that the
outcome of any resource provisioning component will be robust and could be immediately

applied by network operators.

117

BIBLIOGRAPHY

[1] CERT, Denial of Seruvice Attacks, June 4, 2001, [online]
http://www.cert.org/tech_tips/denial_of service.html

2] S. T. Zargar, J. B. D. Joshi, D. Tipper, A Survey of Defense Mechanisms Against Dis-
tributed Denial of Service (DDoS) Flooding Attacks, IEEE Communications Surveys &
Tutorials, vol. 15, no. 4, pp. 2046-2069, November 2013.

[3] J. Mirkovic and P. Reiher, A tazonomy of DDoS attack and DDoS defense mechanisms,
ACM SIGCOMM Computer Communications Review, vol. 34, no. 2, pp. 39-53, April
2004.

[4] L. C. Chen, T. A. Longstaff, K. M. Carley, Characterization of defence mechanisms
against distributed denial of service attacks, Computers and Security, vol. 23, no. 8, pp.
665-678, 2004.

[5] K. Lu, D. Wu, J. Fan, S. Todorovic, A. Nucci, Robust and efficient detection of DDoS
attacks for large-scale internet, Computer Networks, vol. 51, no. 18, pp. 5036-5056, 2007.

6] A Roadmap for Cybersecurity Research, Department of Homeland Security, 2009, [online]
http://www.cyber.st.dhs.gov/docs/DHS-Cybersecurity-Roadmap.pdf

[7] S. T. Zargar, J. B. D. Joshi, D. Tipper, DiCoTraM: A DDoS flooding attack tailored
Distributed Coordinated Traffic flow Monitoring, Elsevier Computers Security (to be
submitted), December 2013.

[8] S. T. Zargar, A. Clemm, J. B. D. Joshi, Network and Traffic Monitoring in Software
Defined Networks, IEEE Communications Magazine (Major revision), Submitted May
11, 2013, first round review October 22, 2013.

[9] P. J. Criscuolo, Distributed Denial of Service, Tribe Flood Network 2000, and Stachel-
draht CIAC-2319, Department of Energy Computer Incident Advisory Capability
(CIAC), UCRL-ID-136939, Rev. 1., Lawrence Livermore National Laboratory, February
14, 2000.

118

[10] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly, DDoS-Resilient Scheduling
to Counter Application Layer Attacks under Imperfect Detection, IEEE INFOCOM’06,
2006.

[11] R. K. C. Chang, Defending against flooding-based distributed denial of service attacks:

A tutorial, Computer journal of IEEE Communications Magazine, Vol. 40, no. 10, pp.
42-51, 2002.

[12] R. Puri, Bots and Botnet - an overview, Aug. 08, 2003, |online]
http://www.giac.org/practical/ GSEC/Ramneek_Puri_ GSEC.pdf

[13] B. Todd, Distributed Denial of Service Attacks, Feb. 18, 2000, [online]
http://www.linuxsecurity.com /resource_files /intrusion_detection/ ddos—whitepaper.html

[14] J. Liu, Y. Xiao, K. Ghaboosi, H. Deng, and J. Zhang, Botnet: Classification, Attacks,
Detection, Tracing, and Preventive Measures, EURASIP Journal on Wireless Communi-
cations and Networking, vol. 2009, Article ID 692654, 11 pages, 2009.

[15] Yahoo on Trail of Site Hackers, Wired.com, Feb. 8, 2000, [online]
http://www.wired.com/news/business/0,1367,34221,00.html

[16] Powerful Attack Cripples Internet, Oct. 23, 2002, [online]
http://www.greenspun.com/bboard /q—and—a—fetch-msg.tcl?msg _id=00A7G7

[17] Mydoom lesson: Take proactive steps to prevent DDoS attacks, Feb.
6, 2004, [online] http://www.computerworld.com/s/article/89932/Mydoom
_lesson_Take _proactive_steps_to_prevent_DDoS _attacks?taxonomyld=017

(18] Lazy Hacker and Little Worm Set Off Cyberwar Frenzy, July 8, 2009, [online]
http://www.wired.com/threatlevel /2009/07 /mydoom/

[19] New “cyber attacks” hit S Korea, July 9, 2009, [online] http://news.bbc.co.uk/2/hi/asia-
pacific/8142282.stm

[20] Operation Payback cripples MasterCard site in revenge for WikiLeaks ban, Dec.
8, 2010, [online] http://www.guardian.co.uk/media/2010/dec/08/operation—payback —
mastercard—website—wikileaks

[21] T. Kitten, DDoS: Lessons from Phase 2 Attacks, Jan. 14, 2013, [online]
http://www.bankinfosecurity.com/ddos-attacks-lessons-from-phase-2-a-54 20/op-1

[22] Forrester Consulting, The Trends And Changing Landscape Of DDoS Threats And Pro-
tection, A commissioned study conducted by Forrester Consulting on behalf of VeriSign,
Inc., July 2009.

(23] Worldwide Infrastructure Security Report: Volume VI, 2011 Report, Arbor Networks,
Feb. 1st, 2011, [online] http://www.arbornetworks.com/report

119

[24] Prolexic Technologies, [online] http://www.prolexic.com/index.php _knowledge—
center /frequently—asked—questions/index.html

[25] T. Peng, C. Leckie, and K. Ramamohanarao, Survey of network-based defense mech-
anisms countering the DoS and DDoS problems, ACM Comput. Surv. 39, 1, Article 3,
April 2007.

[26] U. Tariq, M. Hong, and K. Lhee, A Comprehensive Categorization of DDoS Attack and
DDoS Defense Techniques, ADMA LNAI 4093, pp. 1025-1036, 2006.

[27] S. M. Specht, and R. B. Lee, Distributed Denial of Service: Taronomies of Attacks,
Tools and Countermeasures, in Proc. of the 17th International Conference on Parallel
and Distributed Computing Systems, pp.543-550, 2004.

[28] RioRey, Inc. 2009-2012, RioRey Taxonomy of DDoS Attacks, Ri-
oRey_Taxonomy_Rev_2.3.2012, 2012. [online] http://www.riorey.com/x-
resources/2012/RioRey_Taxonomy_DDoS _Attacks_2012.pdf

[29] C. Douligeris, and A. Mitrokotsa, DDoS attacks and defense mechanisms: classification
and state-of-the-art, Computer Networks, Vol. 44, No. 5, pp. 643-666, April 2004.

[30] S. Ranjan, R. Swaminathan, M. Uysal, A. Nucci, and E. Knightly, DDoS-Shield: DDoS-
Resilient Scheduling to Counter Application Layer attacks, IEEE/ACM Transactions on
Networking, Vol. 17, No. 1, pp. 2639, February 2009.

[31] Arbor Application Brief: The Growing Threat of Application-
Layer DDoS Attacks, Arbor Networks, Feb. 28, 2011, [online]
http://www.arbornetworks.com/component /docman/doc_download /467 -the-growing-
threat-of-application-layer-ddos-attacks?Itemid=442.

[32] BreakingPoint Labs, Application-Layer ~ DDoS Attacks Are Grow-
ing: Three — to Watch ~ Out For, Oct. 4, 2011, [online]
http://www.breakingpointsystems.com /resources/blog/application-layer -ddos-attacks-

growing/

[33] ha.ckers.org, Slowloris HTTP DoS, Retrieved Oct. 19, 2012, [online]
http://ha.ckers.org/slowloris/

[34] TrustWave SpiderLab, (Updated) — ModSecurity — Advanced — Topic of the
Week: Mitigating Slow HTTP DoS Attacks, Jul. 13, 2011, |online]
http://blog.spiderlabs.com/2011/07 /advanced-topic-of-the-week -mitigating-slow-
http-dos-attacks.html

[35] K. J. Higgins, Researchers To Demonstrate New Attack That Exploits HTTP, Nov.
01, 2010, [online] http://www.darkreading.com/vulnerability-management /167901026
/security /attacks-breaches /228000532 /index.html

120

[36] S. Shekyan, Are you ready for slow reading?, Jan. 5, 2012, [online]
https://community.qualys.com/blogs/securitylabs/2012/01/05 /slow-read

[37] E. Alomari, S. Manickam, B. B. Gupta, S. Karuppayah, and R. Alfaris, Botnet-based
Distributed Denial of Service (DDoS) Attacks on Web Servers: Classification and Art,
International Journal of Computer Applications, Vol. 49, no. 7, pp. 24-32, Jul., 2012.

38 J. Lo et al, An [IRC Tutorial, April, 2003, irchelp.com 1997, [online]
http://www.irchelp.org/irchelp /irctutorial.html#part1.

[39] B. Hancock, Trinity v3, a DDoS tool, hits the streets, Computers & Security, Vol. 19,
no. 7, pp. 574-574, Nov., 2000.

[40] Bysin, knight.c sourcecode, 2001, [online] http://packetstormsecurity.org/distributed/
knight.c.

[41] team-cymru Inc., A Taste of HTTP Botnets, July, 2008, [online] http://www.team-
cymru.com/ReadingRoom/Whitepapers/2008/http- botnets.pdf

[42] J. Nazario, BlackEnergy DDoS Bot Analysis, Arbor Networks, 2007, [online]
http://atlas-public.ec2.arbor.net /docs/BlackEnergy+DDoS+Bot+ Analysis.pdf

[43] Praetox Technologies Low Orbit Ion Cannon, 2010, [online]
https://github.com/NewEraCracker /LOIC/

[44] E. Mills, DOJ, FBI, entertainment industry sites attacked after piracy arrests, 2012, [on-
line] http://news.cnet.com/8301-27080_3-57362279-245/doj-fbi-entertainment -industry-
sites-attacked-after-piracy-arrests.

[45] C. Wilson , DDoS and Security Reports: The Arbor Networks Security Blog, Arbor
Networks, 2011, [online] http://ddos.arbornetworks.com/2012/02/ddos-tools/.

[46] [online] http://infosecisland.com /blogview/12395-DDoS-Attack ~ —Utilizes—Self-
Destructing—Botnet.html

[47] Cisco, IPS 7.0 Global Correlation, 20009, [online]
http://www.cisco.com/en/US/docs/security /ips/7.0/configuration
/guide/ime/ime_collaboration.html

[48] P. Ferguson, and D. Senie, Network Ingress Filtering: Defeating Denial of Service At-
tacks that employ IP source address spoofing, Internet RFC 2827, 2000.

[49] S. Kent, and R. Atkinson, Security Architecture for the Internet Protocol, IETF, RFC
2401, November 1998.

[50] S. Kent, and R. Atkinson, IP Authentication Header, IETF, RFC 2402, November 1998.

121

[51] J. Mirkovic, G. Prier, and P. Reiher, Attacking DDoS at the Source, in Proc. of the
10th IEEE International Conference on Network Protocols (ICNP ’02), Washington DC,
USA, 2002.

[52] J. Mirkovic, G. Prier, and P. Reihe, Source-End DDoS Defense, in Proc. of 2nd IEEE
International Symposium on Network Computing and Applications, April 2003.

[53] T. M. Gil, and M. Poleto, MULTOPS: a data-structure for bandwidth attack detection,
in Proc. of 10th Usenix Security Symposium, Washington, DC, pp. 2338, August 1317,
2001.

[54] S. Abdelsayed, D. Glimsholt, C. Leckie, S. Ryan, and S. Shami, An efficient filter for
denial-of-service bandwidth attacks, in Proc. of the 46th IEEE Global Telecommunications
Conference (GLOBECOMO3), pp. 13531357, 2003.

[55] Mananet, Reverse Firewall, [online] http://www.cs3—
inc.com/pubs/Reverse_FireWall.pdf

[56] A. John, and T. Sivakumar, DDoS: Survey of Traceback Methods, International Jour-
nal of Recent Trends in Engineering ACEEE (Association of Computer Electronics &
Electrical Engineers), vol. 1, no. 2, May 2009.

[57] R. Chen, J. M. Park, and R. Marchany, RIM: Router interface marking for IP traceback,
in IEEE Global Telecommunications Conference (GLOBECOM’06), 2006.

[58] B. Al-Duwairi, and G. Manimaran, Novel Hybrid Schemes Employing Packet Marking
and Logging for IP Traceback, IEEE Trans. Parallel and Distributed Systems, vol. 17, no.
5, pp. 403- 418, May 2006.

[59] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, Practical Network Support for IP
Traceback, Technical report, Department of Computer Science and Engineering, Univer-
sity of Washington, 2000.

[60] H. Burch, and B. Cheswick, Tracing anonymous packets to their approximate source,
in Proc. of the USENIX Large Installation Systems Administration Conference, pages
319-327, New Orleans, USA, Decemeber 2000.

61] J. Glave, Smurfing cripples ISPs, in Wired TechnologyNews, 1998, [online]
http://www.wired.com/news /news/technology/story/9506.html

[62] Y. C. Wu, H. R. Tseng, W. Yang, and R. H. Jan, DDoS detection and traceback with
decision tree and grey relational analysis, Int. J. Ad Hoc Ubiquitous Comput., vol. 7, no.
2, pp- 121-136, 2011.

[63] B. Joao, D. Cabrera, and et al., Proactive Detection of Distributed Denial of Service At-
tacks Using MIB Traffic Variables A Feasibility Study, Integrated Network Management
Proceedings, pp. 609-622, 2001.

122

[64] R. Jalili, F. ImaniMehr, Detection of Distributed Denial of Service Attacks Using Sta-
tistical Pre-Prossesor and Unsupervised Neural Network, ISPEC, Springer-Verlag Berlin
Heidelberg, pp.192-203, 2005.

[65] M. Li, J. Liu, and D. Long, Probability Principle of Reliable Approach to detect signs of
DDOS Flood Attacks, PDCAT, Springer-Verlag Berlin Heidelberg, pp.596-599, 2004.

[66] T. Peng, C. Leckie, and K. Ramamohanarao, Protection from distributed denial of ser-
vice attacks using history-based IP filtering, ICC '03. May , Vol.1, pp: 482- 486, 2003.

[67] H. Wang, C. Jin, and K. G. Shin, Defense Against Spoofed IP Traffic Using Hop-Count
Filtering, IEEE/ACM Trans. On Networking, vol. 15, no. 1, pp.40-53, February 2007.

[68] M. Abliz, Internet Denial of Service Attacks and Defense Mechanisms, University of
Pittsburgh, Department of Computer Science, Technical Report. TR-11-178, March 2011.

[69] A. Yaar, A. Perrig, and D. Song, Pi: A Path Identification Mechanism to Defend against
DDoS Attacks, in IEEE Symposium on Security and Privacy, pp. 93, 2003.

[70] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao, PacketScore: A Statistics-Based
Packet Filtering Scheme against Distributed Denial-of-Service Attacks, IEEE Trans. On
Dependable and Secure Computing, vol. 3, no. 2, pp. 141-155, 2006.

[71] E. Y. K. Chan et al., Intrusion Detection Routers: Design, Implementation and Evalua-
tion Using an Fxperimental Testbed, IEEE Journal on Selected Areas in Communications,
vol. 24, no. 10, pp. 1889 - 1900, 2006.

[72] K. Park, and H. Lee, On the effectiveness of probabilistic packet marking for IP traceback
under denial of service attack, in Proc. of IEEE INFOCOM 2001, pp. 338347.

(73] K. Park, and H. Lee, On the Effectiveness of Route-Based Packet Filtering for Dis-
tributed DoS Attack Prevention in Power-Law Internets, in Proc. ACM SIGCOMM, Au-
gust 2001.

[74] A. T. Mizrak, S. Savage, and K. Marzullo, Detecting compromised routers via packet
forwarding behavior, IEEE Network, pp.34-39, 2008.

[75] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson, Detecting
Disruptive Routers: A Distributed Network Monitoring Approach, in Proc. of the 1998
IEEE Symposium on Security and Privacy, May 1998.

[76] J. R. Hughes, T. Aura, and M. Bishop, Using Conservation of Flow as a Security
Mechanism in Network Protocols, in Proc. of the 2000 IEEE Symposium on Security and
Privacy, May 2000.

[77] J. M. Gonzalez, M. Anwar, and J. B. D. Joshi, A trust-based approach against IP-spoofing
attacks, in Proc. of the IEEE PST, pp. 63-70, 2011.

123

[78] P. Zhou, X. Luo, A. Chen, and R. K. C. Chang, STor: Social Network based Anonymous
Communication in Tor, in The Computing Research Repository (CoRR), 2011.

[79] S. T. Zargar, and J. B. D. Joshi, A Collaborative Approach to Facilitate Intrusion Detec-
tion and Response against DDoS Attacks, the 6th Intl Conference on Collaborative Com-
puting: Networking, Applications and Worksharing (CollaborateCom 2010), Chicago, IL,
October 9-12, 2010.

[80] M. R. Sharma, and J. W. Byers, Scalable Coordination Techniques for Distributed Net-
work Monitoring, in Proc. of PAM, pp. 349-352, 2005.

[81] B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC 3954, 2004.

[82] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker, Control-
ling high bandwidth aggregates in the network, presented at Computer Communication
Review, pp.62-73, 2002.

[83] D. Yau, J. C. S. Lui, and F. Liang, Defending against distributed denial of service
attacks using mazx-min fair server centric router throttles, IEEE international conference
on Quality of Service. 2002.

[84] R. Chen, and J. M. Park, Attack Diagnosis: Throttling distributed denial-of-service
attacks close to the attack sources, IEEE Int’l Conference on Computer Communications
and Networks (ICCCN’05), Oct. 2005.

[85] R. Chen, J. M. Park, and R. Marchany, TRACK: A novel approach for defending against
distributed denial-of-service attacks, Technical Report TR-ECE-06-02, Dept. of Electrical
and Computer Engineering, Virginia Tech, Feb. 2006.

[86] J. Mirkovic, P. Reiher, and M. Robinson, Forming Alliance for DDoS Defense, in Proc.
of New Security Paradigms Workshop, Centro Stefano Francini, Ascona, Switzerland,
2003.

[87] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, and R. Govindan, Cossack:
Coordinated Suppression of Simultaneous Attacks, in Proc. of the DARPA Information
Survivability Conference and Exposition, Vol. 1, pp. 2 13, Apr. 2003.

[88] T. Anderson, T. Roscoe, and D. Wetherall, Preventing Internet denial-of-service with
capabilities, SIGCOMM Comput. Commun. Rev., vol. 34, no. 1, pp. 39-44, 2004.

[89] B. Parno et al., Portcullis: protecting connection setup from denial-of-capability attacks,
SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp. 289-300, 2007.

[90] X. Yang, D. Wetherall, and T. Anderson, TVA: a DoS-limiting network architecture,
IEEE/ACM Trans. Netw., vol. 16, no. 6, pp. 1267-1280, 2008.

[91] X. Yang, D. Wetherall, and T. Anderson, A DoS-limiting Architecture, in ACM SIG-
COMM, Philadelphia, PA, USA, August 2005.

124

[92] A. Yaar, A. Perrig, and D. Song, SIFF: a Stateless Internet Flow Filter to Mitigate
DDoS Flooding Attacks, in Proc. of the 2004 IEEE Symposium on Security and Privacy,
pp. 130-143, May 2004.

93] X. Liu, A. Li, X. Yang, and D. Wetherall, Passport: secure and adoptable source au-
thentication, in Proc. of the 5th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’08), San Francisco, CA, USA, pp. 365-378, 2008.

[94] X. Liu, X. Yang, and Y. Lu, To filter or to authorize: network-layer DoS defense against
multimillion-node botnets, in Proc. of the ACM SIGCOMM conference on Data commu-
nication (SIGCOMM ’08), NY, USA, pp. 195-206, 2008.

[95] X. Yang, A DoS Limiting Network Architecture, [online]
http://www.cs.duke.edu/nds/ddos/

[96] K. Argyraki, and D. R. Cheriton, Scalable network-layer defense against internet
bandwidth-flooding attacks, in IEEE/ACM Trans. Netw., 17(4), pp. 1284-1297, August
2009.

[97] F. Huici, Deployable Filtering Architectures Against Large Denial-of-Service Attacks,
Ph.D. dissertation, Department of Computer Science, University College London, De-
cember, 2009.

(98] X. Liu, X. Yang, and Y. Lu, Stoplt: Mitigating DoS Flooding Attacks from Multi-Million
Botnets, Technical Report 08-05, http://www.cs.duke.edu/ xinl/stopit-tr.pdf

[99] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis, Detecting DNS Ampli-
fication Attacks, in Critical Information Infrastructures Security Lecture Notes in Com-
puter Science, Vol. 5141, pp. 185-196, 2008.

[100] A. Rahul, S. K. Prashanth, B. S. kumarand , and G. Arun, Detection of Intruders and
Flooding In Voip Using IDS, Jacobson Fast And Hellinger Distance Algorithms, IOSR
Journal of Computer Engineering (IOSRJCE), Vol. 2, no. 2, pp. 30-36, July-Aug. 2012.

[101] S. Ranjan, R. Swaminathan, M. Uysal, A. Nucci, and E. Knightly, DDoS-shield: DDoS-
resilient scheduling to counter application layer attacks, IEEE/ACM Trans. Netw., Vol.
17, no. 1, pp. 26-39, February 2009.

[102] Y. Xie, and S. Z. Yu, A large-scale hidden semi-Markov model for anomaly detection
on user browsing behaviors, IEEE/ACM Transactions on Networking (TON), Vol. 17, no.
1, pp. 54-65, February 2009.

[103] H. L. Liu, and K. C. Chang, Defending systems Against Tilt DDoS attacks, Telecom-
munication Systems, Services, and Applications (TSSA), pp. 22-27, October 20-21, 2011.

[104] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker, DDoS defense
by offense, SIGCOMM Computer Communications Review, Vol. 36, no. 4, pp. 303-314,
August 2006.

125

[105] J. Yu, Z. Li, H. Chen, and X. Chen, A Detection and Offense Mechanism to Defend
Against Application Layer DDoS Attacks, the third International Conference on Network-
ing and Services (ICNS’07), pp. 54, June 19-25, 2007.

[106] S. Kandula, D. Katabi, M. Jacob, and A. W. Berger, Botz-4-sale: Surviving organized
ddos attacks that mimic flash crowds, in Proc. of Symposium on Networked Systems
Design and Implementation (NSDI), Boston, May 2005.

[107] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford, CAPTCHA: using hard AI prob-
lems for security, in Proc. of the 22nd international conference on Theory and applica-
tions of cryptographic techniques (EUROCRYPT’03), Eli Biham (Ed.). Springer-Verlag,
Berlin, Heidelberg, 294-311. 2003.

[108] G. Oikonomou, and J. Mirkovic, Modeling human behavior for defense against flash-
crowd attacks, in Proc. of the 2009 IEEE international conference on Communications

(ICC09), pp. 625-630, 2000.

[109] M. Srivatsa, A. Iyengar, J. Yin, and L. Liu, Mitigating application-level denial of service
attacks on Web servers: A client-transparent approach, ACM Transactions on the Web
(TWEB), Vol. 2, no. 3, July 2008.

[110] J. Yu, C. Fang, L. Lu, and Z. Li, A Lightweight Mechanism to Mitigate Application
Layer DDoS Attacks, in Proc. of Infoscale 2009, LNICST 18, pp. 175191, 2009.

[111] S. R. Devi, and P. Yogesh, A hybrid approach to counter application layer DDoS attacks,
International Journal on Cryptography and Information Security(IJCIS), Vol. 2, no.2,
June 2012.

[112] X. Geng, and A. B. Whinston, Defeating Distributed Denial of Service attacks, IEEE
IT Professional, 2(4), pp. 36-42, 2002.

[113] Strategies to Protect Against Distributed Denial of Ser-
vice (DDoS) Attacks, Retrieved Oct. 19, 2012, [online]
http://www.cisco.com/en/US /tech/tk59 /technologies/_white_paper09186a
0080174a5b.shtml

[114] A. D. Keromytis, V. Misra, and D. Rubenstein, SOS: Secure Qverlay Services, in Proc.
of SIGCOMM’02, 2002.

[115] D. G. Andersen, V. Misra, and D. Rubenstein, Mayday: Distributed filtering for inter-
net services, in Proc. of USENIX’03, 2003.

[116] J. Yan, S. Early, and R. Anderson, The XenoService - A Distributed Defeat for Dis-
tributed Denial of Service, in Proc. of ISW 2000, October 2000.

[117] ICANN Report, DNS Distributed Denial of Service (DDoS) Attacks, Security and Sta-
bility Advisory Committee (SSAC), March 2006.

126

[118] Y. Huang, and J. M. Pullen, Countering Denial of Service attacks using congestion
triggered packet sampling and filtering, in Proc. of the 10th International Conference on
Computer Communiations and Networks, 2001.

[119] R. M. Mutebi, and I. A. Rai, An Integrated Victim-based Approach against IP Packet
Flooding Denial of Service, International Journal of Computing and ICT Research, Spe-
cial Issue Vol. 4, No. 1, pp. 70-80, October 2010.

[120] V. A. Siris, and F. Papaglou, Application of anomaly detection algorithms for detecting
syn flooding attacks, in Proc. of the IEEE GLOBECOM, 2004.

[121] T. Peng, C. Leckie, and K. Ramamohanarao, Detecting distributed de-
nial of service attacks wusing source ip address monitoring, 2003, [Online]
http://www.cs.mu.oz.au/tpeng/mudguard /research/detection.pdf

[122] A. Dainotti, A. Pescape, and G. Ventre, Wavelet-based detection of dos attacks, in
IEEE Global Telecommunications Conference, GLOBECOM, 2006.

[123] M. Kim, H. Kang, S. Hong, S. Chung, and J. W. Hong, A flow-based method for
abnormal network traffic detection, in Network Operations and Management Symposium,
vol. 1, pp. 599-612, April 2004.

[124] S. T. Zargar, H. Takabi, and J. B. D. Joshi, DCDIDP: A Distributed, Collaborative,
and Data-driven Intrusion Detection and Prevention Framework for Cloud Computing
Environments, the 7th Intl Conference on Collaborative Computing: Networking, Appli-
cations and Worksharing (CollaborateCom 2011), October 15-18, 2011, Orlando, FL.

[125] J. Carter, The Internet of Things: how it’ll revolutionise your devices, techradar, July
2012, [online| http://www.techradar.com/news/internet /the-internet-of-things-how-itll -
revolutionise-your-devices-958669

[126] D. Evans, The Internet of Things [INFOGRAPHIC], Cisco Blog, July 2011, [online]
http://blogs.cisco.com /news/the-internet-of-things-infographic/

[127] M. Chui, M. Lffler, and R. Roberts, The Internet of Things, McKinsey Quarterly,
March 2010, [online] http://www.mckinseyquarterly.com/The_Internet_of_Things_2538

[128] R. E. Jurga, M. L. M. Hulboj, Packet Sampling for Network Monitoring, Technical
report, CERN HP Procurve openlab project, December 2007.

[129] Clisco NetFlow, [online] http://www.cisco.com/en/US /products
/ps6601 /products_ios_protocol_group_home.html

[130] J. Mai, C. N. Chuah, A. Sridharan, T. Ye, and H. Zang, Is Sampled Data Sufficient
for Anomaly Detection?, In Proc. of IMC, 2006.

[131] A. Kumar, M. Sung, J. Xu, and J. Wang, Data Streaming Algorithms for Efficient and
Accurate Estimation of Flow Distribution, In Proc. of ACM SIGMETRICS, 2004.

127

[132] N. Hohn, and D. Veitch, Inverting Sampled Traffic, In Proc. of IMC, 2003.

[133] B. Li, J. Springer, G. Bebis, and M. H. Gunes, A survey of network flow applications,
Journal of Network and Computer Applications, vol. 36, pp. 567-581, 2013.

[134] N. Hohn, and D. Veitch, Inverting sampled traffic, IEEE/ACM Transactions on Net-
working, vol. 14, no. 1, pp. 68-80, 2006.

[135] M. Canini, D. Fay, D. J. Miller, A. W. Moor, and R. Bolla, Per Flow Packet Sampling
for High-Speed Network Monitoring, In Proc. of COMSNETS, 2009.

[136] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and D. G. Andersen,
cSamp: a system for network-wide flow monitoring, NSDI'08: Proceedings of the 5Hth

USENIX Symposium on Networked Systems Design and Implementation, San Francisco,
CA, pp. 233-246, 2008.

[137] K. Bartos, and M.Rehak, Towards Efficient Flow Sampling Technique for Anomaly
Detection, In Traffic Monitoring and Analysis, LNCS, vol. 7189, pp. 93-106, 2012.

[138] M. Lee, M. Hajjat, R. R. Kompella, and S. Rao, RelSamp: Preserving application
structure in sampled flow measurements, In IEEE INFOCOM, pp. 2354-2362, 2011.

[139] Y. Zhang, M. Roughan, N. Duffield, A. Greenberg, Fast Accurate Computation of
Large-scale IP Traffic Matrices from Link Loads, SIGMETRICS ’03: Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and modelling of
computer systems, New York, NY, pp. 206-217, 2003.

[140] A. Lakhina, M. Crovella, C. Ditot, Diagnosing Network-Wide Traffic Anomalies, In
ACM SIGCOMM’04, New York, NY, pp. 219-230, 2004.

[141] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, N. Taft, Structural
Analysis of Network Traffic Flows, In ACM SIGMETRICS ’04/Performance '04, New
York, NY, pp. 61-72,2004.

[142] X. Li, F. Bian, H. Zhang, C. Diot, R. Govindan, W. Hong, G. lannaccone, MIND:
A Distributed Multidimensional Indexing for Network Diagnosis, In INFOCOM’06,
Barcelona, Spain, pp. 1-12, 2006.

[143] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Meyers, J. Rexford, G. Xie, H. Yan,
J. Zhan, H. Zhang, A Clean Slate 4D Approach to Network Control and Management,
ACM SIGCOMM Computer Communication Review, vol. 35, no. 5, pp. 41-54, 2005.

[144] H. Ballani, P. Francis, CONMan: A Step Towards Network Manageability, ACM SIG-
COMM Computer Communication Review, vol. 37, no. 4, pp. 205-216, 2007.

[145] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, J. Van der merwe, Design
and implementation of a Routing Control Platform, NSDI’05: Proceedings of the 5th

128

USENIX Symposium on Networked Systems Design and Implementation, Berkeley, CA,
pp. 15-28, 2005.

[146] M. R. , Sharma, and J. W. | Byers, Scalable coordination techniques for distributed
network monitoring, In PAM ’05: Proceedings of the 6th international conference on

Passive and Active Network Measurement, Springer-Verlag, Berlin, Heidelberg, pp. 349-
352, 2005.

[147] C. Chadet, E. Fleury, 1. Lassous, Herve, M. E. Voge, Optimal Positioning of Active
and Passive Monitoring Devices, In CoNeXT ’05, NY, USA, pp. 71-82, 2005.

[148] K. Park, H. Lee, On the Effectiveness of Route-Based Packet Filtering for Distributed
DoS Attack Prevention in Power-Law Internets, In ACM SIGCOMM Comput. Commun.
Rev., vol. 31, no. 4, pp. 15-26, 2001.

[149] K. Suh, Y. Guo, J. Kurose, D. Towsley, Locating Network Monitors: Complezity,
heuristics and coverage, In INFOCOM 05, pp. 351-361, 2005.

[150] A. Lakhina, M. Crovella, and C. Diot, Mining anomalies using traffic feature distribu-
tions, In Proc. ACM SIGCOMM, 2005.

[151] A. Kumar, M. Sung, J. Xu, and E. Zegura, A data streaming algorithm for estimating
subpopulation flow size distribution, In Proc. of ACM SIGMETRICS, 2005.

[152] R. R. Kompella, S. Singh, and G. Varghese, On scalable attack detection in the network,
In Proc. IMC, 2004.

[153] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum, New Streaming Algorithms
for Fast Detection of Superspreaders, In Proc. NDSS, 2005.

[154] K. Greene, TR10: Software-Defined networking, MIT Technology Review, vol. 112, no.
2, Apr. 2009. [online| http://www.technologyreview.com/web/22120/

[155] Open Networking Foundation (ONF), Software-Defined Networking: The New Norm
for Networks, ONF White paper, Apr. 2012. [online] https://www.opennetworking.org
/images /stories/downloads/white-papers/wp-sdn-newnorm.pdf

[156] L. Yuan, C. N. Chuah, and P. Mohapatra, ProgME: Towards Programmable Network
MFEasurement, In Proc. SIGCOMM, 2007.

[157] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, OpenFlow: enabling innovation in campus networks, SIGCOMM
Comput. Commun. Rev., vol. 38, no. 2, pp. 69-74, March 2008.

[158] K. Hyojoon, and N. Feamster, Improving network management with software defined
networking, IEEE Communications Magazine, vol. 51, no. 2, pp.114-119, February 2013.

129

[159] L. Kekely, V. Pu, and J. Korenek Software Defined Monitoring of Application Protocols,
In Proc. INFOCOM, 2014.

[160] Y. Chen, K. Hwang, W. S. Ku, Collaborative Detection of DDoS Attacks over Multiple
Network Domains, IEEE Transactions on Parallel and Distributed Systems (TPDS), vol.
18, no. 12, pp. 1649-1662, 2007.

[161] A. Shaikh, A., Greenberg, OSPF Monitoring: Architecture, Design and Deployment
FExperience, In Proc. of Symposium on Networked System Design and Implementation
(NSDI), 2004.

[162] G. Varghese, Network Algorithmics, Morgan Kaufman, 2005.

[163] C. Estan, G. Varghese, New directions in traffic measurement and accounting, SIG-
COMM Comput. Commun. Rev., vol. 32, no. 4, pp. 323-336, 2002.

[164] Q. Zhao, J. Xu, Z. Liu, Design of a novel statistics counter architecture with optimal
space and time efficiency, ACM SIGMETRICS, 2006.

[165] J. Garcia-Vidal, M. March, L. Cerda, J. Corbal, M. Valero, A DRAM/SRAM memory
scheme for fast packet buffers, IEEE Transactions on Computers, vol. 55, no. 5, pp.
588-602, 2006.

[166] J. Hawkinson, T. Bates, Guidelines for creation, selection, and registration of an Au-
tonomous System (AS), [online| http://tools.ietf.org/html/rfc1930

[167] N. Spring, R. Mahajan, D. Wetherall, Measuring ISP Topologies With Rocketfuel, Proc.
ACM SIGCOMM’02, Pittsburgh, PA, pp. 133-145, 2002.

[168] M. R. Garey, D. S. Johnson, Computers and Intractability: A guide to the theory of
NP-completeness, W. H. Freeman and co., New York, 1979.

[169] Gurobi Optimization Inc., Gurobi Optimizer Reference Manual, 2012. [online]
http://www.gurobi.com

[170] Network Simulator 2, The Network Simulator ns-2: Documentation, 2012. [online]
http://www.isi.edu/nsnam/ns/

[171] H. Wang, D. Zhang, K. G. Shin, Change-Point Monitoring for the Detection of DoS
Attacks, IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 4, pp.
193-208, 2004.

[172] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga,
S. Schwab, Fxperience with DETER: a testbed for security research, 2nd International

Conference on Testbeds and Research Infrastructures for the Development of Networks
and Communities (TRIDENTCOM’06), 2006.

130

[173] S. Schwab, B. Wilson, C. Ko, A. Hussain, SEER: a security experimentation EnviRon-
ment for DETER, in DETER Community workshop on Cyber Security Experimentation

and Test on DETER Community Workshop on Cyber Security Experimentation and
Test, 2007.

[174] J. Sommers, H. Kim, P. Barford, Harpoon: a flow-level traffic generator for router and
network tests, in ACM SIGMETRICS Performance Evaluation Review, vol. 32, no. 1,
2004.

[175] ISO 3166 Report, AS Resource Allocations, 2006. [online]
http://bgp.potaroo.net/is03166/ascc.html

[176] H. Rahmani, N. Sahli, F. Kamoun, DDoS flooding attack detection scheme based on
F-divergence, Elsevier Computer Communications, vol. 35, no. 11, pp. 1380-1391, 2012.

[177) Q. Zhao, Z. Ge, J. Wang, J. Xu, Robust Traffic Matriz Estimation with Imperfect
Information: Making use of Multiple Data Sources, In Proc. of ACM SIGMETRICS,
2006.

[178] A. Solue, A. Lakhina, N. Taft, K. Papagiannaki, K. Salamatian, A. Nucci, M. Crovella,
C. Diot, Traffic Matrices: Balancing Measurements, Inference, and Modelling, In Proc.
of ACM SIGMETRICS, 2005.

[179] A. Shaikh, M. Goyal, A. Greenberg, R. Rajan, K. Salamatian, An OSPF topology
server: Design and evaluation, IEEE Journal on Selected Areas in Communications, vol.
20, no. 4, 2002.

[180] H. Dreger, A. Feldmann, V. Paxson, R. Sommer, Predicting the Resource Consumption
of Network Intrusion Detection Systems, In Proc. of RAID conference, 2008.

[181] P. Sharma, S. Banerjee, S. Tandel, R. Aguiar, R. Amorim, D. Pinheiro, Enhancing
network management frameworks with SDN-like control, In Proc. of IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM 2013), pp. 688,691, 2013.

131

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	PREFACE
	TABLE OF CONTENTS
	LIST OF TABLES
	2.1. Summary of features, advantages, and disadvantages of defense mechanisms against network/transport-level DDoS flooding attacks based on their deployment location
	3.1. The parameters of the experiment (Estimated maximum number of routers (R), flows (F), and unique destination IP addresses (D) for 5 Real-world topologies)
	4.1. The estimated maximum number of routers (R), flows (F), and unique destination IP addresses (D) for 10 Real-world topologies
	4.2. Performance evaluation: Proposed heuristic vs. Gurobi 5.5
	4.3. Performance evaluation: Proposed heuristic vs. Gurobi 5.5 (continued...)
	5.1. Packet Flooder (Packet Size vs. Packet Rate)

	LIST OF FIGURES
	2.1. Different locations for performing DDoS detection and response.
	2.2. A classification of the defense mechanisms against network/transport-level DDoS flooding attacks based on their deployment location in a simple network of ASs.
	2.3. A taxonomy of defense mechanisms against DDoS flooding attacks
	2.4. Capability-based (capabilities) vs. datagram-based (Filters) mechanisms Yang.
	3.1. Flow sampling vs. Packet sampling
	3.2. cSamp: a working example
	3.3. Comparing cSamp with other packet sampling and flow sampling mechanisms
	4.1. DiCoTraM: An architectural overview
	4.2. Topology of an AS illustrating the used notation.
	4.3. Monitoring assignment computation time.
	4.4. DDoS flooding flow coverage.
	4.5. Total flow coverage.
	4.6. Total Flow Coverage: DiCoTraM vs. other packet/flow sampling mechanisms
	4.7. DDoS flooding flow coverage: DiCoTraM vs. other packet/flow sampling mechanisms
	4.8. Distribution of the maximum additional required memory per router for 24 hour for the AT&T topology.
	4.9. Total flow coverage during the 24-hour for the AT&T topology.
	5.1. DETER simulation set-up
	5.2. ROC curves including 95% confidence interval employing DCD architecture
	5.3. ROC curves including 95% confidence interval employing TVD
	5.4. Routers effectively involved in detecting TCP SYN 64B flooding attack (employing cSamp)
	5.5. Routers effectively involved in detecting TCP SYN 64B flooding attack (employing DiCoTraM)

	1.0 INTRODUCTION AND MOTIVATION
	1.1 Thesis Statement and Challenges
	1.1.1 Challenge 1: Network-wide approach for traffic monitoring policy enforcement
	1.1.2 Challenge 2: Resource-aware DDoS flooding attack tailored monitoring policy
	1.1.3 Challenge 3: Distributed monitoring policy to enable distributed detection of DDoS flooding attack flows

	1.2 Proposed Research and Contributions
	1.3 Scope of the Thesis
	1.4 Organization

	2.0 DDOS FLOODING ATTACKS & EXISTING DEFENSE MECHANISMS
	2.1 DDoS problem definition & past incidents
	2.2 DDOS attacks: scope and classification
	2.2.1 Network/transport-level DDoS flooding attacks
	2.2.1.1 Flood attacks
	2.2.1.2 Protocol exploitation flood attacks
	2.2.1.3 Reflection-based flood attacks
	2.2.1.4 Amplification-based flood attacks

	2.2.2 Application-level DDoS flooding attacks
	2.2.2.1 Reflection/amplification based flood attacks
	2.2.2.2 HTTP flooding attacks

	2.3 DDOS defense: scope and classification
	2.3.1 Classification based on the deployment location
	2.3.1.1 Defense mechanisms against network/transport-level DDoS
	2.3.1.2 Defense mechanisms against application-level DDoS

	2.3.2 Classification by the point in time (i.e., between the start and end of a DDoS attack) that defense takes place
	2.3.2.1 Before the attack (attack prevention)
	2.3.2.2 During the attack (attack detection)
	2.3.2.3 After the attack (attack source identification and response

	2.4 Summary

	3.0 TRAFFIC MONITORING MECHANISMS: CURRENT PRACTICE & CHALLENGES
	3.1 Packet sampling vs. Flow sampling (a.k.a. Flow monitoring)
	3.1.1 Discussion: Prioritized flow monitoring

	3.2 Traffic monitoring as a network management task
	3.2.1 Device-centric approaches
	3.2.1.1 Existing router primitives:
	3.2.1.2 Additional middleboxes:
	3.2.1.3 Enhancing current router primitives:

	3.2.2 Network-wide approaches

	3.3 cSamp: A centrally managed system-wide flow monitoring mechanism
	3.3.1 Case Study: cSamp's vs. other packet/flow sampling mechanisms
	3.3.2 Discussion:

	3.4 Summary

	4.0 DICOTRAM: A DISTRIBUTED AND COORDINATED DDOS FLOODING ATTACK TAILORED FLOW TRAFFIC MONITORING
	4.1 Introduction
	4.2 DiCoTraM: an overview
	4.2.1 Discussion: Router memory constraints
	4.2.2 Assumptions
	4.2.3 Notation
	4.2.4 The Set-up Process
	4.2.5 Proposed MIP formulation
	4.2.6 Proposed heuristic

	4.3 Scalability analysis: MIP vs. the proposed heuristic
	4.3.1 Experimental set-up:
	4.3.2 Experimental results:

	4.4 Modified Heuristic with Input Pre-processing Capability
	4.4.1 Experimental set-up:
	4.4.2 Experimental results:

	4.5 DiCoTraM vs. Other monitoring mechanisms
	4.5.1 Total flow coverage
	4.5.2 DDoS flooding attack flow coverage
	4.5.3 Discussion:

	4.6 Network planning & Memory requirements
	4.6.1 Off-line MIP formulation
	4.6.2 The modified heuristic with network planing capability
	4.6.3 Experimental set-up & results:

	4.7 Summary

	5.0 DICOTRAM'S IMPACT ON DDOS FLOODING ATTACK DETECTION MECHANISMS
	5.1 Case study 1: Distributed Change-point Detection (DCD) architecture
	5.1.1 Adopted router-level traffic surge detection algorithm

	5.2 Case study 2: Distributed DDoS Flooding Detection based on Total Variation Distance (TVD)
	5.2.1 TVD's detection algorithm

	5.3 Evaluations & experiments
	5.3.1 Experimental set-up
	5.3.2 Performance evaluations

	5.4 Support for earlier detection of DDoS flooding attacks
	5.5 Summary

	6.0 CONCLUSIONS AND FUTURE WORK
	6.1 Contributions
	6.2 Limitations of Proposed Work
	6.3 Future Work

	BIBLIOGRAPHY

