434 research outputs found

    A fast approach for perceptually-based fitting strokes into elliptical arcs

    Get PDF
    Fitting elliptical arcs to strokes of an input sketch is discussed. We describe an approach which automatically combines existing algorithms to get a balance of speed and precision. For measuring precision, we introduce fast metrics which are based on perceptual criteria and are tolerant of sketching imperfections. We return a likelihood estimate based on these metrics rather than deterministic yes/no result, in order that the approach can be used in higher-level collaborative-decision recognition flows.1) Ramon y Cajal Scholarship Programme 2) "Pla de Promoció de la Investigació de la Universitat Jaume I", project P1 1B2010-0

    Coronal loop detection from solar images and extraction of salient contour groups from cluttered images.

    Get PDF
    This dissertation addresses two different problems: 1) coronal loop detection from solar images: and 2) salient contour group extraction from cluttered images. In the first part, we propose two different solutions to the coronal loop detection problem. The first solution is a block-based coronal loop mining method that detects coronal loops from solar images by dividing the solar image into fixed sized blocks, labeling the blocks as Loop or Non-Loop , extracting features from the labeled blocks, and finally training classifiers to generate learning models that can classify new image blocks. The block-based approach achieves 64% accuracy in IO-fold cross validation experiments. To improve the accuracy and scalability, we propose a contour-based coronal loop detection method that extracts contours from cluttered regions, then labels the contours as Loop and Non-Loop , and extracts geometric features from the labeled contours. The contour-based approach achieves 85% accuracy in IO-fold cross validation experiments, which is a 20% increase compared to the block-based approach. In the second part, we propose a method to extract semi-elliptical open curves from cluttered regions. Our method consists of the following steps: obtaining individual smooth contours along with their saliency measures; then starting from the most salient contour, searching for possible grouping options for each contour; and continuing the grouping until an optimum solution is reached. Our work involved the design and development of a complete system for coronal loop mining in solar images, which required the formulation of new Gestalt perceptual rules and a systematic methodology to select and combine them in a fully automated judicious manner using machine learning techniques that eliminate the need to manually set various weight and threshold values to define an effective cost function. After finding salient contour groups, we close the gaps within the contours in each group and perform B-spline fitting to obtain smooth curves. Our methods were successfully applied on cluttered solar images from TRACE and STEREO/SECCHI to discern coronal loops. Aerial road images were also used to demonstrate the applicability of our grouping techniques to other contour-types in other real applications

    FITTING A PARAMETRIC MODEL TO A CLOUD OF POINTS VIA OPTIMIZATION METHODS

    Get PDF
    Computer Aided Design (CAD) is a powerful tool for designing parametric geometry. However, many CAD models of current configurations are constructed in previous generations of CAD systems, which represent the configuration simply as a collection of surfaces instead of as a parametrized solid model. But since many modern analysis techniques take advantage of a parametrization, one often has to re-engineer the configuration into a parametric model. The objective here is to generate an efficient, robust, and accurate method for fitting parametric models to a cloud of points. The process uses a gradient-based optimization technique, which is applied to the whole cloud, without the need to segment or classify the points in the cloud a priori. First, for the points associated with any component, a variant of the Levenberg-Marquardt gradient-based optimization method (ILM) is used to find the set of model parameters that minimizes the least-square errors between the model and the points. The efficiency of the ILM algorithm is greatly improved through the use of analytic geometric sensitivities and sparse matrix techniques. Second, for cases in which one does not know a priori the correspondences between points in the cloud and the geometry model\u27s components, an efficient initialization and classification algorithm is introduced. While this technique works well once the configuration is close enough, it occasionally fails when the initial parametrized configuration is too far from the cloud of points. To circumvent this problem, the objective function is modified, which has yielded good results for all cases tested. This technique is applied to a series of increasingly complex configurations. The final configuration represents a full transport aircraft configuration, with a wing, fuselage, empennage, and engines. Although only applied to aerospace applications, the technique is general enough to be applicable in any domain for which basic parametrized models are available
    corecore