
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

June 2017

FITTING A PARAMETRIC MODEL TO A CLOUD OF POINTS VIA FITTING A PARAMETRIC MODEL TO A CLOUD OF POINTS VIA

OPTIMIZATION METHODS OPTIMIZATION METHODS

Pengcheng Jia
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Jia, Pengcheng, "FITTING A PARAMETRIC MODEL TO A CLOUD OF POINTS VIA OPTIMIZATION
METHODS" (2017). Dissertations - ALL. 673.
https://surface.syr.edu/etd/673

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/673?utm_source=surface.syr.edu%2Fetd%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract
Computer Aided Design (CAD) is a powerful tool for designing parametric geometry.

However, many CAD models of current configurations are constructed in previous gener-

ations of CAD systems, which represent the configuration simply as a collection of surfaces

instead of as a parametrized solid model. But since many modern analysis techniques

take advantage of a parametrization, one often has to re-engineer the configuration into

a parametric model. The objective here is to generate an efficient, robust, and accurate

method for fitting parametric models to a cloud of points. The process uses a gradient-

based optimization technique, which is applied to the whole cloud, without the need to

segment or classify the points in the cloud a priori.

First, for the points associated with any component, a variant of the Levenberg-Marquardt

gradient-based optimization method (ILM) is used to find the set of model parameters

that minimizes the least-square errors between the model and the points. The efficiency

of the ILM algorithm is greatly improved through the use of analytic geometric sensi-

tivities and sparse matrix techniques. Second, for cases in which one does not know a

priori the correspondences between points in the cloud and the geometry model’s com-

ponents, an efficient initialization and classification algorithm is introduced. While this

technique works well once the configuration is close enough, it occasionally fails when the

initial parametrized configuration is too far from the cloud of points. To circumvent this

problem, the objective function is modified, which has yielded good results for all cases

tested.

This technique is applied to a series of increasingly complex configurations. The final

configuration represents a full transport aircraft configuration, with a wing, fuselage,

empennage, and engines. Although only applied to aerospace applications, the technique

is general enough to be applicable in any domain for which basic parametrized models

are available.

FITTING A PARAMETRIC MODEL TO A CLOUD OF

POINTS VIA OPTIMIZATION METHODS

by
Pengcheng Jia

B.S., Tianjin University of Commerce, 2010
M.S., Beijing Jiaotong University, 2012

Dissertation
Submitted in partial fulfillment of the requirement for the degree of

Doctor of Philosophy in Mechanical and Aerospace Engineering

Syracuse University
May 2017

Copyright c©2017 by Pengcheng Jia

All Rights Reserved

Acknowledgements

I would like to, at this point, acknowledge all of the people who made it possible for me

to get to this point. Without the help of these people I would not be who I am today.

First I would like to thank my family, especially my Mother and Father who have sup-

ported me unconditionally in everything I have done.

I would also like to thank my advisor, Dr. John Dannenhoffer for working with me for

the past three years and always pushing me to do better and be better. He was always

available to help, especially early in the morning when no one else was in Link. Thanks

to his help and input I have been able to succeed.

I want to thank the members of my committee, Dr. Sinead C. Mac Namara, Dr.Thong

Dang, Dr. Utpal Roy, Dr. Melissa Green, and Dr. Benjamin Akih-Kumgeh, for taking

time out of their busy schedules to read my thesis, listen to my defense, and provide

feedback to improve my research.

I wish to thank Jack Rossetti, Han Lee, Yafei Mei and Yuyan Hao for being my best

friends and colleagues in the Aerospace Computational Methods Lab (ACML). They

gave me a lot of help and ideas during my research.

I want to thank Ed Alyanak who is the technical monitor of AFRL project. This work

was performed as part of the CAPS project, which was funded under AFRL Contract

FA8050-14-C-2472: “CAPS: Computational Aircraft Prototype Syntheses”.

Pengcheng Jia

iv

Contents

Abstract i

Acknowledgements iv

Contents v

List of Figures viii

List of Tables xiii

Nomenclature xv

1 Introduction 1

1.1 Objective . 2

1.2 Parametric Models Generation . 3

1.2.1 Reverse Engineering . 5

1.2.2 CAD Data Exchange . 10

1.2.3 Parametric Model Reconstruction 15

1.2.4 Geometry Model Fitting . 18

1.2.5 Aircraft Parameters Analysis . 27

2 Optimization Techniques 32

2.1 Introduction . 32

2.1.1 General Format for Optimization Problem 32

2.1.2 Test Function for Optimization Technique 35

2.2 Heuristics Methods . 37

2.2.1 Simulated Annealing algorithm 37

2.3 Gradient Based Methods . 40

2.3.1 Gradient Decent Method . 41

2.3.2 Newton’s Method . 44

2.3.3 Levenberg-Marquardt Method . 48

2.3.4 Improved Levenberg-Marquardt Method 53

v

2.4 Application of ILM Algorithm . 61

2.4.1 Problem Statement . 61

2.4.2 Objective Function and Algorithm Application 63

2.4.3 Results . 63

3 Fitting a Simplified Model to a Cloud of Points 66

3.1 Demonstration Problem . 67

3.1.1 Design Parameters . 68

3.1.2 Least Square Objective Function 73

3.1.3 Design Variables . 76

3.2 Optimization Algorithms Selection . 76

3.2.1 Gradient Descent Algorithm . 76

3.2.2 Newton’s Algorithm . 78

3.2.3 Levenberg-Marquardt Algorithm 80

3.2.4 Improved Levenberg-Marquardt Algorithm 82

3.3 Sparse Technique for Matrix Calculation 85

3.3.1 Generation of Sparse Jacobian Matrix 85

3.3.2 Arithmetic of Sparse Jacobian Matrix 86

3.3.3 Solving Sparse Matrix System . 88

4 Fitting a General Model to a Cloud of Points 89

4.1 (Re)Initialization Technique . 90

4.1.1 Basic Idea . 90

4.1.2 Dealing with Bad Initial Guesses for ~d 92

4.1.3 Reinitialization . 97

4.1.4 Application to Fitting an Airfoil 100

4.2 Modified Objective Function . 103

4.2.1 Bad Initial Guess Problem . 103

4.2.2 Add Penalty Term . 107

4.2.3 New Objective Function . 110

4.3 (Re)Classification Technique . 114

4.3.1 Basic Idea . 115

4.3.2 Improved Classification Technique 116

4.4 Algorithm Test . 119

4.4.1 Non-uniform Cloud of Points . 120

4.4.2 Noise Data Sensitivity . 123

4.5 Test Examples in 3D . 129

4.5.1 Single Component Configuration 130

4.5.2 Multiple Components Configuration 135

4.5.3 Improvement of ILM Method . 140

5 Analysis of Accuracy, Robustness and Efficiency 144

vi

5.1 ESP Introduction . 145

5.1.1 Geometry Model Generation (CSM file) 145

5.1.2 Analytical Sensitivity Generation 146

5.1.3 Integrate the New Algorithm . 147

5.2 Generalization and Accuracy . 148

5.2.1 Box Testing Case . 149

5.2.2 Rotated Box Testing Case . 150

5.2.3 Fuselage Testing Case . 151

5.2.4 Wing Testing Case . 153

5.2.5 Glider Testing Case . 154

5.2.6 Plane Testing Case . 156

5.3 Robustness . 158

5.3.1 Initial Guess Larger than the Target Configuration 160

5.3.2 Initial Guess Smaller than the Target Configuration 161

5.3.3 Initial Guess Cross the Target Configuration 162

5.3.4 Initial Guess Fluctuates around the Target Configuration 163

5.3.5 Initial Guess Rotated in 1 Direction 164

5.3.6 Initial Guess Rotated in 6 Direction 165

5.4 Efficiency . 166

5.4.1 Complexity of the Algorithm . 166

5.4.2 Time Analysis for Different Geometry Configurations 167

5.4.3 Test 8 Different Number of Design Parameters 170

5.4.4 Test 8 Different Number of Faces 172

5.4.5 Test 8 Different Number of Points in Cloud 174

6 Conclusion 177

6.1 Summary . 177

6.2 Conclusions . 179

6.3 Suggested Future Work . 180

A Appendix: Pseudocode for MatchCSM 182

B Appendix: Readme File for Using MatchCSM 223

C Appendix: Example of the Result File for MatchCSM 228

Bibliography 234

vii

List of Figures

1.1 Example of the parametric models generation 4

1.2 Conventional manufacturing and reverse engineering sequences. (Top)
Conventional manufacturing sequence; (Bottom) reverse engineering man-
ufacturing sequence [1] . 5

1.3 Overall procedure for the automatic solid data reconstruction. [2] 7

1.4 Overview of the reverse engineering method: Step 1: primitive extraction,
Step 2: wire construction and Step 3: B-Rep creation. [3] 8

1.5 Feature extraction on self-created part. [4] 9

1.6 Framework of the proposed STEP-compliant CAD/CAM system.[5] . . . 12

1.7 The subdivision of a triangle in 2D case. (a) A triangle with floating coor-

dinates at discretized grid of pixels. (b) Subdividing triangle by splitting the

longest edge. (c) End of the subdivision when each triangle is smaller than the

voxel size and the geometrical centers of each triangle. (d) Labelling the pixel

when it is within the object. [6] . 13

1.8 Explicit and procedural representations of a chess game [7] 14

1.9 Rocker arm model: (a) Point clouds. (b) Sparse region. (c) Voxel model result-

ing from the level set method. (d) Resulting Catmull-Clark limit surface. (e)

Resulting quadrilateral mesh. (f) Zebra mapping of the B-spline surface. [8] . 16

1.10 Reconstruction of a tube. (a) A photograph of the original tube. (b) A
single- view, irregular scan of the tube surface. (c) Projection of the point
cloud onto the MLS spine approximation. (d) Reconstruction of the spine
curve. (e) Approximation of the spine curve by a G1 continuous arc-line
spline. (f) The reconstructed tube surface. [9] 17

1.11 Open freeform meshes and NURBS surfaces with freeform boundaries. The

upper part shows the inputs and lower part shows the front and back views of

the results. The PN-Meshes are shaded in yellow. The input parametric surfaces

are shaded in grey while the generated transition surfaces is shaded in cyan. [10] 18

1.12 Graphical workflow of the proposed method. [11] 19

1.13 Fit the model star by the alternate method with a cubic B-spline curve (in
red), where the data points not reaching the pre-defined fitting precision
error = 10-2 are displayed in red. iter = the number of the iterations; act
= the number of the active control points. [12] 20

1.14 The L-BFGS fitting method process. [13] 21

1.15 Local approximants of AMTLS. [14] . 22

viii

1.16 Minimum zone fitting of complex surfaces. [15] 23

1.17 Fitting a cubic B-spline curve to a point cloud in the presence of four
general obstacles. For three different initial setups (top row), the corre-
sponding final approximations after 25 iterations (bottom row) are shown.
[16] . 23

1.18 GA-based SVM flowchart. [17] . 24

1.19 Basic components of the computer-aided optimum design process. [18] . . 25

1.20 Optimization problem . 27

1.21 Construction of a generic aircraft shape. (a) Fuselage curves. (b) Two patches

fuselage object. (c) The initial curve for the wing. (d) The generating curves of

the wing. (e) Wing and fuselage objects blended. (f) The final basic shape of

the airplane. [19] . 29

1.22 Selected individuals from the pareto front of the MIG 21 optimization results in

the order of increasing lift (drag) from top left to bottom right. [20] 30

1.23 Geometric aircraft model with different levels of detail: (top) wireframe, (mid-

dle) master geometry, (bottom) including some inner geometry. [21] 30

2.1 Example of optimization problem . 33

2.2 3D plot of Styblinski-Tang function . 35

2.3 3D plot of modified Styblinski-Tang function (MST) 36

2.4 Trajectory of objective function value based on simulated annealing . . . 39

2.5 Log of objective function value at each iteration based on simulated annealing 40

2.6 Search directions provided by gradient decent (first derivative information) 42

2.7 Trajectory of objective function value based on gradient decent method . 43

2.8 Log of objective function value at each iteration based on gradient decent 43

2.9 Search directions provided by Newton’s method (second derivative infor-
mation) . 46

2.10 Trajectory of objective function value based on Newton’s method 47

2.11 Log of objective function value at each iteration based on Newton’s method 47

2.12 Trajectory of objective function value based on LM method 51

2.13 Log of objective function value at each iteration based on LM 52

2.14 λ values at each iteration based on LM 52

2.15 Trajectory of objective function value based on ILM method 54

2.16 Objective function value at each iteration based on ILM 55

2.17 λ values at each iteration based on ILM 55

2.18 Objective function value for applying different optimization algorithms . 56

2.19 Domains represented by different colors 58

2.20 Performance of SA, LM and ILM optimization algorithms 60

2.21 A simple network for traffic equilibrium problem 62

2.22 Convergence characteristics comparison between LM and ILM algorithms 65

3.1 Cross sections of fuselage . 67

ix

3.2 Super-ellipses based on the different powers r 68

3.3 Super-ellipse after translation, with δx = 2 and δy = 3 70

3.4 Super-ellipse after rotation in z axis, with θ = 1.5 (radians). 71

3.5 Super-ellipse after scaling, with Sx = Sy = 1.2 72

3.6 Super-ellipse after applying homogeneous coordinates 73

3.7 Sample problem, demonstrated with a super-ellipse. 74

3.8 Cloud of points and sample super-ellipse. 75

3.9 Results of super-ellipse generation based on gradient decent algorithm . . 77

3.10 Fitting results analysis based on gradient decent algorithm 78

3.11 Results of super-ellipse generation based on Newton’s algorithm 79

3.12 Fitting results analysis based on Newton’s algorithm 80

3.13 Results of super-ellipse generation based on LM algorithm 81

3.14 Fitting results analysis based on LM algorithm 82

3.15 Results of super-ellipse generation based on ILM algorithm 83

3.16 Fitting results analysis based on ILM algorithm 84

3.17 RMS of distances for applying different optimization algorithms 84

3.18 Hessian matrix structure . 87

4.1 Demonstration of initialization technique 91

4.2 Flowchart for fitting parametric geometry model from a cloud of points . 92

4.3 Initialization based on bad initial design parameters 93

4.4 Results of super-ellipse generation start from bad initial guess (LM) . . . 94

4.5 Fitting results analysis for the bad initial guess problem (LM) 95

4.6 Results of super-ellipse generation start from bad initial guess (ILM) . . 96

4.7 Fitting results analysis for the bad initial guess problem (ILM) 97

4.8 Results of super-ellipse generation using reinitialization technique 98

4.9 Fitting results analysis after using reinitialization technique 99

4.10 Generation of NACA airfoil parametric model from a cloud of points . . 102

4.11 Airfoil fitting results analysis . 103

4.12 Initialization based on too large initial guess 104

4.13 Results of super-ellipse generation start from too large initial guess (ILM) 105

4.14 Fitting result analysis for too large initial guess problem 107

4.15 Results of super-ellipse generation after adding penalty term into objective
function . 108

4.16 Fitting result analysis after adding penalty term into objective function . 109

4.17 Components of new objective function 110

4.18 Results of super-ellipse generation after using the new objective function 112

4.19 Fitting result analysis after using new objective function 113

4.20 Sample classification problem for three super-ellipses 114

4.21 Progression of fitting results for three super-ellipses (basic classification
technique) . 116

4.22 Comparison of different classification results for three super-ellipses . . . 117

x

4.23 Progression of fitting results for three super-ellipses (improved classification
technique) . 119

4.24 Super-ellipse fitting result based on the general format of points cloud . . 120

4.25 Super-ellipse fitting result based on the non-uniform space points data 1 121

4.26 Super-ellipse fitting result based on the non-uniform space points data 2 122

4.27 Super-ellipse fitting result based on the non-uniform space points data 3 123

4.28 Super-ellipse fitting result based on the noisy points data 1 125

4.29 Super-ellipse fitting result based on the noisy points data 2 126

4.30 Super-ellipse fitting result based on the noisy points data 3 127

4.31 Super-ellipse fitting result based on the noisy points data 3 (run extra 2
cycles) . 128

4.32 Progression of fitting results for 3D wing 132

4.33 RMS distances and normalized parameters for 3D wing 133

4.34 Progression of fitting results for 3D fuselage 134

4.35 Final fitting result of 3D fuselage after using periodic (u, v) 135

4.36 RMS distances and normalized parameters for 3D fuselage 135

4.37 Progression of fitting results for 3D glider 137

4.38 Number of points associated with each component for 3D glider 138

4.39 Final fitting result for 3D glider . 139

4.40 RMS distances and normalized parameters for 3D glider 140

4.41 Initial and final results for 3D glider (pre-classified) 141

4.42 Comparison of different variants of LM method after 10 iterations 142

4.43 RMS distances and normalized parameters for 3D glider 143

5.1 Box fitting results . 149

5.2 Rotated box fitting results . 150

5.3 Fuselage fitting results . 151

5.4 Wing fitting results . 153

5.5 Glider fitting results . 155

5.6 Plane fitting results . 157

5.7 Original fuselage model . 159

5.8 Fuselage fitting results based on the 1st initial guess 160

5.9 Fuselage fitting results based on the 2nd initial guess 161

5.10 Fuselage fitting results based on the 3rd initial guess 162

5.11 Fuselage fitting results based on the 4th initial guess 163

5.12 Fuselage fitting results based on the 5th initial guess 164

5.13 Fuselage fitting results based on the 6th initial guess 165

5.14 Hession matrix structure for 3D problem 167

5.15 Running time distribution for different configurations 169

5.16 Different number of design parameters for the wing generation 170

5.17 Running time analysis based on different number of design parameters . 172

5.18 Running time analysis based on different number of faces 174

xi

5.19 Running time analysis based on different number of points 176

xii

List of Tables

2.1 Comparison of Performance for Different Optimization Algorithms by 20
Random Initial Guess . 57

2.2 Comparison of Performance for Different Optimization Algorithms (express
the results by color, B(blue), G(green), P(pink), R(red)) 59

2.3 Link Characteristics of the Example Network 62

2.4 Comparison of Link Flows for the Additive and Route-specific Cost Models 64

2.5 Comparison of Route Flows for the Additive and Route-specific Cost Models 64

4.1 Design Parameters of the Wing . 131

4.2 Design Parameters of the Fuselage . 133

4.3 Design Parameters of the the Fuselage in Glider 136

4.4 Design Parameters of the Wing in Glider 136

4.5 Design Parameters of the Horizontal Tail in Glider 136

4.6 Design Parameters of the Vertical Tail in Glider 136

5.1 Design Parameters of the Box (in ESP) 149

5.2 Design Parameters of the Rotated Box (in ESP) 150

5.3 Design Parameters of the Fuselage (in ESP) 151

5.4 Design Parameters of the Wing (in ESP) 153

5.5 Design Parameters of the Fuselage in Glider (in ESP) 154

5.6 Design Parameters of the Wing in Glider (in ESP) 154

5.7 Design Parameters of the Horizontal Tail in Glider (in ESP) 154

5.8 Design Parameters of the Vertical Tail in Glider (in ESP) 154

5.9 Design Parameters of the Engine in Plane (in ESP) 156

5.10 Design Parameters of the Strut (connection between engine and wing) in
Plane (in ESP) . 156

5.11 Design Parameters of Rotated Fuselage 158

5.12 1st Set of Initial Design Parameters for Rotated Fuselage 160

5.13 2nd Initial Design Parameters of Rotated Fuselage 161

5.14 3rd Initial Design Parameters of Rotated Fuselage 162

5.15 4th Initial Design Parameters of Rotated Fuselage 163

5.16 5th Initial Design Parameters of Rotated Fuselage 164

5.17 6th Initial Design Parameters of Rotated Fuselage 165

xiii

5.18 Running Time of Generating Different Parametric Models 168

5.19 Running Time for Wings in Different Number of Design Parameters (DPs) 171

5.20 Running Time for Wings in Different Number of Faces 173

5.21 Running Time for Wings in Different Number of Points in Cloud 175

xiv

Nomenclature

a, b super-ellipse radii

c chord length of NACA airfoil

cycle one (re-)initialization/(re-)classification followed by several iterations

C1 inequality constraint

C2 equality constraint

Ca capacity of link a

~d design parameter vector

dN normalized design parameter

dr original design parameter

ei element in objective function

err error value of the noisy points in cloud

E energy state

fx, fy function for generating geometry model

f rsp route flow

~g gradient vector of objective function

H Hessian matrix

iter each step within the LM optimization algorithm

IterMax the maximum number of iteration

J Jacobian matrix

xv

K temperature decrement factor

m number of points in cloud

mNACA the maximum camber

n number of design parameters

p location of maximum camber

P Probability function of simulated annealing

q components of vector to be minimized

qrs travel demand

r power in super-ellipse

S objective function

t the number of square terms in objective function

ta travel time

tNACA the maximum thickness as a fraction of the chord

T0 initial temperature

Tf freezing temperature

TN Normalized time

(ui, vi) parametric coordinates

w weight coefficient of objective function

xi position along the chord line

X design variables in simulated annealing

(xp, yp, zp) coordinates of points in cloud

(xt, yt) points on super-ellipse

yt thickness xi location

yc y coordinate of the camber line

(xU , yU) coordinates of upper airfoil surface

(xL, yL) coordinates of lower airfoil surface

xvi

αa free-flow travel time

βL lower bound of β

βU upper bound of β

~β vector of variables to be changed by optimizer (d1 · · · dn, u1 · · ·um)

γ step size in gradient decent method

νa traffic flow

θ rotation angle along z axis

θc rotated angle of upper/lower airfoil surface’s coordinates

ηrsp route cost function

πrs minimal route cost

λ damping factor in LM method

λrsp route-specific cost

δx, δy, δz components of translation

δ parameter step size of each iteration

Subscript

i index of points in cloud

l index of elements in objective function

j, k index of parametric model parameters

(s) index of iterations

ic index of objective function

jc index of inequality constraint

kc index of equality constraint

lc index of upper and lower bounds of parameter

qc index of design parameters for example optimization problem

rs original- destination pair

p index of route

xvii

Chapter 1

Introduction

Computer Aided Design (CAD) tools have evolved over the past several decades from

simple 2D drawing tools to parametric design tools in 3D. The use of these models has

greatly enhanced the design and analysis process in many fields, such as mechanical man-

ufacturing, CFD, and so on. Unfortunately, many computer-based models of current

configurations are constructed in the previous generation of CAD systems, resulting sim-

ply in surface definitions. To apply many modern analysis processes to the configuration,

it requires that one re-engineer the configuration into a parametric model. For example,

for data exchange or manufacturing purposes, the initial CAD parametric data may be

unavailable, lost, or no longer corresponds to the original CAD model if the 3D mesh is

deformed by another designer or after a numerical simulation process.[3] Moreover, inter-

operability among heterogeneous CAD systems is also an important issue. The problem

stems from the distinct modeling units of each CAD system.[22]

For regenerating a geometric model, freeform parametric surface (NUBRS) fitting to a

cloud of point is a fundamental method.[23] However, this method uses a group of discrete

surfaces/curves for representing the geometry. It has two disadvantages: because there

1

Chapter 1. Introduction 2

are only design parameters for each surface/curve, the effect of design parameters to the

features of the whole geometry model (such sensitivity) can not be obtained; and the

group of discrete surfaces/curves may not match each other at the connections areas (has

gaps between surfaces/curves).

Therefore, for overcoming there disadvantages, in this paper, an efficient, robust and

accurate method for generating parametric models from a cloud of point has been devel-

oped, using an optimization method applied to the whole data at the same time; there is

no need to segment or classify the cloud points.

1.1 Objective

The objective of this work is to find the design parameters associated with a parametric

solid model that best-fits a cloud of points, and to do so efficiently and accurately.

Fitting parametric geometry models is a typical problem in many fields, such as: reverse

engineering, data exchange, parametric reconstruction, and so on. The fitting of aircraft

parametric models requires more efficiency and accuracy due to the large number of points

and complicated shapes. These are introduced in Chapter 1.

An optimization technique is used for the fitting process. Gradient-based and heuristics

optimization techniques contain many specific algorithms. Based on the different advan-

tages and disadvantages for each method, the new optimization algorithm is developed

for fitting the parametric models. It is the combination of gradient-based optimization

and heuristics optimization. The main optimization technique and the other application

of the new optimization algorithm are explained in Chapter 2.

The new optimization algorithm is applied to fitting a parametric model to a cloud of

points. The simplified demonstrations are discussed in Chapter 3. The more general

Chapter 1. Introduction 3

parametric model fitting problems is introduced in Chapter 4. This includes the initial-

ization and classification techniques. For accommodating less accurate initial guesses of

the design parameters, the original objective function for optimization is modified. This

is also discussed in Chapter 4.

The large number of points (in the cloud) and the many design parameters in aircraft

require an efficient way of generating parametric models. A secondary objective is to

design a parametric geometry generator that is able to efficiently, robustly, and accurately

fit a cloud of points and output geometric parameters. The framework for doing this is

discussed in Chapter 5.

Finally Chapter 6 provides a summary, the major conclusions, and suggested areas for

future work.

1.2 Parametric Models Generation

As stated, parametric models are often used to analyze aircraft designs. In order to do

so, it is important to understand the definition of parametric models, and to survey the

different applications in which the generation of parametric models have been successful.

Figure 1.1 is the schematic diagram of a parametric aircraft model from a generated from

a cloud of points.

Chapter 1. Introduction 4

(a) Parametric aircraft models (b) Cloud of Points

Figure 1.1: Example of the parametric models generation

To start, the idea of parametric models must be defined, but a formal definition is difficult

to find. In statistics, Bickel and Doksum state [24] that a parametric model or parametric

family or finite-dimensional model is a family of distributions that can be described using

a finite number of parameters. These parameters are usually collected together to form

a single k-dimensional parameter vector θ = (θ1, θ2, . . . , θk). In the geometric field, the

parametric model means the features of the geometries. Mantyla and Nau [25] states that

features are defined to be parametric shapes associated with attributes such as: intrinsic

geometric parameters (length, width, depth etc.), position and orientation, geometric

tolerances, material properties, and references to other features. Parametric feature-

based modeling is frequently combined with constructive binary solid geometry (CSG)

to fully describe systems of complex objects in engineering. In our specific problem, the

generation of parametric models is focused on the geometric parameters.

As stated, the generation of parametric geometry models has been applied in many fields,

including: reverse engineering [26], data exchange [27], parametric reconstruction [8],

geometry fitting [28], and aircraft analysis [29]. The application of parametric models

generation is discussed in these fields in the following section.

Chapter 1. Introduction 5

1.2.1 Reverse Engineering

Generating parametric geometry models is a typical problem in reverse engineering. Be-

fore applying the generation of parametric geometry models in reverse engineering, it is

important to understand the definition and the contents of reverse engineering. Reverse

engineering is accomplished in three steps: part digitizing, features extraction, and CAD

modeling. [30]

• Part digitization: acquire point coordinates from real geometry model surfaces

• Features extraction: choose the mathematical functions to model the geometry

• CAD modeling: generate the CAD models based on parametric model

Generally, it starts with measuring an existing object using a laser scanner, and then

the measuring data is used to construct a surface or solid model [31]. Although the re-

verse engineering process may seem to be the opposite of the conventional manufacturing

process, in truth the overall concept of the two are quite similar, as shown in Figure 1.2.

Figure 1.2: Conventional manufacturing and reverse engineering sequences.
(Top) Conventional manufacturing sequence;

(Bottom) reverse engineering manufacturing sequence [1]

Chapter 1. Introduction 6

Reverse engineering can be applied to complex surface generating and solid modeling.

It plays an important role in reconstruction of a surface and significantly reduces the

reconstruction time and the costs of the part duplication [2]. There are many cases

that one needs reversing engineering to generate parametric models from existing model.

Puntambekar [1] summarized five instances for the applications of reverse engineering:

• New Design: The new design starts from a clay model, created either by an artist

or iteratively formed through extensive model analysis, e.g. aerodynamic design of

a vehicle, gas passages in an engine cylinder block.

• Old Parts Redesign: The drawings for a particular part in a machine may no longer

be available, and reverse engineering may be the only way to reproduce such parts,

e.g. machines manufactured years ago.

• Worn or Damaged Parts: If a certain machine component is worn out or damaged,

and the drawings are not immediately available or are untraceable, the part can be

quickly digitized and reverse engineered to restart the production rather than wait

for the new component to arrive, e.g. parts on demand.

• Inspection: Samples from a production run can be taken and digitized to construct

a CAD model which represents the actual manufactured model, and can be used

for inspection purposes. This can be compared against the original CAD model in

the database, and the tolerances on the dimensions can also be checked

• Replicating Components: Acquired in this case, the drawings are not being available

and such components, if needed, must be reverse engineered.

Zhou [2] presented a new approach to the reconstruction of a surface. The proposed

methodology finds the basic parts of the surface and blends surfaces between them. Each

basic geometric part is divided into triangular patches that are compared using normal

Chapter 1. Introduction 7

vectors for face grouping. Each basic geometric surface is then implemented to the infini-

tive surface. The infinitive surface intersections are trimmed by boundary representation

model reconstruction. (such as in Figure 1.3)

Figure 1.3: Overall procedure for the automatic solid data reconstruction. [2]

However, this method has several disadvantages, such as computational inefficiency be-

cause of classifying the points and segment. And it also cannot get the geometric parame-

ter information from the process. Roseline [3] presented an automatic and comprehensive

retro-engineering process dedicated mainly to 3D meshes obtained initially by mechanical

object discretization. The process involves three steps. See Figure 1.4 However, this is

just sample geometric primitives revolution and reconstruction. It cannot generate the

complex models, such as airplane in one step and output the geometry feature that is

important in aircraft design.

Chapter 1. Introduction 8

• Primitive extraction: in this step, the idea is first to detect the type of geometric

primitive (i.e. a plane, sphere, cylinder or cone) that corresponds locally to the 3D

mesh and to then compute the parameters which give the best fit. The method is

based on differential geometry operators that characterize the local 3D shape.

• Wire construction: this is a key complex problem. It defines the relationship be-

tween all the extracted geometric primitives, which is subsequently used to compute

intersection curves between two geometric primitives. Then all of these curves are

combined to build a continuous wire in a consistent way.

• B-Rep creation: the B-Rep construction is presented. It consists of combining the

information extracted or reconstructed during the two previous steps to construct

a consistent model.

Figure 1.4: Overview of the reverse engineering method: Step 1: primitive extraction,
Step 2: wire construction and Step 3: B-Rep creation. [3]

Huang and Menq [32] developed a systematic scheme and novel technologies to automati-

cally reconstruct a CAD model from a set of points in a cloud scanned from the boundary

surface of an existing object. The proposed scheme is composed of three major steps.

• Multiple input point clouds are incrementally integrated into a watertight triangle

mesh to recover the object shape.

Chapter 1. Introduction 9

• Mesh segmentation is applied to the triangle mesh to extract individual geometric

feature surfaces.

• The manifold topology describing the connectivity information between different

geometric surfaces is automatically extracted and the mathematical description of

each geometric feature is computed.

The computed topology and geometry information represented in the ACIS modeling

kernel form a CAD model that may be used for various downstream applications. Com-

pared with prior work, the proposed approach has the advantage that the processes of

recognizing geometric features and of reconstructing CAD models are fully automated.

The object recognition in complex real environments in the presence of occlusion and

clutter is a challenging task in reverse engineering. Bohm and Brenner [4] presented

an object recognition process which is based on a CAD model of the object. Curvature

information derived from the CAD model is used to support the feature extraction process.

Reliable estimates of surface curvature are obtained from range images using a least-

squares surface fitting algorithm. Figure 1.5 shows the feature extraction result from this

method.

Figure 1.5: Feature extraction on self-created part. [4]

Chapter 1. Introduction 10

Syed and Mohammed [33] developed a novel local surface description technique for au-

tomatic three dimensional (3D) object recognition. Fehr and Beksi [34] introduced tech-

niques from other fields, such as image processing, into 3D point cloud processing in

order to improve rendering, classification, and recognition. Li and Dong [35] proposed

a method for object recognition based on Region of Interest (ROI) and Optimal Bag of

Words model.

Geometry generated by parametric model has to be fitted to this point data. [1] Key

research areas that still need further work before general-purpose reverse engineering

becomes widely available include: improving data capture and calibration, coping with

noise, merging views, coping with gaps in the data, reliable segmentation, fair surface

fitting, recognizing natural or human-intended structure of the geometry of the object,

and finally ensuring that consistent models are built. [26]

Model generation from the point data is a crucial step in the reverse engineering process.

All the research above is based on generating the geometry model by a collection of

surfaces. There may be gaps between the surfaces in the fitting result, and the impact of

design parameters to the features of the whole geometry model is missed. The technique

developed in this paper is aimed to overcome these problems. The data points will

be fitted by one parametric geometry model directly, as opposed to as several discrete

surfaces.

1.2.2 CAD Data Exchange

CAD Data exchange is a general field that geometry generation has wildly used. As

complex geometric models require more concurrent engineering and faster response to

the market demand, more communication between different systems is required. Most

Chapter 1. Introduction 11

CAD/CAM systems for different design fields are usually running on different environ-

ments and require different levels of support. And different CAD/CAM systems are very

often found using different formats to display their drawing files, implying that a drawing

developed by a system can sometimes not be represented by another system. This kind

of problem usually involves a huge amount of data, different formats, and proprietary

platforms. So, regenerating models in different system is a crucial research area in CAD

data exchanging.

In order to communicate between different CAD/CAM systems, Chao and Wang [27] pro-

posed a framework to exchange data between different CAD/CAM users. This framework

consists of four parts: client databases, an index server, a CAD data format translator,

and a file sharing control module. The architecture can be either built on the Internet or

on intranet of a company. The CAD data format translator is developed to translate files

of different formats into the STEP format. Xiao and Zheng [5] comprehensively stud-

ied the STEP-compliant systems and summarized their frameworks and criteria. A real

STEP-NC data flow between a STEP-compliant CAD/CAM system and a STEP-CNC

system is developed. (Flowchart is shown as Figure 1.6).

Chapter 1. Introduction 12

Figure 1.6: Framework of the proposed STEP-compliant CAD/CAM system.[5]

Kim and Pratt [36] suggested an implementational foundation for CAD data exchange

with the preservation of design intent, based on the use of newly published parts of the

International Standard ISO 10303 (STEP). Tsige-Tamirat and Fischer [37] described the

features of the interface program McCad and present an application of the program to

ITER torus sector model, which consists of all significant components. STEP-NC (Stan-

dard for the Exchange of Product model data) is the programming interface between

CAD/CAM and CNC (computer numerical control) systems. Wu and Portheine [6] pre-

sented a software interface to automate the data exchange process between CAS and

CAD/CAM systems with a voxel-based approach. This interface has to be implemented

and integrated in the DISOS-system. The Standard Triangulation Language (STL) file

format was chosen as the geometry data exchange format as in Figure 1.7.

Chapter 1. Introduction 13

Figure 1.7: The subdivision of a triangle in 2D case.
(a) A triangle with floating coordinates at discretized grid of pixels.

(b) Subdividing triangle by splitting the longest edge.
(c) End of the subdivision when each triangle is smaller than the voxel size and the

geometrical centers of each triangle.
(d) Labelling the pixel when it is within the object. [6]

CAD Data exchange also can be achieved by other methods. Mechanical CAD systems

usually adopt a hybrid modeling approach in which both explicit and procedural models

are utilized for the representation of 3D shapes. Procedural models are robust because

they are not subject to the computational errors arising in the calculation of points, curves

and surfaces that are characteristic of explicit (e.g., B-rep) models. Kim and Mun [38]

described the concept of procedural 2D modeling as a method of representing procedural

2D CAD models in STEP in harmony with other STEP resources. The example of explicit

and procedural models is shown in Figure 1.8. The board diagram on the left shows the

state of the game at a specific time. However, such a diagram contains no information

regarding how that state was arrived at. The overall history of the game is given by the

sequence of moves, as shown on the righthand side of Figure 1.8. The state shown on the

board diagram can be recovered by following this sequence.

Chapter 1. Introduction 14

Figure 1.8: Explicit and procedural representations of a chess game [7]

Cheon and Kim [39] presented a new method to translate 3D data reconstructed from a

free-hand 2D sketch into an editable form that reflects design intent so that the translated

data can be directly used in 3D mechanical CAD systems. The feasibility of the proposed

method has been demonstrated through experiments with prototype systems. Li and

Kim [22] presented a method for resolving a problem that occurs from the exchange of

design data between two different types of CAD systems. The problem stems from the

difference in modeling units of the two systems. In this research, the conversion between

two different modeling units is processed through direct and indirect mapping. Whyte

and Bouchlaghem [40] described three different approaches to translate CAD data to

virtual reality. The specific utilization of these approaches are in the 3D building design.

In this section, the researchers rely on diverse methods to exchange the data among

different situations. The STEP method has a disadvantage that the original model’s

history needs to be provided during the representation process, such as feature tree of

basic geometry models, Boolean operations and basic extrusion capabilities. However,

this information always is lost during the redesign process. There is no research on how

Chapter 1. Introduction 15

to transfer data to complicated geometric parameters in one step without using pattern

recognition to classify data into different basic parts, such circle, line sphere and so on.

In this paper, these problems are solved by the new technique. The data points can

be represented through generating parametric model once without classifying the data

into different basic parts. It also do not need the history (feature tree) of the original

geometry.

1.2.3 Parametric Model Reconstruction

Parametric model reconstruction is one of the most important problems in CAD, ge-

ometric modeling, computer graphics, and CAE. A Boundary Representation (B-Rep)

[10] is often used to model objects in a computer. Parametric surface definitions, such

as the Non Uniform Rational B-Spline (NURBS) surface, is one of the most commonly

used B-Rep surface models to represent free-form objects due to its concise representation

scheme.

Stamati and Antonopoulos [41] presented an approach to reconstructing geometry model

and applied this approach into reconstructing traditional filigree jewelry. In this ap-

proach, the representation scheme for modeling filigree patterns uses elliptical arcs, Bezier

segments, spirals and other curve segments. Ochmann and Vock [42] presented an auto-

matic approach for the reconstruction of parametric 3D building models from indoor point

clouds. Yoshihara and Yoshii [8] introduced a procedure for automatically reconstructing

an arbitrary topological surface from an unorganized point data set; this surface had

three representations, namely, quadrilateral meshes, Catmull-Clark subdivision surfaces,

and B-spline surfaces (different representations are shown in Figure 1.9)

Chapter 1. Introduction 16

Figure 1.9: Rocker arm model: (a) Point clouds. (b) Sparse region. (c) Voxel model
resulting from the level set method. (d) Resulting Catmull-Clark limit surface. (e)

Resulting quadrilateral mesh. (f) Zebra mapping of the B-spline surface. [8]

Peethambaran and Muthuganapathy [43] introduced the concept of divergent concavity

for simple, closed and planar curves and define a proximity graph called shape-hull graph

which is capable of capturing the proximity of sample points. This approach for surface

reconstruction is simple, non-parametric, single stage and reconstructs topologically cor-

rect piecewise linear approximation for divergent concave surfaces. Bauer and Polthier

[9] present a complete process for parametric reconstruction of bent tube surfaces and

propose a moving least squares method to compute the spine curve of a pipe surface from

a point cloud of the surface. The algorithm for parametric reconstruction of bent tube

surfaces performs the following steps, depicted in Figure 1.10

• First, the samples of the surface, shown in Fig 1.10 (b), are projected onto the spine

curve. This procedure is described in Section 3. The result of this step is shown in

Fig 1.10 (c).

• Next, reconstruct a polygonal curve from the spine point cloud using the NN-Crust

algorithm of Dey and Kumar [10], as shown in Fig 1.10 (d).

• The polygonal curve is optionally simplified using Eu and Toussaint’s algorithm to

reduce the problem complexity for further computations.

Chapter 1. Introduction 17

• This polygonal curve is then approximated using an arc-line spline Fig 1.10 (e).

• Finally, the parametric description of the bent tube surface is optimized with re-

gard to the least squares distance of the surface to the input samples using the

Levenberg-Marquardt nonlinear optimization method. The final output reconstruc-

tion is shown in Fig 1.10 (f).

Figure 1.10: Reconstruction of a tube. (a) A photograph of the original tube. (b) A
single- view, irregular scan of the tube surface. (c) Projection of the point cloud onto the
MLS spine approximation. (d) Reconstruction of the spine curve. (e) Approximation of
the spine curve by a G1 continuous arc-line spline. (f) The reconstructed tube surface.

[9]

However, mesh models require significantly more storage. This results in large file size,

creating an obstacle for model sharing between networked devices, particularly for wireless

communication. So, there are other methods for reconstruction of the parametric models

from a cloud of points or mesh. Lai and Yuen [10] proposed a blending scheme which is

called a Hybrid PN Parametric Surface to blend a triangular mesh and a NURBS surface

together. The blended surfaces are shown in Figure 1.11.

Chapter 1. Introduction 18

Figure 1.11: Open freeform meshes and NURBS surfaces with freeform boundaries.
The upper part shows the inputs and lower part shows the front and back views of
the results. The PN-Meshes are shaded in yellow. The input parametric surfaces are

shaded in grey while the generated transition surfaces is shaded in cyan. [10]

In general, 3D scanned data points are noisy, contain outliers and holes, and have high

variations in the point density. Therefore, all the research based on the free form surfaces

(NURBS) is sensitive to the noisy data in the cloud of points. It is very easy to generate

gaps between two surfaces and miss the geometry features. In this paper, the technique

that generation of parametric geometry model (not segments) from a cloud of points at

the same time can solve the noisy data problem.

1.2.4 Geometry Model Fitting

Model fitting can be classified as regular shape fitting and freeform parametric surface

fitting. Both of them are fitting to the points in a cloud and generally are regarded as an

optimization problem. Depending on the application, the conditions to be satisfied can

Chapter 1. Introduction 19

make the problem difficult to solve using classic methods, and for this reason, stochastic

methods, such as genetic algorithms appear to be appropriate. [11, 23, 44]

Sevaux and Mineur [44] solved a curve fitting problem with the objective of generating

shapes with specific curvature variations. The genetic algorithm was used as curve fitting

method. Galvez and Iglesias [11] presented a novel hybrid evolutionary approach (called

IMCH- GAPSO) for B-spline curve reconstruction comprised of two classical bio-inspired

techniques: genetic algorithms (GA) and particle swarm optimization (PSO), accounting

for data parameterization and knot placement, respectively. The flowchart is shown as

Figure 1.12. The similar researches were done by Zhao, Deng et al [45, 46].

Figure 1.12: Graphical workflow of the proposed method. [11]

Lin [12] developed the adaptive data fitting algorithms by virtue of the local property

of the Progressive-iterative approximation (PIA), which generates the fitting curve by

adjusting the control points of a blending curve iteratively. In the adaptive data fitting

algorithms, the control points are classified into two classes, namely, active and fixed

control points. Only the active control points need to be adjusted in each iteration, thus

saving computation greatly. The fitting process is shown in Figure 1.13. Kineri and

Chapter 1. Introduction 20

Wang [47] distinguished between two types of B-spline surface fitting — interpolation

and approximation — and compare these two methods with standard fitting methods.

Andrews and Sequin [48] introduced an approximate maximum-likelihood method to the

kinematic surface fitting problem. Janunts [49] introduced a general straightforward and

easy mathematical approach for modeling biconic surfaces and implicit parametric fitting

to discrete corneal topographic height data.

Figure 1.13: Fit the model star by the alternate method with a cubic B-spline curve
(in red), where the data points not reaching the pre-defined fitting precision error =
10-2 are displayed in red. iter = the number of the iterations; act = the number of the

active control points. [12]

Various methods have been proposed to calculate the fitting, e.g. computational geometry

methods, support vector machines, and simplex methods. [50–52] But these techniques

Chapter 1. Introduction 21

have serious limitations and restricted applicability. They usually need to identify dif-

ferent cases and then appropriate manipulation is implemented according to the specific

shape or point distribution. Kanatani [53] compared the convergence performance of dif-

ferent numerical schemes for geometric fitting and conclude that FNS exhibited the best

convergence performance if initialized by Taubin’s method. Therefore they are very in-

convenient to be applied in practice. Gradient based optimization method is an efficient

but not robust way for the geometry fitting problem. Flory, Zhang, Zheng and so on

[13, 15, 54] applied gradient optimization method into B-spline curve fitting. The process

is shown in Figure 1.14. More information will be discussed in the next section.

Figure 1.14: The L-BFGS fitting method process. [13]

Objective function selecting is also an important problem in geometry fitting. Bo and Ling

[23] studied the performance of algorithms for freeform surface fitting when PD, SD and

TD error terms are used as quadratic approximations to the squared orthogonal distances

Chapter 1. Introduction 22

from data points to the fitting surface. Based on their experimental results, using the

TD error term and the SD error term leads to surface fitting algorithms that converge

much faster than using the PD error term. Zhang and Gu [14] proposed a curve fitting

approach called adaptive moving total least squares (AMTLS) method. This method

uses distance between the given points and fitting curve as objective function, as shown

in Figure 1.15. Similar research was done by Wang, Flory et al [55, 56]. Pourkarimi and

Wang [57, 58] proposed a multiobjective linear programming model for the curve fitting

problem. In this model, all of the violations of the corresponding polynomial fitted curve

are minimized simultaneously as a vector.

Figure 1.15: Local approximants of AMTLS. [14]

Instead of fitting geometry models to point of clouds, other researchers focus on fitting

geometry models into closed regions. Chaudhuri and Samal [59] introduced a new ap-

proach for fitting of a bounding rectangle to closed regions. This is similar with triangles

fitting approach which is introduced before section [6]. Zhang and He [15] presented

a fast and powerful method to evaluate the Minimum Zone form errors (Figure 1.16)

of general complex surfaces. The original minimum optimization is transferred into an

unconstrained differentiable minimization problem by exponential penalty functions.

Chapter 1. Introduction 23

Figure 1.16: Minimum zone fitting of complex surfaces. [15]

Geometry fitting is a very important subject of research in fields such as geometric mod-

eling and computer-aided design/ manufacturing (CAD/CAM) [28]. Optimization tech-

niques are the main methods for solving this kind problem. Flory [16] described the

fitting problem as an optimization problem and employs an iterative procedure to solve

it. The presence of obstacles poses constraints on this minimization process. There are

two families of obstacles: first, the point cloud itself is interpreted as obstacle, such as

minimum zone form error. Second, arbitrary regions is defined as the fitting must not

penetrate. (Figure 1.17) Wang [60] also introduced an approach to fit a geometric shape

to image.

Figure 1.17: Fitting a cubic B-spline curve to a point cloud in the presence of four
general obstacles. For three different initial setups (top row), the corresponding final

approximations after 25 iterations (bottom row) are shown. [16]

Chapter 1. Introduction 24

Galvez [61] presented a new approach for data fitting with B-spline curve. This scheme is

based on the idea of considering the internal knots as free variables of the problem, which

leads to a very difficult continuous multimodal and multivariate nonlinear optimization

problem. To solve this problem, particle swarm optimization (PSO) paradigm is applied

to compute an optimal knot vector automatically. The similar researches were done by

Galvez [62]. Kang and Chen [63] introduced a framework for computing knots in curve

fitting based on a sparse optimization model. This framework consists of two steps: first,

from a dense initial knot vector, a set of active knots is selected at which certain order

derivative of the spline is discontinuous by solving a sparse optimization problem; second,

remove redundant knots and adjust the positions of active knots to obtain the final knot

vector. Chou and Cheng [17] proposed an optimized hybrid artificial intelligence model to

integrate a fast messy genetic algorithm (fmGA) with a support vector machine (SVM).

The flowchart is shown in Figure 1.18.

Figure 1.18: GA-based SVM flowchart. [17]

Optimum design is another application field of optimization method in geometry model

fitting. The problem of efficient shape parameterizations is crucial to optimization of

geometry and shape that has increasingly come under consideration in practice. Carrizosa

Chapter 1. Introduction 25

and Morales [64] emphasized some links between mathematical optimization methods

and supervised classification. Liu and Shimoda [65] proposed a parameter-free shape

optimization method for designing the shapes of stiffened thin-walled or shell structures

in the natural vibration problem. The optimal free boundary shapes of either stiffeners or

basic structures can be obtained with this method. [18] General optimum design process

is shown in Figure 1.19

Figure 1.19: Basic components of the computer-aided optimum design process. [18]

Previous researchers have focused on a specific step of the geometry fitting problem,

either data parameterization (fixed-knots methods) or knot placement (variable knots

methods). So far, no evolutionary approach has been successfully applied to the general

complex parametric geometry fitting problem that the fitting process will consider the

whole data at the same time but not break them into pieces. The propose of the work in

this paper is developing the approach that can achieve the goal above.

Chapter 1. Introduction 26

To sum up, all the geometry generation problem introduced in the above four sections

are solved based on traditional method. In that method, the cloud of points is clas-

sified into several parts and fitted by discrete surfaces/curves (NURBS). It has several

disadvantages:

• The design parameters of discrete surfaces/curves can not present the geometry

features of the whole model

• The method is very sensitive to noise in the data. The fitting results of surfaces

always have gets between each other.

• Because the geometry model is formed by a bunch of discrete surfaces, the heuris-

tic optimization is the preferred technique during solving this kind problem. But

the heuristic method is not as efficient as gradient-based optimization method in

generally.

Therefore, a new technique is developed in this parer for solving the problems listed above.

In the new technique, the fitting process uses a gradient optimization technique applied

to the whole cloud, without the need to segment or classify the cloud points for different

faces. The basic elements in geometry model are bodies but not surfaces or curves. The

comparison between traditional and new techniques is shown as below:

Chapter 1. Introduction 27

(a) Traditional fitting technique (b) New fitting technique

Figure 1.20: Optimization problem

Figure 1.20a shows the traditional free-form fitting technique. The cloud of points is

fitted by 4 straight lines and circles. As shown in the figure, there are gaps between lines

and circles due to the noisy points in the cloud. Figure 1.20b shows the new technique

developed in this paper for fitting the cloud of points through integral parametric geome-

try model. The cloud of points is fitted by a super-ellipse model. There are only 5 design

parameters (2 radii, 1 rotation angle, x,y coordinates of center and power) to control the

geometry shape. In this method, there are no ”gaps” problem due to the points are fitted

at the same time. And the fitting problem can be easily expressed mathematically for

applying the gradient-based optimization.

1.2.5 Aircraft Parameters Analysis

Aircraft are geometrically complicated models that contains many parameters, such as

wing area, aspect ratio, span. The problem regarding aircraft parameters analysis can

be classified into two fields. One is the identification of aircraft [29, 66–69]. The other

Chapter 1. Introduction 28

is the design of aircraft’s. My work is more regarding the second part. The basic idea is

generating a parametric aircraft model from a cloud of points first, then one can analysis

the affect of design parameters to the aircraft geometry shape.

In the analysis and design of aircraft, NURBS and subdivision surfaces are the important

design tools. When using polynomial based methods [19] the surface patch is usually

generated using a set of control points, by manipulating these control points the surface

shape changes. One problem that arises here is that there are often too many control

points to manipulate the underlying geometry. Thus, there are much research to de-

velop techniques that allow the user to manipulate the surface effectively using minimum

number of controls.

Augsdorfer [70] presented methods for analyzing the magnitude of artifacts in a surface

defined by a quadrilateral control mesh and uses the subdivision process as a tool for

analysis. The results provided a measure of surface artifacts with respect to initial control

point sampling for all B-Splines, quadrilateral box-spline surfaces and regular regions of

subdivision surfaces. Athanasopoulos and Ugail [19] present a surface generation tool

designed for the construction of aircraft geometry and the surface generation is based on

Partial Differential Equations (PDEs). The step of generate aircraft is shown in Figure

1.21.

Chapter 1. Introduction 29

Figure 1.21: Construction of a generic aircraft shape. (a) Fuselage curves. (b) Two
patches fuselage object. (c) The initial curve for the wing. (d) The generating curves
of the wing. (e) Wing and fuselage objects blended. (f) The final basic shape of the

airplane. [19]

One of the major tasks in the design phase of a new aircraft is the definition of its config-

uration along with the main geometric characteristics. For an aerodynamic early phase

conceptual design, a step before the application of CAD is needed, i.e. a toolbox that will

produce generic and parameterized aerodynamic surfaces, which will take into account

the special needs and constraints for the conceptual design of an aircraft. Besides the

well known general CAD packages, very few are specialized in aircraft design. Byrne and

Cardiff [20] combine NASA’s parametric aircraft system (OpenVSP) and a computational

fluid dynamics solver (OpenFOAM) with an evolutionary algorithm to generate a variety

of optimized and novel designs.

Chapter 1. Introduction 30

Figure 1.22: Selected individuals from the pareto front of the MIG 21 optimization
results in the order of increasing lift (drag) from top left to bottom right. [20]

Ledermann and Hanske [21] illustrate how beneficial parametric-associative CAE methods

are in aircraft pre-design. The knowledge based geometry can serve as a basis for different

domains like structural analysis, computational fluid dynamics, and others. Different

kinds aircraft models are shown in Figure 1.23.

Figure 1.23: Geometric aircraft model with different levels of detail: (top) wireframe,
(middle) master geometry, (bottom) including some inner geometry. [21]

Chapter 1. Introduction 31

For the aircraft parameters analysis problem, an efficient, robust and accurate method for

generating parametric aircraft models from a cloud of point is necessary. In my research,

using an optimization method applied to the whole data at the same time, but does not

segment or classify the cloud points into different type pieces. This will significantly

improve the efficiency of algorithm.

Chapter 2

Optimization Techniques

2.1 Introduction

Now that the idea of parametric model generating and its applications has been discussed,

optimization technique is the general method for solving this kind problems. In this

section, the standard optimization techniques are discussed. These include gradient based

optimization method and heuristics optimization methods.

2.1.1 General Format for Optimization Problem

An optimization technique is the selection of a best candidate solution (with regard to

some criterion) from some set of available alternatives.[71] In general, an optimization

algorithm is a method that finds maximum or minimum of an objective function by

changing input parameters from within an allowed set. Figure 2.1 shows two types opti-

mization problems. Figure 2.1a shows the unconstrained optimization problem. In this

kind of problem, the input parameters can be changed in global area to minimize or

32

Chapter 2. Optimization Techniques 33

maximize the objective function. On the other hand, Figure 2.1b shows the constrained

optimization problem that the input parameters only can be changed in a constrained

area to minimize or maximize the objective function.

(a) Unconstrained (b) Constrained

Figure 2.1: Example of optimization problem

For applying optimization techniques, the objective function needs to be defined at first.

The standard form for a multi-objective, non-linear, constrained optimization problem is

provided in Equation 2.1a below

minimize : Sic(~β) ic = 1 . . .mc (2.1a)

subject to : C1jc(~β) <= 0 jc = 1 . . . nc (2.1b)

C2kc(~β) = 0 kc = 1 . . . pc (2.1c)

βlcL <= βlc <= βlcU lc = 1 . . . qc (2.1d)

In Equation 2.1a, Sic(~β) represents the multiple objective functions with vector parameter

~β. Solving a multi-objective optimization problem is sometimes understood as approxi-

mating or computing all or a representative set of Pareto optimal solutions. The solution

Chapter 2. Optimization Techniques 34

is called Pareto optimal, if none of the objective functions can be improved in value

without degrading some of the other objective values. [72, 73]

Scalarizing a multi-objective optimization problem is an a priori method, which means

formulating a single-objective optimization problem such that optimal solutions to the

single-objective optimization problem are Pareto optimal solutions to the multi-objective

optimization problem.[74] If scalarization is done carefully, Pareto optimality of the so-

lutions obtained can be guaranteed. The most general scalarization of multi-objective

optimization problems is linear scalarization (Equation 2.2).

Snew = min
βlcL<=βlc<=βlcU

mc∑
ic=1

wic · Sic(~β) (2.2)

where the weights of the objectives wic > 0 are the parameters of the scalarization.

In Equation 2.1b, C1jc(~β) is an inequality constraint and C2kc(~β) is an equality constraint

function. The vector ~β represents the qc design variables that are modified to obtain the

optimum of objective function. The ranges of design parameters are defined by the upper

and lower bounds of the design variables βlcL and βlcU . In the general case, the objective

and constraint functions can be linear or non-linear functions. [75].

For the generation of parametric model from a cloud of points, the problem is mathema-

tized as single objective function and un-constraint optimization problem. Therefore, in

this thesis, the solution for this kind problem is concerned. For minimizing/maximizing

the single un-constraint objective function, the gradient-based [76] and heuristics [77]

optimization algorithms will be introduced in the following section.

Chapter 2. Optimization Techniques 35

2.1.2 Test Function for Optimization Technique

For comparing the different optimization algorithm, Modified Styblinski-Tang function is

used as the test function. The original Styblinski-Tang function is shown as Equation 2.3

and its 3D plot is shown in Figure 2.2.

S(~β) =

∑2
i=1 β

4
i − 16β2

i + 5βi
2

(2.3)

where, ~β is the parameters need to be optimized. The global minimum is

~β = [−2.903534,−2.903534]

Figure 2.2: 3D plot of Styblinski-Tang function

Because the Levenberg-Marquardt method (will be introduced in Section 2.3.3) will take

the structural advantage of least square problem, the original Styblinski-Tang need be

squared. Moreover, for keeping the shape of Styblinski-Tang function (3 local mini-

mum and 1 global minimum), a constant (choose 80 here) is need to add to the original

Styblinski-Tang. The Modified Styblinski-Tang function is shown as Equation 2.4 and

Chapter 2. Optimization Techniques 36

its 3D plot is shown as Figure 2.3 As shown in the figure, there are 4 minimum values in

the Styblinski-Tang function and the global minimum value is one of them. Therefore,

Modified Styblinski-Tang (MST) function is a good choice for testing the performance

of optimization algorithm (Gradient decent, Newton’s, Levenberg-Marquardt, Improved

Levenberg-Marquardt).

S(~β) = (

∑2
i=1 β

4
i − 16β2

i + 5βi
2

+ 80)2 (2.4)

where, ~β is the parameters need to be optimized. The global minimum is same as the

original Styblinski-Tang function

~β = [−2.903534,−2.903534]

Figure 2.3: 3D plot of modified Styblinski-Tang function (MST)

Chapter 2. Optimization Techniques 37

2.2 Heuristics Methods

The general optimization method for solving the global minimum problem is heuristics

optimization method. A heuristic method is a function that ranks alternatives in search

algorithms at each branching step based on available information to decide which branch

to follow. For example, it may approximate the exact solution. [77–80] However, it is

not guaranteed mathematically to find the solution. For demonstrating how heuristics

optimization method works, simulated annealing (SA) method is applied. The reason of

choosing SA is that the basic idea of SA (accept not too bad results) will be borrowed

into gradient based method for solving the generation parametric model problem later.

2.2.1 Simulated Annealing algorithm

Simulated annealing (SA) [81] was originally motivated by the process of physical anneal-

ing in metal work and successfully used in optimization. SA uses a Metropolis criterion

[82] to have a better chance to obtain the global minimum and escape from being trapped

in a local minimum energy state. It interprets slow cooling as a slow decrease in the prob-

ability of accepting worse solutions as it explores the solution space. Accepting worse

solutions is a fundamental property of heuristics because it allows for a more extensive

search for the optimal solution.

In SA algorithm, there are several parameters need to be clarified. The energy state

E is the same as the objective function. The parameter settings of the SA algorithm

include: the initial temperature T0, the freezing temperature Tf , the design variables X0,

the energy state of X0 as E(X0), and the temperature decrement factor K.

The SA generates a random perturbation that displaces a particle [83] (moving the con-

figuration of X0 to the other configuration, Xi). If the new configuration has a lower

Chapter 2. Optimization Techniques 38

energy state, the move is accepted (X0 = Xi, E(Xi) = E(X0)). Otherwise, the move is

accepted, with the acceptance probability of the Metropolis criterion.

For any given finite problem, the probability that the simulated annealing algorithm ter-

minates with a global optimal solution approaches 1 as the annealing schedule is extended.

This theoretical result, however, is not particularly helpful, since the time required to en-

sure a significant probability of success will usually exceed the time required for a complete

search of the solution space. [84]

The pseudocode of Simulated Annealing algorithm is shown as below:

Let X = X0

For i = 1 through imax

Pick a random neighbour, Xnew = neighbour(X)

If P(E(X), E(Xnew), T) > random(0, 1)

X = Xnew

Output: the final state X

The probability function of P is as Equation 2.5.

P = exp(−E(Xi)− E(X0)

KT
) = exp(−∆E

T
) (2.5)

Applying the SA method into optimizing the modified Styblinski-Tang function, the prob-

ability function 2.5 becomes Equation 2.6:

P = exp(−S(~β(i+1))− S(~β(i))

KT
) = exp(−∆S

T
) (2.6)

After applying the SA method, the optimization iterations is shown in the Figure 2.4.

The red lines are the trajectory of optimization process and the blue star is the global

Chapter 2. Optimization Techniques 39

minimum of the objective function. For the simulated annealing method, the optimization

process stopped at the global minimum value and the parameter ~β is very close to the

correct value. However, there are too many iterations during the optimization process.

Because only the objective function is calculated during each iteration, the number of

function evaluations is same as the iteration number for the SA method. In this specific

case, the function evaluation is 825.

(a) Trajectory of convergence (b) Zoom in the figure

Figure 2.4: Trajectory of objective function value based on simulated annealing

The log of objective function value after each iteration is shown in Figure 2.5. The

objective value has large fluctuations at the beginning, and the fluctuation value is reduced

during the optimization process. This is the basic idea of SA method that accepted some

”uphill” values at the beginning. At the end, only ”downhill” steps are accepted. This

idea will be borrowed into gradient based optimization method in later section.

Chapter 2. Optimization Techniques 40

Figure 2.5: Log of objective function value at each iteration based on simulated anneal-
ing

Although, the SA method can find the global minimum value of the objective function,

there is no guarantee that will be achieved every time. This means the SA algorithm

(heuristic method) cannot get the exactly same results when run the same problem twice.

Moreover, there are also a lot of function evaluations during the optimization process

when using the SA method. Therefore, gradient based optimization algorithms need to

be considered for improved the robustness and accuracy of the optimization.

2.3 Gradient Based Methods

Gradient-based optimizations [85–87] that use derivatives information are widely used in

many kinds of problems, such as: mechanics [88–93], economics [94–97] , control engi-

neering [98–103] , traffic assignment [104] problem and so on. As indicated by the name,

Chapter 2. Optimization Techniques 41

gradient-based optimization techniques make use of gradient information to find the min-

imum/maximum solution of the objective function. The benefit of these techniques is

that search direction [105, 106] information provided by the gradient.

2.3.1 Gradient Decent Method

Gradient descent is a first-order iterative optimization algorithm. To find a local minimum

of a function using gradient descent, one takes steps proportional to the negative of the

gradient (or of the approximate gradient) of the function at the current point. This can

be expressed as Equation 2.7

~β(s+1) = ~β(s) − γS ′(~β(s)) (2.7)

where ~β is the design variable, (s) is the number of iterations, γ is the step size as a

constant number. For making sure the optimizer does not pass over the minimum value,

γ should be set as a small number. S ′ is the first derivative of objective function.

Figure 2.6 shows several iterations after applying the gradient decent method (using

first derivative information for providing the search direction) for optimizing modified

Styblinski-Tang function. In the Figure 2.6a, β(0)...β(4) are the result parameters of each

search step. Red arrows are the search direction for each step. Because the search

direction is decided by the gradient information, the search direction at each step is

perpendicular to the isogradient line at that step. The total step size is getting smaller

during the optimization process because the gradient value is reduced to zero at the

minimum value.The section along the optimizer moving direction is shown in Figure

2.6b. The blue line is the section curve of the modified Styblinski-Tang function, and the

red lines are the iteration steps.

Chapter 2. Optimization Techniques 42

(a) Contour of the modified Styblinski-Tang (b) Section curve of the MST

Figure 2.6: Search directions provided by gradient decent (first derivative information)

Applying the gradient decent method to optimizing MST, in the Figure 2.7, the red lines

are the trajectory of optimization process and the blue star is the global minimum of the

objective function. For the gradient decent method, the optimization process stopped at

local minimum on the up left corner, because the steps only move to the gradient decent

directions. The number of iterations is reduced a lot comparing with the SA method.

There are only 7 iterations till converge. Because the first derivatives information for ~β

(2 design parameters) need to be calculated in each iteration, there are total 3 function

evaluations in each iteration. The total function evaluations for gradient decent method

is 21.

Chapter 2. Optimization Techniques 43

(a) Trajectory of convergence (b) Zoom in the figure

Figure 2.7: Trajectory of objective function value based on gradient decent method

The log of objective function value after each iteration is shown in Figure 2.8.

Figure 2.8: Log of objective function value at each iteration based on gradient decent

Gradient decent method reduced the function evolution a lot, but it is difficult for choosing

a good step size γ. When the iteration is around the minimum value, the total step

Chapter 2. Optimization Techniques 44

size γS ′(~β) will be very small due to the S ′ ≈ 0. Therefore, Newton’s method will be

introduced for overcoming this problem.

2.3.2 Newton’s Method

Original Newton’s method is used for finding roots (zero points) of a function S. The

step size of each iteration is determined by intersection points between tangent lines and

S = 0 line. Therefore, Newton’s method can optimize the step size automatically in each

iteration. For the optimization problem, the Newton’s method can be used as finding the

roots of first derivative of S (S ′ = 0). The mathematical explanation is as below:

Newton’s algorithm is an unconstrained, second order derivative optimization algorithm

[107–112]. that is derived from a second-order Taylor series expansion of the objective

function. The second order Taylor expansion ST (β) of S around β(n) is shown in Equation

2.8

ST (β) = ST (β(n) + δ) ≈ S(β(n)) + S ′(β(n))δ +
1

2
S ′′(β(n))δ2 (2.8)

In the one-dimensional problem, Newton’s method attempts to construct a sequence β(n)

from an initial guess β(0) that converges towards some value β∗ satisfying S ′(β∗) = 0.

This β∗ is a stationary point of function S. For finding δ such that β(n) +δ is a stationary

point. We seek to solve the equation that sets the derivative of this last expression with

respect to δ equal to zero:

0 =
d

dδ

(
S(β(n)) + S ′(β(n))δ +

1

2
S ′′(β(n))δ2

)
= S ′(β(n)) + S ′′(β(n))δ (2.9)

Chapter 2. Optimization Techniques 45

Therefore, the Equation 2.9 can be simplified as follows.

β(n+1) = β(n) + δ = β(n) − S ′(β(n))

S ′′(β(n))
(2.10)

If the first derivative S ′ is flat (second derivative S ′′ ≈ 0) at some iterations, Newton’s

method may not work due to the optimizer shooting out of the solution area. For avoiding

the failure of Newton’s method, only the improved result of S (S(n+1) < S(n))will be

accepted during the optimization iteration.

Figure 2.9 shows one iteration after applying the Newton’s method (using second deriva-

tive information for providing the search direction) for optimizing modified Styblinski-

Tang function. In the Figure 2.9a, β(0)...β(2) are the result parameters of each search step.

Red arrow is the search direction for first step. Because the first derivative curve is very

flat (S ′′ ≈ 0) at ~β(1) point, the next iteration shot very far form the minimum value by

Newton’s method. Based the updating rule, this step is rejected. The section along the

optimizer moving direction is shown in Figure 2.9b. The blue line is the section curve of

the first derivative of MST (S ′), and the red lines are the iteration steps. As shown in the

figure, there is only one Newton’s iteration applied to the objective function, because the

S ′ curve is very flat after one iteration. This means the S ′′ ≈ 0 and the next Newton’s

iteration will shoot out of the solution area (increase the objective a lot). Therefore, the

next iterations are declined.

Chapter 2. Optimization Techniques 46

(a) Contour of the modified Styblinski-Tang (b) Section curve of the first derivative of MST

Figure 2.9: Search directions provided by Newton’s method (second derivative infor-
mation)

The trajectory (red lines) of whole Newton’s method optimization process is shown in

Figure 2.10. For the Newton’s method, the optimization process stopped at local mini-

mum on the up left corner as same as gradient decent, because the steps only move to

the decreasing objective directions. Although the number of iterations is reduced fur-

ther comparing with gradient decent method, there is no iterations around the minimum

value for improving the accuracy of the result. There is only 1 iterations till converge.

Because the first and second derivatives information for ~β (2 design parameters) need to

be calculated in each iteration, there are total (1+2+4) = 7 function evaluations in each

iteration. The total function evaluations for gradient decent method is 7.

Chapter 2. Optimization Techniques 47

(a) Trajectory of convergence (b) Zoom in the figure

Figure 2.10: Trajectory of objective function value based on Newton’s method

The log of objective function value after each iteration is shown in Figure 2.11.

Figure 2.11: Log of objective function value at each iteration based on Newton’s method

Newton’s method optimized the step size for each iteration, but it not robustness enough

around the first derivative flat area. For improving the robustness around S ′′approx0

Chapter 2. Optimization Techniques 48

area, the Levenberg-Marquardt algorithm will be introduced in the next section.

2.3.3 Levenberg-Marquardt Method

The Levenberg-Marquardt method[113] is an optimization method which is used to mini-

mize least square problems. It is a combination of Newton’s method and gradient descent,

making it both fast and robust.

For the multiple-dimensional (~β) problem, one starts from Newton’s method as an itera-

tive method for finding the root of a differentiable function S. In optimization, Newton’s

method is applied to the derivative S ′ of a twice differentiable function S to find the root

of S ′. Once the root of S ′ is found, the maximum or minimum value of the objective

function S is found.

Newton’s method, to drive S ′ to zero, can be written as Equation 2.11

~β(s+1) − ~β(s) = −[H(~β(s))]−1 · ~g(~β(s)) (2.11)

where ~β are the design variables, ~g is the first derivative of S in vector format (here, ~g

only contains one item due to S just have one square item), and H is the Hessian matrix

of S. For the current problem, ~β = (β1, β2). For simplicity, it is useful to define as

Equation 2.12

~δ ≡ ~β(s+1) − ~β(s) (2.12)

We defined the number of square terms in objective function is t (t = 1 for the modified

Styblinski-Tang function) and each square term is ql, l = 1...t. By taking the advantage

of the least squares structure of objective function, gradient and Hession matrix can be

Chapter 2. Optimization Techniques 49

written as Equation 2.13 and 2.14

gj = 2
t∑
l=1

ql
∂ql
∂βj

(2.13)

Hjk = 2
t∑
l=1

(
∂ql
∂βj

∂ql
∂βk

+ ql
∂2ql

∂βj∂βk
) (2.14)

Now define J ≡ ∂ql/∂βj, which is the Jacobian matrix of ~q. (Recall the ~g is the gradient

of q2.) Marquardt assumed that the second-order derivative terms of H could be ignored.

This assumption is based on Equation 2.15.

∣∣∣∣ql ∂2ql
∂βj∂βk

∣∣∣∣� ∣∣∣∣ ∂ql∂βj

∂ql
∂βk

∣∣∣∣ (2.15)

Ignoring the second-order derivative terms may be valid in two cases, for which conver-

gence is to be expected. [114]

• The function values ql are small in magnitude, at least around the minimum.

• The functions are only ”mildly” non linear, so that ∂2ql
∂βj∂βk

is relatively small in

magnitude.

After ignoring the second-order derivative terms of H, the Hession matrix can be ex-

pressed as Equation 2.16

Hjk = 2
t∑
l=1

JljJlk (2.16)

Combining these gives a result that the iteration function can be written as Equation

2.17

~δ = −(JTJ)−1 · JT~q (2.17)

Chapter 2. Optimization Techniques 50

If the first derivative S ′ is flat (second derivative S ′′ ≈ 0), Newton’s method may not

work; hence Marquardt suggested adding a term that employs ideas from the gradient

descent method (since it only uses first derivatives). This is done by adding a damping

parameter, λ, to the iteration function that can be changed based on the result in each

step. The function is shown as Equation 2.18

~δ = −(JTJ + λI)−1 · JT~q (2.18)

where I is the identity matrix.

When λ → 0 , the added term vanishes and the technique reverts to Newton’s method.

When λ becomes large, the scheme becomes the gradient descent method. This improves

the robustness of the algorithm when the initial values are far from the final minimum.

Marquardt suggested starting with a small value for λ. If the results of the previous step

improves the objective function, (that is, ||~e(new)|| < ||~e(old)||) ~β is incremented by ~δ and

the the value of λ is decreased (say by a factor of 2) and the method continues. If the

method (unfortunately) increases the objective function, the step is discarded and λ is

increased.

Marquardt also provided the insight that one can scale each component of the gradient

according to the curvature so that there is larger movement along the directions where

the gradient is smaller. This avoids slow convergence in the direction of small gradient.

Therefore, the identity matrix I was replaced with the diagonal matrix consisting of the

diagonal elements of JTJ , yielding, and now the iteration function as Equation 3.12

~δ = −(JTJ + λ · diag(JTJ))−1 · JT~q (2.19)

Chapter 2. Optimization Techniques 51

There are two stopping rules for interrupting the iteration. One is the number of iterations

exceeds the maximum number of iterations, which is defined by the user. The other one

is when the ||~δ|| becomes smaller than a specified tolerance, ε.

The trajectory (red lines) of optimization process is shown in Figure 2.12. Comparing with

the gradient decent and Newton’s algorithms, Levenberg-Marquardt algorithm overcomes

the the two algorithm’s shortness and combines them together. However, as shown in the

figure, the iteration is also can not reach the global minimum value due to the gradient-

based searching direction and monotonic updating rule. Due to LM takes the structural

advantages of least square problem and assumes ignored the second derivative terms in

Hession matrix, the number of function evaluations for each iteration is (1+2) = 3. There

are total 20 iterations in LM algorithm. So the total number of function evaluations is

60.

(a) Trajectory of convergence (b) Zoom in the figure

Figure 2.12: Trajectory of objective function value based on LM method

The log of objective function value after each iteration is shown in Figure 2.13. The λ

values during the optimization process is shown is Figure 2.14. If the objective value

reduced after one iteration, the λ is reduced also for making it more Newton’s like (more

Chapter 2. Optimization Techniques 52

efficiency). If the objective value did not reduce after one iteration, the λ is increased for

making it more gradient decent like (more robustness).

(a) Objective function value (b) Zoom in the figure

Figure 2.13: Log of objective function value at each iteration based on LM

Figure 2.14: λ values at each iteration based on LM

LM method takes the both advantages of gradient decent and Newton’s methods, it is

still converges at local minimum due to the monotonic updating rule. Therefore, the idea

Chapter 2. Optimization Techniques 53

borrowed from simulated annealing is combine into LM method for overcoming the local

minimum problem.

2.3.4 Improved Levenberg-Marquardt Method

In LM method, sometimes the optimization processes is slow, because the parameters

have not been updated during many iterations; this means that many steps were rejected

and λ was increased. The original LM method also has a high probability of getting stuck

in a local minimum due to the monotonic updating rule.

To circumvent these problems, a modification to the LM method is developed, which

borrows some ideas from the simulated annealing method (SA). Here, recall the definition

of simulated annealing (SA) in Chapter 2.1.3. SA is a heuristic optimization method that

overcomes the local minimum problem somehow. It interprets slow cooling as a slow

decrease in the probability of accepting worse solutions as it explores the solution space.

Accepting worse solutions is a fundamental property of heuristics because it allows for a

more extensive search for the optimal solution.

After borrowing the idea from SA, candidate solutions are randomly generated and ac-

cepted if the new objective is “not too much worse” than the previous objective. The

definition of “not too much worse” starts rather loosely and then tightens up as the

method continues This idea is inspired by the annealing process for metals and results in

the SA method being less prone to getting stuck in a local minimum.

Here the same idea is added to the original LM method. Specifically, instead of accepting

steps only if the objective improves, one can accept new results that are “not too much

worse”, or a step is accepted if

||~e(new)|| < e||
~δ|| ||~e(old)|| (2.20)

Chapter 2. Optimization Techniques 54

Since ||~δ|| approaches 0 as the solution is neared, the factor e||
~δ|| approaches 1, and only

better steps are accepted during the endgame (as was done in the SA method). The new

algorithm is named as Improved Levenberg-Marquardt (ILM) algorithm.

The trajectory (red lines) of optimization process is shown in Figure 2.15. Because the

Improved Levenberg-Marquardt borrows the idea form simulated annealing that ”accept

the iteration result which is not too bad”, the optimization process has the property

that goes out from local minimum value and moves to the global minimum value. As

shown in figure, the global minimum value is gotten after using ILM algorithm and the

parameter ~β is much equal to the correct values after 100 iterations. The number of

function evaluations for ILM methods is (1 + 2)× 100 = 300.

(a) Trajectory of convergence (b) Zoom in the figure

Figure 2.15: Trajectory of objective function value based on ILM method

The log of objective function value after each iteration is shown in Figure 2.16. The λ

value at each iteration is shown in Figure 2.17

Chapter 2. Optimization Techniques 55

(a) Objective function value (b) Zoom in the figure

Figure 2.16: Objective function value at each iteration based on ILM

Figure 2.17: λ values at each iteration based on ILM

For comparing the converge speed for different optimization algorithms base on the num-

ber of function evaluations, the objective function value histories are shown in Figure

2.18. As shown in the figure, the SA method can reached at the global minimum area,

but there are too many function evaluations here. The gradient decent, Newton’s and

Chapter 2. Optimization Techniques 56

LM method are converged faster than SA method, but they are get stuck at the local

minimum value. For taking the advantages of these 4 algorithms, the ILM method can

overcome the local minimum problem and the speed of convergence is fast.

(a) Objective function value (b) Zoom in the figure

Figure 2.18: Objective function value for applying different optimization algorithms

The ILM is provided a method that optimizer has a chance to get out of the local min-

imum, but there is no guarantee that the global minimum can be reached at the end.

Comparing with the other three algorithms, if the initial starts from the local minimum

areas, gradient decent, Newton’s and original LM are all moving to the local minimum

value (due to the iterations are monotonically decreasing). However, for the ILM method,

there is a chance that the optimizer moves out of the local minimum area (due to the

”uphill” steps are taken at the beginning) and gets into the global minimum area (not

guarantee because optimizer maybe moves to another local minimum). For testing the

performance of the four algorithms, 20 random initial guess problems are run and the

results are shown in below:

Chapter 2. Optimization Techniques 57

Table 2.1: Comparison of Performance for Different Optimization Algorithms by 20
Random Initial Guess

Initial SA Gradient decent Newton’s method LM ILM

(-2.80, 2.98) (-2.98, 2.77) (-2.80, 2.98) (-2.80, 2.98) (-2.89, 2.74) (2.72, -2.91)

(0.02, 1.06) (-2.73, 2.38) (0.02, 1.06) (0.02, 1.06) (2.90, 2.74) (-2.87, -2.90)

(1.99, 0.74) (2.73, -3.11) (1.99, 0.74) (1.99, 0.74) (2.76, 2.76) (-2.90, -2.85)

(3.51, 3.75) (2.66, 2.76) (2.93, 2.90) (2.91, 2.87) (2.72, 2.72) (2.74, -3.30)

(4.13, -1.92) (2.87, -2.72) (2.55, -2.74) (2.44, -2.85) (2.74, -2.89) (4.78, 2.94)

(0.42, 2.31) (-3.04, 2.82) (0.42, 2.31) (0.42, 2.31) (2.76, 2.76) (2.75, -2.92)

(-3.25, 2.28) (-3.16, 2.78) (-2.52, 2.80) (-3.25, 2.28) (-2.88, 2.74) (2.72, 2.72)

(-3.15, -1.07) (-2.92, -2.73) (-2.89, -2.88) (-2.98, -2.98) (-2.88, -2.88) (-3.30, 2.74)

(-2.18, 0.61) (-2.68, 2.82) (-2.18, 0.61) (-2.18, 0.61) (-2.88, 2.74) (-2.87, -2.87)

(3.06, -3.81) (2.69, -2.58) (2.90, -3.11) (2.89, -3.08) (2.75, -2.88) (2.74, -3.30)

(-2.21, -4.01) (-2.80, -2.77) (-2.88, -2.90) (-2.85, -2.88) (-2.87, -2.89) (2.82, -3.03)

(2.82, 0.27) (2.63, 2.65) (2.82, 0.27) (2.82, 0.27) (2.92, 2.77) (-2.86, -2.88)

(-2.30, 2.51) (-2.83, 3.01) (-3.20, 2.87) (-2.30, 2.51) (-2.88, 2.74) (-3.30, 2.74)

(3.86, 3.90) (2.71, 2.65) (3.15, 3.15) (3.14, 3.14) (2.76, 2.76) (2.69, 2.69)

(-1.35, -3.33) (-2.96, -2.67) (-2.88, -2.90) (-2.96, -2.92) (-2.88, -2.89) (-2.94, -2.91)

(-2.73, 0.61) (-3.05, 2.51) (-2.73, 0.61) (-2.73, 0.61) (-2.88, 2.74) (-2.90, -2.85)

(-2.24, -0.27) (-2.82, -2.39) (-2.24, -0.27) (-2.24, -0.27) (-2.90, -2.87) (-2.91, -2.91)

(1.04, -4.39) (2.80, -3.05) (2.60, -3.12) (2.78, -3.20) (2.74, -2.88) (2.82, -3.04)

(-0.24, -1.46) (-2.92, -3.02) (-2.87, -2.90) (-0.24, -1.46) (-2.92, -2.90) (-2.85, -2.89)

(-1.33, -3.04) (-3.05, -2.95) (-2.89, -2.90) (-2.86, -2.89) (-2.88, -2.89) (-2.85, -2.89)

For simplifying the Table 2.1, each point is expressed as the color representing the different

domains. The domain (−,+) is represented by B (blue). The domain (+,+) is represented

by R (red). The domain (−,−) is represented by G (green). The domain (+,−) is

Chapter 2. Optimization Techniques 58

represented by P (pink). The global minimum value is contained in domain (−,−) as

green. The color domains are shown in Figure 2.19

Figure 2.19: Domains represented by different colors

Chapter 2. Optimization Techniques 59

Table 2.2: Comparison of Performance for Different Optimization Algorithms (express
the results by color, B(blue), G(green), P(pink), R(red))

Initial SA Gradient decent Newton’s method LM ILM

B B B B B P

R B R R R G

R P R R R G

R R R R R P

P P P P P R

R B R R R P

B B B B B R

G G G G G B

B B B B B G

P P P P P P

G G G G G P

R R R R R G

B B B B B B

R R R R R R

G G G G G G

B B B B B G

G G G G G G

P P P P P P

G G G G G G

G G G G G G

The Table 2.2 also can be expressed as Figure 2.20. There are only comparing the

differences between SA, LM and ILM, because the gradient decent, Newton’s and LM are

Chapter 2. Optimization Techniques 60

the same monotonic updating rule which only ”downhill” steps are accepted.

(a) Optimization results based on SA method (b) Optimization results based on LM method

(c) Optimization results based on ILM method

Figure 2.20: Performance of SA, LM and ILM optimization algorithms

From the 20 tests starting from random initial guess, the SA method can get out of the lo-

cal minimum area, but there is not much possibility to converge to global minimum value.

There are 6 green points (stop at global minimum area) in Figure 2.20a. For LM method,

all points are stay in the initial local minimum area and converge at local minimum value.

There are 6 green points in Figure 2.20b. For the ILM method, some points can get out

of the local minimum value are, and converge at global minimum value. There area 9

green points in Figure 2.20c. So, ILM has 50% more percent possibility to converge at

Chapter 2. Optimization Techniques 61

global minimum. Therefore, the ILM algorithm will be used as the optimization method

for generating the parametric geometry model from a cloud points.

2.4 Application of ILM Algorithm

Now that the optimization techniques have been discussed for finding the minimum value

in mathematical problem, one can be also applied in other fields, such as: engineering

design [88–93], economics [94–97], energy saving [115, 115–119] and so on. In this the-

sis, the new optimization technique can overcome the local minimum problem during

optimizing the nonlinear objective function, and also have the advantage of least square

problem’s structure for improving the efficiency of iterations. In this section, this new

algorithm will be applied to traffic assignment problem for testing the accuracy, efficiency

and robustness.

Here, the Traffic Equilibrium Problem (TEP) is used as demonstration problem. Traffic

assignment is a core component in transportation planning and real-time applications in

optimal routing, signal control, and traffic prediction in traffic networks. It models the

flow pattern in a network given a set of travel demands between the origin-destination

(OD) pairs. The most widely used route choice model is the user-equilibrium (UE)

principle. This UE assignment finds the flow pattern by allocating the OD demands to

the network in such a way that no drivers can unilaterally change routes to achieve better

travel times. [104]

2.4.1 Problem Statement

To test the ILM algorithm, we apply it to a simple network with five nodes, five links,

and two OD pairs, as given in Figure 2.21.The travel demand between OD pair (1, 5) is

Chapter 2. Optimization Techniques 62

15 units and (2, 5) is 18.75 units. There are four possible routes: route 1 (on links 1→ 4

→ 5), route 2 (on links 1 →3 → 5), route 3 (on links 2 → 4 → 5) and route 4 (on links

2 → 3 → 5). The link performance function is the standard BPR function:

ta = αa(1 + 0.15(
νa
Ca

)4) (2.21)

where, ta, αa, νa and Ca are the travel time, free-flow travel time, flow, and capacity of

link a, respectively. Link characteristics are provided in Table 2.3.

Table 2.3: Link Characteristics of the Example Network

Link Free-flow travel time (αa) Capacity (Ca)

1 15 10

2 10 20

3 10 20

4 15 15

5 10 30

Specially, we assume that a 5-unit cost was added to route 4 (link sequence: 2-3-5) while

no cost was added to the other routes, namely, λ254 = 5, λ151 = λ152 = λ253 = 0

Figure 2.21: A simple network for traffic equilibrium problem

Chapter 2. Optimization Techniques 63

2.4.2 Objective Function and Algorithm Application

The objective function proposed by Hong [104] is defined as:

S(~x) =
∑
rs

∑
p

1

2

{√
(f rsp)2 + (ηrsp − πrs)2 − (f rsp + ηrsp − πrs)

}2

+
∑
rs

1

2

√

(πrs)2 + (
∑
p

f rsp − qrs)2 − ((πrs)2 + (
∑
p

f rsp − qrs)2)

2

(2.22)

where, ηrsp is the route cost function as:

ηrsp (~f) = λrsp +
∑
a

δrsp,ata (2.23)

πrs is the minimal route cost: πrs = minpη
rs
p , ∀rs ∈ RS. where, RS is the set of OD pairs

for the whole network. rs is an OD pair, rs ∈ RS. f rsp is the flow on route p between

OD pair rs. ηrsp is the route cost (or dis-utility) on route p between OD pair rs. qrs is

the demand between OD pair rs.

2.4.3 Results

After applying the ILM algorithm for optimizing the TEP, the results comparing with

the original value are shown in Table 2.4 and Table 2.5

Chapter 2. Optimization Techniques 64

Table 2.4: Comparison of Link Flows for the Additive and Route-specific Cost Models

Original values ILM results

Link Additive route cost Route-specific cost Additive route cost Route-specific cost

1 15 15 14.96 14.96

2 18.75 18.75 18.75 18.75

3 27.14 20.12 27.14 20.11

4 6.61 13.63 6.61 13.63

5 33.75 33.75 33.75 33.75

Table 2.5: Comparison of Route Flows for the Additive and Route-specific Cost Models

Original values ILM results

Additive route cost Route-specific cost Additive route cost Route-specific cost

OD Route Route flow Route cost Route flow Route cost Route flow Route cost Route flow Route cost

1,5 1 2.52 53.87 0.00 50.33 2.52 53.75 0.00 50.20

2 12.48 53.87 15.00 50.33 12.48 53.75 15.00 50.20

2,5 3 4.09 38.65 13.63 40.10 4.09 38.65 13.59 40.09

4 14.66 38.65 5.12 40.10 14.66 38.65 5.16 40.09

As shown in the tables, the results from ILM algorithm are accurate comparing with the

correct values. And from the convergence Figure 2.22, comparing with original LM algo-

rithm, ILM reached smaller value of objective function. This means ILM can overcome

the local minimum value problem.

Chapter 2. Optimization Techniques 65

(a) Convergence characteristics of additive cost
models

(b) Convergence characteristics of route-specific
cost models

Figure 2.22: Convergence characteristics comparison between LM and ILM algorithms

Chapter 3

Fitting a Simplified Model to a

Cloud of Points

As introduced in the first Chapter, the objective of this work is to find the design param-

eters, which are associated with a parametric solid model, that best-fits a cloud of points.

In Chapter 2, several optimization schemes were discussed, culminating in the discussion

of the Improved Levenberg-Marquardt (ILM) scheme for solving least-squares problems.

In this Chapter, the ILM scheme is applied to the parametric model problem. It is as-

sumed in this Chapter that one starts with a reasonable initial guess for all independent

variables. Techniques for finding an initial guess are described fully in Chapter 4.

In section 3.1, the optimization problem is defined. Then in section 3.2, each of the

optimization techniques described in Chapter 2 (gradient descent, Newton’s method,

Levenberg-Marquardt, and Improved Levenberg-Marquardt) are applied to a simplifies

fitting problem, namely configuration that is composed of a single super-ellipse. Sec-

tion 3.3 discusses the sparse matrix procedures that are used in order to minimize the

computer resources needed within the optimization scheme.

66

Chapter 3. Fitting a Simplified Model 67

3.1 Demonstration Problem

The basic optimization techniques area demonstrated by applying them to a configuration

that contains a single super-ellipse. A super-ellipse is a generalization of an ellipse, where

the power, r, can be something other than 2. In particular, the equation for a super-ellipse

is given by ∣∣∣x
a

∣∣∣r+ ∣∣∣y
b

∣∣∣r= 1 (3.1)

The reason for choosing a super-ellipse as the demonstrated geometry is that it closely

approximates the cross-sections of many aircraft fuselages, as shown in Figure 3.1.

Figure 3.1: Cross sections of fuselage

To see the generality of the super-ellipse, Figure 3.2 shows the results of choosing several

values for r, from 0.3 up to 5. Notice that small values of the power r yield cusped

configurations, whereas large values of the power r yield shapes that resemble a rectangle

with rounded corners.

Chapter 3. Fitting a Simplified Model 68

(a) Super-ellipse when the power r = 0.3 (b) Super-ellipse when the power r = 1

(c) Super-ellipse when the power r = 2 (d) Super-ellipse when the power r = 5

Figure 3.2: Super-ellipses based on the different powers r

3.1.1 Design Parameters

Design parameters are the values that can be used to generate a specific super-ellipse.

Here, the elements of the design parameter vector, ~d, are the major and minor radii, a

and b, the super-ellipse power, r, the center point, (δx, δy), and the rotation angle θ. In

the discussion that follows, the length of ~d is n; therefore n = 6 when ~d = (a, b, r, δx, δ, θ).

Chapter 3. Fitting a Simplified Model 69

The defining parametric function for a super-ellipse centered at the origin is given by

xt = | cosu|2/r · a · sign(cosu)

yt = | sinu|2/r · b · sign(sinu) (3.2)

where u is a parametric coordinate around the super-ellipse, with 0 ≤ u ≤ 2π.

Homogeneous Coordinates

Homogeneous coordinates were introduced by August Ferdinand Mobius in 1827.[120] It

is a system of coordinates used in projective geometry, as Cartesian coordinates are used

in Euclidean geometry. While homogeneous coordinates are frequently used in computer

graphics because of their ability to convert 3D coordinates onto a plane (with perspec-

tive), they are used here because they allow one to specify translations, rotations, and

scalings via simple matrix multiplications. This makes formulas involving homogeneous

coordinates simpler than their Cartesian counterparts.

As an example, consider the translation matrix is shown in Equation 3.3,

fx

fy

1

 =

1 0 δx

0 1 δy

0 0 1

 ·

xt

yt

1

 (3.3)

where (δx, δy) are the translation distances. The result of such a translation is shown in

Figure 3.3.

Chapter 3. Fitting a Simplified Model 70

Figure 3.3: Super-ellipse after translation, with δx = 2 and δy = 3

A rotation matrix is given by 3.4

fx

fy

1

 =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ·

xt

yt

1

 (3.4)

where θ is the counter-clockwise rotation about the z axis. Figure 3.4 shows the results

of such a rotation.

Chapter 3. Fitting a Simplified Model 71

Figure 3.4: Super-ellipse after rotation in z axis, with θ = 1.5 (radians).

In a similar way, a scaling matrix can be defined by

fx

fy

1

 =

Sx 0 0

0 Sy 0

0 0 1

 ·

xt

yt

1

 (3.5)

where Sx and Sy are the scaling in the x and y directions, respectively. Figure 3.5 shows

such a scaling. Note that scaling is not used in the current application since one can

directly specify the semi-major- and semi-minor-axis lengths (a and b) in the super-ellipse

formula.

Chapter 3. Fitting a Simplified Model 72

Figure 3.5: Super-ellipse after scaling, with Sx = Sy = 1.2

To apply these transformation, one starts with the coordinates on the super-ellipse cen-

tered at the origin, as given in Equation 3.2. These coordinates can then be transformed

(translated and rotated) using homogeneous coordinates, as in Equation 3.6. An example

of a “general” super-ellipse ins shown in Figure 3.6.

fx

fy

1

 =

1 0 δx

0 1 δy

0 0 1

 ·

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 ·

xt

yt

1

 (3.6)

Chapter 3. Fitting a Simplified Model 73

Figure 3.6: Super-ellipse after applying homogeneous coordinates

3.1.2 Least Square Objective Function

For the current demonstration problem, consider the fitting of a super-ellipse to a cloud

of points, as shown in Figure 3.7, where the blue line in Figure 3.7a is the super-ellipse

generated from the initially guessed design parameters ~d, and the red points are the points

in the cloud.

The objective here is to vary the design parameters so as to find the super-ellipse shown

in Figure 3.7b, which clearly is a better fit to the cloud of points than the original super-

ellipse.

Chapter 3. Fitting a Simplified Model 74

(a) Cloud of points (red) and initial guess
(blue)

(b) Cloud of points (red) and final model
(blue)

Figure 3.7: Sample problem, demonstrated with a super-ellipse.

The objective function, that is the quantity to be minimized, is the least-square distances

between the points in the cloud and the surface of the parametric model (in the current

case, the surface of the super-ellipse). For each point i in the cloud, one can define the

fitting error as

e(i) = (xp(i) − fx(~d, ui))2 + (yp(i) − fy(~d, ui))2 (3.7)

Here, xp(i) and yp(i) are the x- and y-coordinates of the ith point in the cloud, fx(~d, ui) and

fy(~d, ui) are the coordinates of a point on the super-ellipse associated with a parametric

coordinate ui.

Since there are m points in the cloud, the objective function can be written as the sum

of the distances e(i), as in

S =
m∑
i=1

e(i) =
m∑
i=1

{
(xp(i) − fx(~d, ui))2 + (yp(i) − fy(~d, ui))2

}
(3.8)

Chapter 3. Fitting a Simplified Model 75

To simplify the above as a single sum, one can define

ql =

 xp(l) − fx(~d, ul) for l <= m

yp(l−m) − fy(~d, ul−m) for l > m
(3.9)

Then, Equation 3.8 simply becomes

S =
2m∑
l=1

q2l (3.10)

An example of a super-ellipse fitting problem is shown in Figure 3.8, where the cloud of

points are shown in red, a initial guess of super-ellipse as a green line, closest points in

blue, and the distances from the points in cloud to the surface in black. The objective

minimizes the sum of the lengths of the black lines.

Figure 3.8: Cloud of points and sample super-ellipse.

Chapter 3. Fitting a Simplified Model 76

3.1.3 Design Variables

As mentioned above, the optimizer certainly needs to be able to vary the elements of the

design parameters ~d = (a, b, r, δx, δy, θ) in order to achieve a good fit.

But since one does not know beforehand where on the surface of the super-ellipse each

point in the cloud maps, m parametric coordinates, ui, need to be added to the op-

timization’s design variables; the elements of design parameters ~d and the parametric

coordinates ui will be automatically adjusted during the optimization process.

Thus, the actual design variables that can be changed by the optimizer in order to mini-

mize S are

~β =
[
~d, u1, . . . , um

]
(3.11)

Hence, there are n+m values that the optimizer will vary.

3.2 Optimization Algorithms Selection

In this section, the various gradient-based optimization techniques that were described in

Chapter 2 are applied to the current demonstration problem. Gradient-based techniques

are used here since the equations necessary to computer the objective function, S, can all

be differentiated analytically to produce the needed gradient and Hessian expressions.

3.2.1 Gradient Descent Algorithm

Application of the gradient decent method into the super-ellipse fitting problem gives the

results that are shown in Figure 3.9. The maximum number of iterations is arbitrarily set

to 20, which is consistent with the iteration limit used in the other optimization algorithms

Chapter 3. Fitting a Simplified Model 77

(Newton’s method, Levenberg-Marquardt method, and Improved Levenberg-Marquardt

method).

As shown in the Figure 3.9, the resulting super-ellipse is not a very good fit to the cloud

of points after 20 iterations.

(a) Initial guess (b) Result after 1 iteration

(c) Result after 10 iteration (d) Result after 20 iteration

Figure 3.9: Results of super-ellipse generation based on gradient decent algorithm

The RMS of distances for each iteration is shown in Figure 3.10a. The history of RMS

of distances shows that the optimization process is far from convergence as seen by the

downward slope at the end of the plot. This means that if one runs more iterations, a

better result might obtained. But this also means that it requires more time to get good

results (as compared with the other techniques described below). The RMS is 0.3632

after 20 iterations.

Chapter 3. Fitting a Simplified Model 78

Figure 3.10b shows the normalized design parameters dN for both the initial guess and

the final result. The normalized design parameter is defined as the design parameter

divided by the value dr (of the design parameter) that was used to generate the points

in the cloud. (dNi = di/dr) A good fit would have all the normalized design parameters

equal to one, which is clearly not the case in the Figure.

(a) RMS of distances (b) Normalized design parameters

Figure 3.10: Fitting results analysis based on gradient decent algorithm

3.2.2 Newton’s Algorithm

After applying the Newton’s method into the super-ellipse fitting problem, the result can

be shown in Figure 3.11. For the Newton’s algorithm, the results of design parameters

(a,b) are much better then the results from gradient decent method.

Chapter 3. Fitting a Simplified Model 79

(a) Initial guess (b) Result after 1 iteration

(c) Result after 10 iteration (d) Finial result

Figure 3.11: Results of super-ellipse generation based on Newton’s algorithm

The RMS of distances for each iteration is shown in Figure 3.12a. Like in the gradient

descent method, the history of RMS of distances shows that the optimization process is

also not converged after 20 iterations. The RMS is 0.01 after 20 iterations. Figure 3.12b

also shows that the results of the Newton scheme are all far from 1, which indicates that

the design parameters that were used to generate the cloud of points were not properly

recovered.

Chapter 3. Fitting a Simplified Model 80

(a) RMS of distances (b) Normalized design parameters

Figure 3.12: Fitting results analysis based on Newton’s algorithm

3.2.3 Levenberg-Marquardt Algorithm

The iteration function of LM method is:

~δ = −(JTJ + λ · diag(JTJ))−1 · JT~q (3.12)

Note that ~δ is (m+ n)× 1, JT~q is (m+ n)× 1, and JTJ is (m+ n)× (m+ n).

The fitting results based on the LM algorithm will be shown below. For the LM algorithm,

design parameters (a and b) are much better then the results from the gradient decent of

Newton’s methods.

The results of design parameters during the optimization process are shown in Figure

3.13.

Chapter 3. Fitting a Simplified Model 81

(a) Initial guess (b) Result after 1 iteration

(c) Result after 10 iteration (d) Finial result

Figure 3.13: Results of super-ellipse generation based on LM algorithm

The RMS of distances for each iteration is shown in Figure 3.14a, which do not change

much during the last several iterations of the optimization process, indicating convergence.

The RMS is 0.0052 after 20 iterations. From Figure 3.14b, the resulting normalized design

parameters are closer to 1, as compared with the gradient decent or Newton’s methods.

Chapter 3. Fitting a Simplified Model 82

(a) RMS of distances (b) Normalized design parameters

Figure 3.14: Fitting results analysis based on LM algorithm

3.2.4 Improved Levenberg-Marquardt Algorithm

The fitting results based on the ILM algorithm are shown below. After applying the ILM

algorithm, design parameters (a,b) are much closer to the correct values. The results of

design parameters during the optimization process are shown in Figure 3.15.

Chapter 3. Fitting a Simplified Model 83

(a) Initial guess (b) Result after 1 iteration

(c) Result after 10 iteration (d) Finial result

Figure 3.15: Results of super-ellipse generation based on ILM algorithm

The RMS of distances for each iteration is shown in Figure 3.16a, which again indicates

that ILM has converged for this problem in fewer then 20 iterations. The RMS is 0.0046

after 20 iterations. Again, Figure 3.16b shows that many of the design parameters have

reached the values that were used to generate the cloud of points.

Chapter 3. Fitting a Simplified Model 84

(a) RMS of distances (b) Normalized design parameters

Figure 3.16: Fitting results analysis based on ILM algorithm

For comparing the performance for applying different algorithms into geometry fitting

problem, the RMS of distance history based on the number of function evaluations are

shown in Figure 3.17. As shown in the figure, the ILM method can overcome the local

minimum problem and the speed of convergence is fast.

(a) RMS of distances (b) Zoom in the figure

Figure 3.17: RMS of distances for applying different optimization algorithms

Chapter 3. Fitting a Simplified Model 85

3.3 Sparse Technique for Matrix Calculation

Here, recall the iteration function of ILM and the function is shown as Equation 2.18

~δ = −(JTJ + λ · diag(JTJ))−1 · JT~q (3.13)

where J is the Jacobian matrix of objective function. JT is the transpose of J . I is the

identity matrix. The sparse techniques are applied to this function.

3.3.1 Generation of Sparse Jacobian Matrix

To improve the computational efficiency of the technique, one can see that the Jacobian

matrix is very sparse, as shown in equation 3.14. For the first 2m × n block, all the

columns that correspond to the derivatives with respect to the design parameters, ~d, are

not generally zeros. But the second 2m ×m block of the Jacobian is comprised of two

diagonal matrices, stacked one above the other, which correspond to the derivatives with

respect to the parametric coordinate of that point, ui.

J =

∂fx(1)
∂d1

· · · ∂fx(1)
∂dn

∂fx(1)
∂u1

0 · · · 0

∂fx(2)
∂d1

· · · ∂fx(2)
∂dn

0
∂fx(2)
∂u2

· · · 0

...
...

...
...

...
. . .

...

∂fx(m)

∂d1
· · · ∂fx(m)

∂dn
0 · · · · · · ∂fx(m)

∂um

∂fy(1)
∂d1

· · · ∂fy(1)
∂dn

∂fy(1)
∂u1

0 · · · 0

∂fy(2)
∂d1

· · · ∂fy(2)
∂dn

0
∂fy(2)
∂u2

· · · 0

...
...

...
...

...
. . .

...

∂fy(m)

∂d1
· · · ∂fy(m)

∂dn
0 · · · · · · ∂fy(m)

∂um

(3.14)

Chapter 3. Fitting a Simplified Model 86

Hence, sparse matrix methods can be employed to great advantage, both to reduce the

required memory and to increase the computational speed. Additionally, since J only

contains derivatives, if one computes the derivative analytically (for example, by using

the techniques described in [121], additional time can be saved by not having to generate

J via finite differences.

3.3.2 Arithmetic of Sparse Jacobian Matrix

After applying the sparse expression technique for J , one can reduce the memory required

from (2m× n+ 2m2) to (2m× (n+ 1)). Because n� m, the complexity of the J can be

reduced from O(m2) to O(m). The sparse J can be expressed as Equation 3.15

J =

∂fx(1)
∂d1

· · · ∂fx(1)
∂dn

∂fx(1)
∂u1

∂fx(2)
∂d1

· · · ∂fx(2)
∂dn

∂fx(2)
∂u2

...
...

...
...

∂fx(m)

∂d1
· · · ∂fx(m)

∂dn

∂fx(m)

∂um

∂fy(1)
∂d1

· · · ∂fy(1)
∂dn

∂fy(1)
∂u1

∂fy(2)
∂d1

· · · ∂fy(2)
∂dn

∂fy(2)
∂u2

...
...

...
...

∂fy(m)

∂d1
· · · ∂fy(m)

∂dn

∂fy(m)

∂um

(3.15)

As in the iteration function ~δ = −(JTJ + λ · diag(JTJ))−1 · JT~q, the multiplication for

sparse matrix need to be developed for JTJ and JT~q.

For the computation of H = JTJ , the structure of H is shown in Figure 3.18. A is an n×n

block, and its multiplication algorithm is the same as the general matrix multiplication.

Because B = CT , there only is a need to calculate once for block B or C. So, for B, the

Chapter 3. Fitting a Simplified Model 87

formula for calculating each element in it is as Equation 3.16

B(i,j) =
∂fx(i)
∂u(i)

·
∂fx(i)
∂d(j)

+
∂fy(i)
∂u(i)

·
∂fy(i)
∂d(j)

(3.16)

For the block D, it is a diagonal matrix and the formula for calculating D is as Equation

3.17

D(i,i) =

(
∂fx(i)
∂u(i)

)2

+

(
∂fy(i)
∂u(i)

)2

(3.17)

Figure 3.18: Hessian matrix structure

Consider now the computation of ~g = JT~q. After the multiplication, the ~g is a vector and

its length is n+m. For the first n elements, the general matrix multiplication algorithm

is used. For the lest m elements, the formula can be calculated as Equation 3.18.

g(n+i) =
∂fx(i)
∂u(i)

· q(i) +
∂fy(i)
∂u(i)

· q(i+m) (3.18)

Chapter 3. Fitting a Simplified Model 88

3.3.3 Solving Sparse Matrix System

In order to solve the sparse linear system, the conjugate gradient method is used. This is a

very attractive technique for the numerical solution of sparse, symmetric, positive-definite

matrices. The conjugate gradient method is often implemented as an iterative algorithm,

applicable to sparse systems that are too large to be handled by a direct implementation

or other direct methods. See [122] for details of the algorithm used here.

Chapter 4

Fitting a General Model to a Cloud

of Points

In Chapter 3, the Levenberg-Marquardt optimization method was applied to the problem

of fitting a simplified model to a given cloud of points. The optimization technique simul-

taneously varied the design parameters, ~d and the parametric coordinates, ui associated

with each point in the cloud. In that Chapter, it was assumed that one had a good guess

for the initial values of the parametric coordinates, ui.

This Chapter focuses on generalizing the results of Chapter 3 in three important ways.

In the first, an initialization technique that generates a reasonable set of initial para-

metric coordinates, ui, is described. The second generalization involves configurations

that have more than one component; in these cases one needs to determine the part of

the configuration to which each point in the cloud is associated. This leads directly to

a new classification technique. Finally, the basic fitting technique is extended to three-

dimensional configurations. The Chapter concludes with a overview of the entire fitting

process, including classification and initialization.

89

Chapter 4. Fitting a General Model 90

4.1 (Re)Initialization Technique

In this section, a rational initialization technique is developed for obtaining the initial

parametric coordinates ui that are closest to each point in the cloud. In what follows,

it is assumed that the user has provided a guess for the initial design parameters ~d that

generate a configuration that resembles the cloud of points, but is not in general a “good”

fit. In other words, if the cloud of points represent a transport aircraft, the user’s guess

for the design parameters must produce an aircraft of approximately the same size and

arrangement as the points in the cloud.

4.1.1 Basic Idea

Given a set of design parameters, ~d, one can represent a configuration discretely with a

set of line segments (in two dimensions) or triangular or quadrilateral patches (in three

dimensions). These segments or patches, which are bounded by vertices, are used to

graphically represent the configuration.

The basic idea for the initialization of the ui is to find the vertex in the discrete represen-

tation that is closest to point (xi, yi) in the cloud and then use that vertex’s parametric

coordinate as the initial guess of the (cloud’s) point ui. This process is shown in Figure

4.1, where the points in the cloud are shown as red symbols. The initial discrete repre-

sentation is shown as the green line segments and its vertices are shown as blue symbols.

The correspondence between each (red) point in the cloud and the closest (blue) discrete

vertex is shown as the black lines.

The process of making these correspondences consists of nested loops over the points in

the cloud and over the vertices in the discrete representation. During this process, the

Chapter 4. Fitting a General Model 91

shortest distance from each point in the cloud to any vertex, ei, is squared and all are

summed to generate the initial value of the objective function, S =
∑

i e
2
i .

Figure 4.1: Demonstration of initialization technique

Given the initial guesses of the ui that are shown in Figure 4.1, one can apply the LM

technique (described in Chapter 3) to produce the final optimized fit shown in Figure 4.2.

Chapter 4. Fitting a General Model 92

Figure 4.2: Flowchart for fitting parametric geometry model from a cloud of points

4.1.2 Dealing with Bad Initial Guesses for ~d

The above process generates good initial guesses for the ui if the initial design param-

eters, ~d, produces a configuration that is a reasonable approximation to the points in

the cloud. But this is not always possible, especially for very complex three-dimensional

configurations.

Consider the initial configuration and cloud of points shown in Figure 4.3. Note that for

three points in the cloud, the “shortest” distance between the point and the vertices in

the discrete representation erroneously makes a correspondence to the wrong side of the

super-ellipse. Executing the LM optimizer from this initial guess yields the “final” results

shown in Figure 4.4. Note that points that were badly initialized remain on the wrong

side of the super-ellipse. The reason that this happens is that any adjustment of the ui

(temporarily) increases the distance to the point in the cloud.

Chapter 4. Fitting a General Model 93

Figure 4.3: Initialization based on bad initial design parameters

Here, the original Levenberg-Marquardt method is used as the optimization algorithm.

The reason for not using ILM method is that the ILM method can overcome the local

minimum problem somehow. For observing the stuck at local minimum problem due to

the bad initial design parameters, the monotonic optimization method (LM) is chosen.

For making sure that there is not a problem from un-converged, the maximum number of

iterations is set as 100. The fitting results of design parameters during the optimization

process are shown in Figure 4.4.

Chapter 4. Fitting a General Model 94

(a) Initial guess (b) Result after 1 iteration

(c) Result after 10 iteration (d) Finial result

Figure 4.4: Results of super-ellipse generation start from bad initial guess (LM)

Chapter 4. Fitting a General Model 95

(a) RMS of distances (b) Normalized design parameters

Figure 4.5: Fitting results analysis for the bad initial guess problem (LM)

One method for overcoming this problem is to apply the Improved Levenberg-Marquardt

(ILM) algorithm as the optimization method. Recall that ILM allows the optimizer

to sometimes take “uphill” steps, especially at the early stage of the optimization. Fig-

ure 4.6d shows that ILM preforms better than LM, even when both techniques are limited

to 100 iterations. The better performance of ILM over LM is indeed good, but also fortu-

itous, because there is no guarantee that ILM will always be able to overcome bad initial

ui values.

Chapter 4. Fitting a General Model 96

(a) Initial guess (b) Result after 1 iteration

(c) Result after 10 iteration (d) Finial result

Figure 4.6: Results of super-ellipse generation start from bad initial guess (ILM)

Chapter 4. Fitting a General Model 97

(a) RMS of distances (b) Normalized design parameters

Figure 4.7: Fitting results analysis for the bad initial guess problem (ILM)

4.1.3 Reinitialization

Although the ILM algorithm can solve this kind of problem in super-ellipse case, there is

no guarantee that the ILM can solve this kind of problem during the more complicated

geometry fitting process. Moreover, for obtaining the good design parameters, one needs

to run many ILM iterations that are time consuming. So, a more general method for

solving this problem is introduced in this section.

To solve this problem, one can simply reinitialize the ui, while keeping the best design

parameters ~d. The reinitialization technique generates a new sequence of ui based on the

closest distances to the vertices associated with the latest ~d. It is expected that this will

overcome the local minimum problem.

For testing the performance of reinitialization technique, the original LM algorithm is used

as optimization technique. The whole process is shown in Figure 4.8. The initializing

result is shown in Figure 4.8a and the optimization result after the first 20 iterations

Chapter 4. Fitting a General Model 98

is shown in Figure 4.8b. As shown in the figure, the process is stopped by reaching

the maximum number of iterations. Then, keeping the new design parameters that are

obtained by the first 20 iterations, the reinitializing process is executed, producing the

result shown in Figure 4.8c. Finally, executing the LM optimizer with the better guess

for the ui produces the result shown in Figure 4.8d.

(a) Initialization result (b) Result after 20 iteration

(c) Reinitialization result (d) Finial result

Figure 4.8: Results of super-ellipse generation using reinitialization technique

Here, a new item, “cycle” is defined. One cycle means the process of one initialization

followed by one optimization. In each optimization process (in each cycle), there are at

most IterMax iterations, which is set at the beginning of fitting process by the user.

Chapter 4. Fitting a General Model 99

Similarly, the user selects CycleMax as the maximum number of allowable cycles. Care

must be taken in selecting IterMax and CycleMax. One the one hand, if the generation

process involves too many cycles, most running time will be spent on the reinitialization

but not on iterations for searching the correct design parameters. On the other hand, if the

IterMax is too large, most running time will be spent on searching the design parameters

near the local minimum area. From experience, it has been found that CycleMax is set as

5-10 based on complexity of the geometry configuration, and the IterMax is set as 20-30.

As shown in Figure 4.9a, during the super-ellipse fitting process, the RMS of distances

will continue being reduced after 20 iterations, since the reinitializing process is taken.

The total number of iterations is 40 now. It is much less compared with 100 iterations

when there is no reinitialization technique. The normalized design parameters are equal

to 1 as shown in Figure 4.9b.

(a) RMS of distances (b) Normalized design parameters

Figure 4.9: Fitting results analysis after using reinitialization technique

Chapter 4. Fitting a General Model 100

4.1.4 Application to Fitting an Airfoil

Fitting an airfoil to a cloud of points is more difficult than the super-ellipse fitting, owing

to the airfoil’s thinness. This raises the probability that the wrong side of the airfoil will

be chosen during the initialization.

For this case, a NACA 4-digit airfoil will be used [123]. The thickness distribution for a

NACA 4-digit airfoil is given by

yt = 5t · c ·
[
0.2969

√
xi
c

+ (−0.1260)
xi
c

+ (−0.3516)
xi
c

2

+ 0.2843
xi
c

3

+ (−0.1015)
xi
c

4
]

(4.1)

where, xi is the position along the chord line from 0 to c. yt is the thickness at xi location.

c is the length of chord. t is the maximum thickness as a fraction of the chord.

Mean camber line function of NACA 4-digit airfoil is

yc =

m · xi

p2
· (2p− xi

c
)

m · c−xi
1−p2 · (1 + xi

c
− 2p)

(4.2)

where, the yc is the y coordinate of the camber line at each location xi. m is the maximum

camber as a fraction of the chord and p is the location of maximum camber as a fraction

of chord.

Coordinates of upper and lower of airfoil surfaces can be generated by “adding” the

thickness to the camber line. This gives

xU = xi − yt · sinβ, xL = xi + yt · sinθc

yU = yc + yt · cosβ, yL = yc − yt · cosθc
(4.3)

Chapter 4. Fitting a General Model 101

where,

θc = arctan

(
dyc
dx

)
, (4.4)

dyc
dx

=

2mNACA

p2

(
p− x

c

)
, 0 ≤ x ≤ pc

2mNACA

(1− p)2
(
p− x

c

)
, pc ≤ x ≤ c

(4.5)

The above equations assume that the airfoil is generated so as to aligned with the x axis.

In order to put the airfoil at an arbitrary angle, the homogeneous coordinates technique

is applied in to [xL, yL] as same as [xU , yU], or

XL

YL

1

 =

1 0 δx

0 1 δy

0 0 1

 ·

cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 ·

xL

yL

1

 (4.6)

For testing the robustness of the reinitialization algorithm, the similar process can be

applied to a model that consists of a single NACA airfoil, shown in Figure 4.10. The red

points are the points in cloud and the blue lines are the parametric model. Here, the

maximum number of iterations is set as 10 for each cycle. For the airfoil problem, the

correct fitting also can be obtained in only 2 cycles. In this case, chord length is fixed

at one. The design parameters chosen for the NACA airfoil generation are the maximum

camber m, location of maximum camber p, maximum thickness t, location (δx, δy), and

orientation angle θ.

The Figure 4.11 shows the RMS of distances and normalized design parameters. There

is also mis-associated some points to the wrong side of configuration after the first 10

Chapter 4. Fitting a General Model 102

iterations, as in Figure 4.11a. But after reinitialization, this problem is overcame. The

normalized of result design parameters are almost equal to 1 in Figure 4.11b.

(a) Initial guess (b) 1st cycle

(c) 2nd cycle (d) 3rd cycle

Figure 4.10: Generation of NACA airfoil parametric model from a cloud of points

Chapter 4. Fitting a General Model 103

(a) RMS of distances (b) Normalized design parameters

Figure 4.11: Airfoil fitting results analysis

Therefore, one expects that combining the ILM algorithm and reinitialization technique

together, the whole method will be more robust and efficient. From now on, the later

sections will use the new algorithm (ILM + reinitialization) for generation of parametric

models from cloud of points.

4.2 Modified Objective Function

There is also another problem which can arise with models that will be discussed in this

section. The super-ellipse is also used as a demonstration case. This kind of problem can

be solved by modifying the objective function in general.

4.2.1 Bad Initial Guess Problem

The problem can arise with a model such as this. It occurs when the initial guess is much

bigger than the cloud of point, as shown in Figure 4.12. The red points are the points in

Chapter 4. Fitting a General Model 104

the cloud. The green line is initial guess of super-ellipse. The black lines are the closest

distances from the points in cloud to the geometry configuration.

Figure 4.12: Initialization based on too large initial guess

Here, there is a significant part of the model that is not associated with any points in the

cloud. In general, the optimizer will not be able to detect and fix this since all the points

in the cloud may be close to (a portion of) the configuration. To solve this, a penalty

function that penalizes configurations that are too big can be added to the objective

function. The penalty can be related to the surface area or volume of the configuration.

When this is done, one must take care to gradually reduce the weight of the penalty so

that the penalty for the final fit vanishes. At this time, a general way of doing this has

not been found that does not require the use of user-specified values for the weight of the

penalty term.

This problem is tested by ILM algorithm combined with reinitialization technique. There

are 2 cycles and 20 iterations for each cycle. The generation process and the result are

shown in Figure 4.13 4.14.

Chapter 4. Fitting a General Model 105

(a) Initial guess (b) 1st cycle

(c) Reinitialization result (d) Final result

Figure 4.13: Results of super-ellipse generation start from too large initial guess (ILM)

As shown in the Figure 4.13, the accurate design parameters cannot be obtained even

when the ILM algorithm applied after running 2 cycles. The RMS is reduced at first 20

iterations, but not changed more later in Figure 4.14a. The normalized length of super-

ellipse (b) was not moving to 1 in Figure 4.14b. This is because there is no parametric

coordinates of the model that is associated with the left and right sides points in the

cloud.

Chapter 4. Fitting a General Model 106

For observing the gradient change easily, log(objective function) is used in contours and

2D plots. In the Figure 4.14d, the log of objective function value has a flat area. No

matter increased or decreased (a lot) the length b, the objective function will not be

changed. Therefore, the optimizer is stuck at this area. The same explanation can be

applied on Figure 4.14c; there is no contour lines along b direction. This means that the

gradient is equal to zero at this area, and the optimizer does not know which direction

need to move. For solving this problem in two cycles, in other words, more efficiently, one

can improve the slop of the plot in Figure 4.14d or improve the gradient in Figure 4.14c.

After doing this, the optimizer can know the moving direction. This can be achieved by

adding a penalty term into the objective function.

Chapter 4. Fitting a General Model 107

(a) RMS of distances (b) Normalized design parameters

(c) Trajectory of design parameters a and b (d) log(objective value) changed with b

Figure 4.14: Fitting result analysis for too large initial guess problem

4.2.2 Add Penalty Term

For the super-ellipse fitting based on the large initial guess, an alternative penalty function

can be defined. This penalty function is based on the idea that minimizes the distances

to the geometry configuration and reduces the geometry shape simultaneously. The new

Chapter 4. Fitting a General Model 108

objective function after adding the penalty term is as Equation 4.7.

S =
m∑
i=1

(xp(i) − fx(~d, ui))
2

+ (yp(i) − fy(~d, ui))
2

+ a× b (4.7)

(a) Initial guess (b) 1st cycle

(c) Reinitialization result (d) Final result

Figure 4.15: Results of super-ellipse generation after adding penalty term into objective
function

As shown in the Figure 4.15, after 2 cycles, the resulting configuration is much closer

to the cloud of points comparing with the result from ILM algorithm only. However,

the result is smaller then the shape of points cloud. The reason is that the optimizer

Chapter 4. Fitting a General Model 109

minimized not only the distances between the points in cloud and configuration, but also

the value of a × b. As in Figure 4.16d, although the slop of the plot is increased after

adding the penalty term, the minimum value of the objective function is moved to the

left of the original spot.

(a) RMS of distances (b) Normalized design parameters

(c) Trajectory of design parameters a and b (d) Objective function changed with b

Figure 4.16: Fitting result analysis after adding penalty term into objective function

Although the result is smaller than the fitting target, this can be solved by removing the

penalty term after several iterations during the optimization process. However, there is

not a general rule that defines which design parameters should be added as a penalty

Chapter 4. Fitting a General Model 110

term into objective function. So, the more general penalty term need be defined for the

optimization process.

4.2.3 New Objective Function

The basic idea of new objective function is that the points in the cloud should map to the

full range of parametric coordinates. The specific method is, for each discrete point on

the configuration, one searches the closest point from the cloud of points. This process

can be added into the initialization technique as shown in Figure 4.17

(a) Distance from the original objective function (b) Distance from the penalty term

Figure 4.17: Components of new objective function

On one hand, Figure 4.17a shows the process that, for each point in the cloud, one

searches the closest parametric coordinate on the configuration. And the sum of the

square of these distances is the original objective function. On the other hand, Figure

4.17b shows the process that, for each parametric coordinate on the initial configuration,

one searches the closest point form the cloud. And the sum of the square of these new

distances is the penalty term of the objective function. After doing this, the points in

Chapter 4. Fitting a General Model 111

the cloud are mapped to the full range of the parametric coordinates. The new objective

function is shown in Equation 4.8. In this format, the penalty term will be reduced to

zero at the end of the optimization process (the parametric model result coincides with

the points cloud). For improving the computing efficient, λ is a coefficient of penalty

term that will be reduced to zero after 5 iterations. This can reduce the problem size and

improve the computational time.

S =
m∑
i=1

(xp(i) − fx(~d, ui))
2

+ (yp(i) − fy(~d, ui))
2
+λ×

n∑
j=1

(xp(j) − fx(~d, uj))
2

+ (yp(j) − fy(~d, uj))
2

(4.8)

Figure 4.18 shows the fitting result after applying the new objective function. At this

time, the accurate design parameters can be obtained only after 1 cycle. This not only

overcame the bad initial guess problem, but also improved computational efficient.

Chapter 4. Fitting a General Model 112

(a) Initial guess (b) 1st cycle

(c) Reinitialization result (d) Final result

Figure 4.18: Results of super-ellipse generation after using the new objective function

As shown in the Figure 4.19b, the normalized design parameters are equal to 1 after fitting

process. In the Figure 4.19d, the slop of the curve changes to monotonically increased

and is easier for optimizer getting the moving direction. The same conclusion can also be

obtained from the Figure 4.19c. After applying the new objective function, more contour

lines are added for providing enough direction information for optimizer.

Chapter 4. Fitting a General Model 113

(a) RMS of distances (b) Normalized design parameters

(c) Trajectory of design parameters a and b (d) Objective function changed with b

Figure 4.19: Fitting result analysis after using new objective function

Above content explained the solution for the larger initial guess problem. If the initial

guess is smaller than the cloud of points, the new objective function is also a good solution.

An additional problem for smaller initial guess is that, during the fitting iterations, it is

possible for the parametric coordinates u to increase beyond the range over which u

is defined; when this happens, the equations that generate the body shape cannot be

evaluated. To ensure that this does not happen, it is important to define the parametric

coordinates to be periodic.

Chapter 4. Fitting a General Model 114

4.3 (Re)Classification Technique

In the above, the fitting has been done for a single component. In this section, the

generation of parametric models for multiple components based on a cloud of unclassified

points is introduced. To ease the discussion, the technique will be explained in two

dimensions with multiple super-ellipses in this section; it will then be applied to a three-

dimensional case of a glider in section 3.5.2.

The basic multiple-component problem is demonstrated by three super-ellipses. As seen

in Figure 4.20, the blue line in Figure 4.20a is the initial guess and the red points are

the points in the cloud. The blue line in Figure 4.20b is three parametric models which

is generated from the technique. The objective here is to find a method that starts from

Figure 4.20a and ends at Figure 4.20b. This process is almost the same as the single

component problem, but the multiple components problem needs one more technique to

classify the different components and use the single component technique on each part

after classification. Specifically, the classification need be finished at the same time as

the objective function is minimized.

(a) Cloud of points and initial guess (b) Fitting result

Figure 4.20: Sample classification problem for three super-ellipses

Chapter 4. Fitting a General Model 115

4.3.1 Basic Idea

Recall that for the single component problem, the original initialization technique found

the ui by finding the smallest distance from points in the cloud to the discrete points in the

model. For multiple components, during the initialization process one also needs to record

the identity of the component to which each point in the cloud belongs. Figure 4.21 shows

the classification result based on different cycles. The pink points are classified to the first

super-ellipse. The green points are classified to the second super-ellipse. The black points

are classified to the third super-ellipse. At the beginning, there are many points that are

mis-classified because of the poor initial guess. During the optimization process, the

configuration matches the cloud of points better and the number of mis-classified points

is reduced. At the end of the optimization process, the accurate parametric geometry

model can be obtained and all points are classified to the correct related component.

Chapter 4. Fitting a General Model 116

(a) Initial guess (b) 3rd cycle

(c) 7th cycle (d) 10th cycles

Figure 4.21: Progression of fitting results for three super-ellipses (basic classification
technique)

4.3.2 Improved Classification Technique

Classification correlates with the optimization process. If the initial classification is not

good, the optimization will yield a bad result, which in turn will yield incorrect results

in subsequent classifications. As can be seen in Figure 4.22a, there are many misclas-

sified points near the intersections of the super-ellipses, which will adversely impact the

optimization result. Therefore, a strategy has been adopted in which the points in the

Chapter 4. Fitting a General Model 117

cloud that are near the intersections (as evidenced by the fact that they are equally close

to two or more components) are temporarily ignored; the tolerance to determine if they

are ”equally close” is rather loose in early stages and is gradually tightened so that, in

the end, nearly all points are classified.

Here, we defined the coefficient of classification cof . Generally, cof is chosen the number

between 1 to 2 at the beginning of the fitting process. The larger cof , the more junction

points will be ignored during the classification process. When the cof = 1, there are no

points ignored.

Note that classification is part of initialization, and that any time one needs to reinitialize,

one also needs to reclassify.

This new classification scheme has been applied to the case of three intersecting super-

ellipses, as shown in Figure 4.22b. The points in the junction area are ignored at the

beginning of the optimization process.

(a) Result of original classification (b) Result of improved classification

Figure 4.22: Comparison of different classification results for three super-ellipses

Chapter 4. Fitting a General Model 118

Several cycles of the optimization are shown in Figure 4.23. The green points are the

points classified to super-ellipse 1, the pink points are the points classified to super-ellipse

2, and the black points are the points classified to super-ellipse 3. The blue lines are the

parametric super-ellipse model that is generated based on the cloud of points. During the

optimization process, the configuration matches the cloud of points better and the ignored

points in the junction area are counted back to the objective function. As shown in the

Figure 4.23d, the accurate parametric geometry model can be obtained after 7 cycles.

But for the original classification technique, there are 10 cycles for getting the correct

design parameters. So, the improved classification technique improved the efficiency of

the whole algorithms through avoiding the mis-classification problem.

Chapter 4. Fitting a General Model 119

(a) Initial guess (b) 3rd cycle

(c) 5th cycle (d) 7th cycles

Figure 4.23: Progression of fitting results for three super-ellipses (improved classification
technique)

4.4 Algorithm Test

In this section, the data sensitivity of whole algorithm is evaluated. This is separated into

two test parts. One is the test regarding the non-uniform cloud of points, the other one

is regarding the noisy points in the cloud. Figure 4.24 shows the fitting result based on

Chapter 4. Fitting a General Model 120

the general format of points cloud (uniform space and no noisy points). In this section,

all the tests are upon 2 cycles and 20 maximum iterations per cycle.

(a) Initial guess (b) Fitting result

(c) RMS of distances (d) Normalized design parameters

Figure 4.24: Super-ellipse fitting result based on the general format of points cloud

4.4.1 Non-uniform Cloud of Points

In this section, three non-uniform space points data are tested by the fitting algorithm.

For the three cases, in Figure 4.25 4.26 4.27, points are randomly moved to non-uniform

spots. This means that, in some areas, the points are overlapped, and in some areas,

Chapter 4. Fitting a General Model 121

there are not points on it. As shown in the Figures, all of the fitting results are pretty

close to the points in the cloud. And the normalized design parameters are equal to 1.

Therefore, it can be concluded that the non-uniform cloud of points will not impact the

accuracy of the algorithm.

(a) Initial guess (b) Fitting result

(c) RMS of distances (d) Normalized design parameters

Figure 4.25: Super-ellipse fitting result based on the non-uniform space points data 1

Chapter 4. Fitting a General Model 122

(a) Initial guess (b) Fitting result

(c) RMS of distances (d) Normalized design parameters

Figure 4.26: Super-ellipse fitting result based on the non-uniform space points data 2

Chapter 4. Fitting a General Model 123

(a) Initial guess (b) Fitting result

(c) RMS of distances (d) Normalized design parameters

Figure 4.27: Super-ellipse fitting result based on the non-uniform space points data 3

4.4.2 Noise Data Sensitivity

In this section, three noisy points data are tested by the algorithm. In each case, some

errors are added into the original cloud of points. The method of adding errors is as

below equation:

xpnew = err + xp

ypnew = err + yp

(4.9)

Chapter 4. Fitting a General Model 124

where, the (xpnew, ypnew) are the coordinates of the point with noise. (xp, yp) are the

original coordinates of the accurate points in the cloud. err is the random error added

into the original coordinates. err is randomly distributed from (0, 1). The mean of the

err is 0.5. For the first case, in Figure 4.28, the adding err is 0.1×err. Then we calculated

the percentage of the error for the whole points in the cloud by the formula:

percent = 0.1× err/a (4.10)

where, a is the width (short edge) of the super-ellipse.

So, the first case contains 1.6% errors as noisy points. The optimization process and the

result are shown in Figure 4.28. The normalized design parameters are equal to 1 even if

there are noisy points in the cloud.

Chapter 4. Fitting a General Model 125

(a) Initial guess (b) Fitting result

(c) RMS of distances (d) Normalized design parameters

Figure 4.28: Super-ellipse fitting result based on the noisy points data 1

For the second testing case, 5% errors are contained in the cloud of points. As shown in

the Figure 4.29, the normalized result design parameters are moved away from 1 a little

bit, but the results are still in the acceptable range.

Chapter 4. Fitting a General Model 126

(a) Initial guess (b) Fitting result

(c) RMS of distances (d) Normalized design parameters

Figure 4.29: Super-ellipse fitting result based on the noisy points data 2

For the third testing case, 8.3% errors are contained in the cloud of points. As shown

in the Figure 4.30, the normalized result design parameters are moved further from 1.

Although the rough parametric geometry model can be obtained from this case, the design

parameters are not accurate enough.

Chapter 4. Fitting a General Model 127

(a) Initial guess (b) Fitting result

(c) RMS of distances (d) Normalized design parameters

Figure 4.30: Super-ellipse fitting result based on the noisy points data 3

However, for the further testing, two more extra cycles (total 4 cycles) are run on this

case. The fitting results are shown in Figure 4.31. As shown in the figure, the normalized

design parameters are more closer to 1 comparing with only run two cycles. And the

RMS is still reduced in the extra 2 cycles.

Chapter 4. Fitting a General Model 128

(a) Initial guess (b) Fitting result (extra 2 cycles)

(c) RMS of distances (d) Normalized design parameters

Figure 4.31: Super-ellipse fitting result based on the noisy points data 3 (run extra 2
cycles)

Therefore, it can be concluded that it needs more running time (cycles) when the cloud of

points contains more errors or noisy points. In order to getting the accurate parametric

model via this algorithm, the efficiency (running time) should be used as trade off term.

Chapter 4. Fitting a General Model 129

4.5 Test Examples in 3D

In this section, the whole algorithm will be tested in 3D configuration generation problem.

Comparing with the 2D problem, 3D problem have 2 parametric coordinates (ui, vi) for

each point in the space. Here, we recall the Jacobian matrix defined in Chapter 3, section

2.3.1. The Jacobian matrix for 3D (super-ellipsoid) problem can be written as:

J = −

∂fx(1)
∂d1

· · · ∂fx(1)
∂dn

∂fx(1)
∂u1

0 · · · 0
∂fx(1)
∂v1

0 · · · 0

∂fx(2)
∂d1

· · · ∂fx(2)
∂dn

0
∂fx(2)
∂u2

· · · 0 0
∂fx(2)
∂v2

· · · 0

...
...

...
...

...
. . .

...
...

...
. . .

...

∂fx(m)

∂d1
· · · ∂fx(m)

∂dn
0 · · · · · · ∂fx(m)

∂um
0 · · · · · · ∂fx(m)

∂vm

∂fy(1)
∂d1

· · · ∂fy(1)
∂dn

∂fy(1)
∂u1

0 · · · 0
∂fy(1)
∂v1

0 · · · 0

∂fy(2)
∂d1

· · · ∂fy(2)
∂dn

0
∂fy(2)
∂u2

· · · 0 0
∂fy(2)
∂v2

· · · 0

...
...

...
...

...
. . .

...
...

...
. . .

...

∂fy(m)

∂d1
· · · ∂fy(m)

∂dn
0 · · · · · · ∂fy(m)

∂um
0 · · · · · · ∂fy(m)

∂vm

∂fz(1)
∂d1

· · · ∂fz(1)
∂dn

∂fy(1)
∂u1

0 · · · 0
∂fz(1)
∂v1

0 · · · 0

∂fz(2)
∂d1

· · · ∂fz(2)
∂dn

0
∂fz(2)
∂u2

· · · 0 0
∂fz(2)
∂v2

· · · 0

...
...

...
...

...
. . .

...
...

...
. . .

...

∂fz(m)

∂d1
· · · ∂fz(m)

∂dn
0 · · · · · · ∂fz(m)

∂um
0 · · · · · · ∂fz(m)

∂vm

(4.11)

After using spare technique, the Equation 4.12 can be stored as:

Chapter 4. Fitting a General Model 130

J = −

∂fx(1)
∂d1

· · · ∂fx(1)
∂dn

∂fx(1)
∂u1

∂fx(1)
∂v1

∂fx(2)
∂d1

· · · ∂fx(2)
∂dn

∂fx(2)
∂u2

∂fx(2)
∂v2

...
...

...
...

...

∂fx(m)

∂d1
· · · ∂fx(m)

∂dn

∂fx(m)

∂um

∂fx(m)

∂vm

∂fy(1)
∂d1

· · · ∂fy(1)
∂dn

∂fy(1)
∂u1

∂fy(1)
∂v1

∂fy(2)
∂d1

· · · ∂fy(2)
∂dn

∂fy(2)
∂u2

∂fy(2)
∂v2

...
...

...
...

...

∂fy(m)

∂d1
· · · ∂fy(m)

∂dn

∂fy(m)

∂um

∂fy(m)

∂vm

∂fz(1)
∂d1

· · · ∂fz(1)
∂dn

∂fy(1)
∂u1

∂fz(1)
∂v1

∂fz(2)
∂d1

· · · ∂fz(2)
∂dn

∂fz(2)
∂u2

∂fz(2)
∂v2

...
...

...
...

...

∂fz(m)

∂d1
· · · ∂fz(m)

∂dn

∂fz(m)

∂um

∂fz(m)

∂vm

(4.12)

In this section, the fuselage and wing are tested as a single component configuration,

because they are the basic components of aircraft.

4.5.1 Single Component Configuration

Figure 4.32 shows the fitting result of 3D wing on different cycles based on 1000 points.

The green lines are the fitting target (cloud of points), which is the original wing model

that was used to generate the cloud of points, and the blue lines show the optimization

results. The convergence histories of these calculations are shown in Figure 4.33. In part

(a) the RMS of the distances between the points in the cloud and the surface are shown

as a function of iteration number; the abrupt rises in the RMS values occur during the

reinitialization process (because the initial values of (ui, vi) are restricted to being one of

the points in the discrete representation of the model).

Chapter 4. Fitting a General Model 131

In part (b), the various design parameters, each normalized by its value that was used

when the cloud of points were generated, are shown. Most of the optimized design

parameters match their targets very well; the few that do not fit well (wing area, twist

angle, and maximum thickness) turn out to have very little influence in this case and so

their discrepancies are not significant.

Table 4.1: Design Parameters of the Wing

X Loc Z Loc Thick Camber Area Aspect Taper Sweep Twist Dihedral

4 2 0.12 0.04 8 5 0.4 15 5 4

Chapter 4. Fitting a General Model 132

(a) Initial value of wing (b) Fitting result after 1 cycle

(c) Fitting result after 2 cycles (d) Fitting result after 3 cycles

Figure 4.32: Progression of fitting results for 3D wing

Chapter 4. Fitting a General Model 133

(a) RMS of distances (b) Normalized parameters

Figure 4.33: RMS distances and normalized parameters for 3D wing

The second single-component configuration in three dimensions is a parametric fuselage,

which is defined as the ruled surface between several super-elliptical cross-sections. Since

there are 6 cross-sections, and each has 4 design parameters, this case contains a total

of 24 design parameters, which are shown in Table 4.2. These are in addition to the 2m

optimization variables (ui, vi) that are associated with the m points in the cloud.

Table 4.2: Design Parameters of the Fuselage

Section1 Section2 Section3 Section4 Section5 Section6

X Location 0 1 4 8 12 16

Z Location 0 0.1 0.4 0.4 0.3 0.2

Width 0 1 1.6 1.6 1 0.8

Height 0 1 2 2 1.2 0.4

The iteration history, final fitting result, and normalized optimized parameters are shown

in Figures 4.34-4.36. As can be seen from the Figure 4.34, the correct fitting result can

Chapter 4. Fitting a General Model 134

be obtained after one cycle. For Figure 4.36, the discontinuities result from target values

that are zero, for which a normalized result is not defined.

(a) Initial value of fuselage (b) Fitting result after 1 cycle

(c) Fitting result after 2 cycles (d) Fitting result after 3 cycles

Figure 4.34: Progression of fitting results for 3D fuselage

Chapter 4. Fitting a General Model 135

Figure 4.35: Final fitting result of 3D fuselage after using periodic (u, v)

(a) RMS of distances (b) Normalized parameters

Figure 4.36: RMS distances and normalized parameters for 3D fuselage

4.5.2 Multiple Components Configuration

Figures 4.37 to 4.40 show the results of fitting the glider to the cloud of points with the

classification technique. Because the initial guess is used in the first classification, care

must be taken to create an initial guess that is somewhat close to the final configuration.

(For example, an aircraft with a canard configuration should start with design parameters

for a canard and not parameters for a conventional wing/tail configuration.) The initial

Chapter 4. Fitting a General Model 136

guess and generated model for different cycles are shown in Figure 4.37. The green lines

are the target model and blue lines are the generated glider model. The correct fitting

result is obtained after 8 cycles. In this case, the coefficient of classification technique

cof is set as 2. After 6 cycles, this coefficient cof is reduced to 1 which means no points

are ignored. The original design parameters of glider are shown in Table 5.5 - 5.8

Table 4.3: Design Parameters of the the Fuselage in Glider

Section1 Section2 Section3 Section4 Section5 Section6

X Location 0 1 4 8 12 16

Z Location 0 0.1 0.4 0.4 0.3 0.2

Width 0 1 1.6 1.6 1 0.8

Height 0 1 2 2 1.2 0.4

Table 4.4: Design Parameters of the Wing in Glider

X Location Z Location Thick Camber Area Aspect Taper Sweep Twist Dihedral

4 0.2 0.12 0.04 100 7 0.6 10 -5 5

Table 4.5: Design Parameters of the Horizontal Tail in Glider

X Location Z Location Thick Camber Area Aspect Taper Sweep Twist Dihedral

14 0.2 0.1 0 10 4 0.8 10 0 0

Table 4.6: Design Parameters of the Vertical Tail in Glider

X Location Z Location Thick Camber Area Aspect Taper Sweep

13.5 0.1 0.1 0 10 3 0.5 30

Chapter 4. Fitting a General Model 137

(a) Initial value (b) Fitting result after 1st cycle

(c) Fitting result after 2nd cycle (d) Fitting result after 8th cycle

Figure 4.37: Progression of fitting results for 3D glider

Figure 4.38 shows the number of points associated with each component after classifica-

tion cycle. Because the points in the vicinity of the intersections are be ignored at the

beginning of optimization, the number of points associated with each component is much

smaller than it should be. As the optimization progresses, and the shape of the model

becomes closer to the correct result, the number of ignored points is automatically re-

duced. The final number of points associated with each component ends up being within

1% of the correct number.

Chapter 4. Fitting a General Model 138

(a) Number of points on fuselage (b) Number of points on wing

(c) Number of points on horizontal tail (d) Number of points on vertical tail

Figure 4.38: Number of points associated with each component for 3D glider

The final result adds the classification step to the glider, and the results are shown in

Figure 4.39. The RMS of distance from points in cloud to the surface of the glider is

shown in Figure 4.40a, where the system converges after 6 cycles. The normalized design

parameters for the glider are shown in Figure 4.40b. As can be seen, the generated

normalized parameters in the unclassified problem is not as good as in the pre-classified

problem. This is because 1% of the points are misclassified. However, the whole technique

applied on the cloud of unclassified points still yields an acceptable result.

Chapter 4. Fitting a General Model 139

(a) Initial configuration

(b) Final configuration

Figure 4.39: Final fitting result for 3D glider

Chapter 4. Fitting a General Model 140

(a) RMS distances (b) Normalized parameters

Figure 4.40: RMS distances and normalized parameters for 3D glider

4.5.3 Improvement of ILM Method

For focusing on the effect of ILM algorithm during glider fitting problem, the points in

cloud are pre-classified (each point associated to the correct component). The initial

guess and fitting result of the test problem are shown in Figure 4.41. The green lines are

the target for fitting and the blue lines are the initial guess and fitting result.

Chapter 4. Fitting a General Model 141

(a) Initial configuration

(b) Final fit configuration

Figure 4.41: Initial and final results for 3D glider (pre-classified)

The fitting results after 10 iterations based on different updating rules are shown in

Figure 4.42. The green lines are the target for fitting, and the blue lines are the result of

the optimization process. As can be seen, using the simulated annealing idea for updating

the iteration result can increase the convergence speed. After 10 iterations, the shape of

the parametric model in Figure 4.42d (using ILM method) is closer to the fitting target

comparing with the shape in Figure 4.42b or in Figure 4.42c (which corresponds to a

scheme in which trial solutions are accepted based upon a random number, as is done in

simulated annealing alone).

Chapter 4. Fitting a General Model 142

(a) Initial configuration (b) LM method

(c) LM coupling SA method (d) ILM method

Figure 4.42: Comparison of different variants of LM method after 10 iterations

Figure 4.43a shows the RMS distances between points in the cloud and generated glider.

After relaxing the condition of updating the iterations’ result, the RMS distance reduced

more quickly. It can get the correct geometry model after 5 cycles, as opposed to 8 cycles

during using the original LM method. Also, the normalized parameters are all nearly

one, which are shown in Figure 4.43b.

Chapter 4. Fitting a General Model 143

(a) RMS distances (b) Normalized parameters

Figure 4.43: RMS distances and normalized parameters for 3D glider

All cases above are calculated with the derivatives by hand, and coded in MATLAB.

In order to apply the algorithm to more general geometry configuration generation, one

needs a platform that can provide a geometry model easily and calculate the analytical

derivatives automatically. Therefore, the Engineering Sketch Pad (ESP) is used as the

library for applying the new algorithm. Additionally, all the algorithm will be written in

C code when it is integrated into ESP platform. And the running time is 100 times faster

than in MATLAB.

Chapter 5

Analysis of Accuracy, Robustness

and Efficiency

In this chapter, the algorithm will be used for generating more types of parametric ge-

ometry models based on the cloud of points. For applying the algorithm to more general

geometry configurations generation, Engineering Sketch Pad (ESP) is used as the plat-

form for the algorithm. ESP is a feature-based solid-modeling system that is web-enabled

and can be used with most modern web browsers. In many ways it mirrors the function-

ality of modern parametric commercial CAD systems. [124]. It can provide a general way

for generating the solid geometry model. And it is also be able to compute the sensitivity

of the objective function with respect to the driving parameters in a robust and efficient

manner.[125].

144

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 145

5.1 ESP Introduction

Within the multi-disciplinary analysis and optimization community, there is a strong

need for browser-based tools that provide users with the ability to visualize and interact

with complex three-dimensional configurations. This need is particularly acute when

the designs involve shape- and/or feature-based optimizations. Described herein is a

family of open-sources software products that provide such a capability. At the top is a

browser-based system, called the Engineering Sketch Pad (ESP), which provides the user

with the ability to interact with a configuration by building and/or modifying the design

parameters and feature tree that define the configuration. ESP is built both upon the

WebViewer (which is a WebGL-based visualizer for three-dimensional configurations and

data) and upon OpenCSM (which is a constructive solid modeler; it in turn is built upon

the EGADS and OpenCASCADE systems)[124]. The OpenCSM is the main library that

will be used for integrating the fitting algorithm. This will be introduced in the following

sections.

5.1.1 Geometry Model Generation (CSM file)

Open Source Constructive Solid Modeler (OpenCSM) is same as the constructive solid

modeling (CSG) in modern CAD systems, such a CatiaV5, SolidWorks, and Pro/ENGI-

NEER. In these approaches, a model consists of two types of items:

1. A build recipe (sometimes called a feature tree) that describes the types of and

order of operations that one must perform.

2. A set of design parameters that influence the exact shape of objects created (and

sometimes which part of the feature tree should be executed).

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 146

Comparing with the traditional CAD software, OpenCSM:

1. provides the easily coding format .csm file for describing the solid geometry models.

2. primitives can be pre-defined or defined by the user-self.

3. computes the derivatives/sensitivities analytically.

4. can be modified based on user’s problem (open source)

The .csm file and the sensitivities calculation are the two key features that will be used

in the fitting algorithm. The .csm file is discussed in this section. The sensitivities

calculation method will be introduced in the next section.

.csm file will be used as the input for the algorithm of generating parametric models. This

file can provide parametric geometry model (build recipe) and the initial guess of design

parameters. For each iteration of the optimization process, the new design parameters

are obtained and updated into the .csm file for rebuilding the new solid geometry model.

5.1.2 Analytical Sensitivity Generation

OpenCSM provides a pair of complementary techniques for computing configuration sen-

sitivities directly on parametric, CAD-based geometries. This technique computes the

configuration sensitivity analytically by differentiating the geometry-generating process.

[125]

This method needs to have access to the processes used to generate the various operations;

this includes the generation of the primitives as well as construction operations such as

filleting. Analytical derivatives can also be calculated if the construction process for the

primitives can be reverse engineered, as was done here in OpenCSM.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 147

When computing analytic sensitivities on Faces, the first step is to determine the primitive

that originally created that Face. Once the correspondence between the root (final) and

primitive (original) Faces is known, the point at which the sensitivity is desired, say ~xroot

is transformed into ~xprim by walking up the feature tree from the root to the element that

created the Face, and applying the inverse of the transformations that were traversed.

5.1.3 Integrate the New Algorithm

The algorithm of generating parametric models is coded in C for working on the ESP

platform. The program is named matchCSM.c. Because the program is built upon the

OpenCSM and EGADS, several APIs [126] need to be used during the programming

process. The APIs used in the matchCSM are listed below:

• ocsmLoad – read a .csm file and create a model (feature tree branches)

• ocsmBuild – execute the feature tree and create a group of Bodies

• ocsmGetXYZ – get the coordinates of the points on geometry model

• ocsmGetValu – get the definition and value of a design parameter

• ocsmSetValu – set the definition and value of a design parameter

• ocsmGetVel – get the sensitivity of a design parameter

• EG evaluate – get the sensitivity of the parametric coordinates

• EG attributeRet – get an attribute associated with a particular branch

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 148

5.2 Generalization and Accuracy

In this section, the matchCSM is used for fitting 6 different geometry models for testing

the generalization of the program. The key standard for evaluating the accuracy is the

result of normalized design parameters. If they are equal to 1 or almost to 1, that means

the accurate results can be obtained by the program.

The Figure 5.1 - 5.6 are the fitting cases regarding box, rotated box, fuselage, wing, glider

and plane (with engines). The red points are the cloud of points (targets). The blue points

in Figure (a)s are the configurations generated by the initial guess design parameters. The

blue points in Figure (b)s are the configurations generated by the fitting results. Figure

(c)s show the RMS of the distances between the points to the configurations during the

optimization process. Figure (d)s are the normalized results of design parameters for

each geometry model. As shown in these figures, for the single-component configuration,

the normalized design parameters are equal to 1 at the end of the iterations. On the

other hand, for the multiple-component geometries, results of the glider fitting and plane

fitting are acceptable (normalized design parameters are almost = 1). The original design

parameters and fitting results are shown in below:

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 149

5.2.1 Box Testing Case

Table 5.1: Design Parameters of the Box (in ESP)

X Location Y Location Z Location X Length Y Length Z Length

1 2 3 4 5 6

(a) Initial guess and target (b) Fitting result

(c) RMS of distance (d) Normalized design parameters

Figure 5.1: Box fitting results

As shown in the above, the correct design parameters can be obtained after 130 iterations

for box fitting problem.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 150

5.2.2 Rotated Box Testing Case

Table 5.2: Design Parameters of the Rotated Box (in ESP)

X Location Y Location Z Location X Length Y Length Z Length X Angle Y Angle Z Angle

1 1 1 1 16 4 30 40 50

(a) Initial guess and target (b) Fitting result

(c) RMS of distance (d) Normalized design parameters

Figure 5.2: Rotated box fitting results

Due to the rotation angles are added into design parameters, the correct correct values

can be obtained after 310 iterations for rotated box fitting problem.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 151

5.2.3 Fuselage Testing Case

Table 5.3: Design Parameters of the Fuselage (in ESP)

Section1 Section2 Section3 Section4 Section5 Section6

X Location 0 1 4 8 12 16

Z Location 0 0.1 0.4 0.4 0.3 0.2

Width 0 1 1.6 1.6 1 0.8

Height 0 1 2 2 1.2 0.4

(a) Initial guess and target (b) Fitting result

(c) RMS of distance (d) Normalized design parameters

Figure 5.3: Fuselage fitting results

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 152

The fuselage model is a blend of 6 super-ellipses sections, the correct design parameters

can be obtained after 15 cycles and total 160 iterations. In the figure of normalized design

parameters, the gap between two points is due to the original design parameters at that

point is 0.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 153

5.2.4 Wing Testing Case

Table 5.4: Design Parameters of the Wing (in ESP)

Thick Camber Area Aspect Taper Sweep Twist Dihedral

0.12 0.04 100 7 0.6 10 -5 5

(a) Initial guess and target (b) Fitting result

(c) RMS of distance (d) Normalized design parameters

Figure 5.4: Wing fitting results

The wing model is ruled by the root and tip, the correct design parameters can be obtained

after 11 cycles and total 110 iterations.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 154

5.2.5 Glider Testing Case

Table 5.5: Design Parameters of the Fuselage in Glider (in ESP)

Section1 Section2 Section3 Section4 Section5 Section6

X Location 0 1 4 8 12 16

Z Location 0 0.1 0.4 0.4 0.3 0.2

Width 0 1 1.6 1.6 1 0.8

Height 0 1 2 2 1.2 0.4

Table 5.6: Design Parameters of the Wing in Glider (in ESP)

X Location Z Location Thick Camber Area Aspect Taper Sweep Twist Dihedral

4 0.2 0.12 0.04 100 7 0.6 10 -5 5

Table 5.7: Design Parameters of the Horizontal Tail in Glider (in ESP)

X Location Z Location Thick Camber Area Aspect Taper Sweep Twist Dihedral

14 0.2 0.1 0 10 4 0.8 10 0 0

Table 5.8: Design Parameters of the Vertical Tail in Glider (in ESP)

X Location Z Location Thick Camber Area Aspect Taper Sweep

13.5 0.1 0.1 0 10 3 0.5 30

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 155

(a) Initial guess and target (b) Fitting result

(c) RMS of distance (d) Normalized design parameters

Figure 5.5: Glider fitting results

The glider model is composed by the fuselage, wing, vertical tail and horizontal tail.

Because the glider model is multiple components and more complicate structure, the

approximate correct design parameters can be obtained after 15 cycles and total 170

iterations.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 156

5.2.6 Plane Testing Case

The design parameters of the plane are same as the glider’s except added two more

components on the glider. They are:

Table 5.9: Design Parameters of the Engine in Plane (in ESP)

X Location Diameter Length Thickness Camber Percent of Span

0.5 1 4 0.05 0.04 0.4

Table 5.10: Design Parameters of the Strut (connection between engine and wing) in
Plane (in ESP)

X Location Length Thickness Sweep

0.4 1 0.25 45

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 157

(a) Initial guess and target (b) Fitting result

(c) RMS of distance (d) Normalized design parameters

Figure 5.6: Plane fitting results

The plane model is composed by the glider, engines and struts (connections between

wing and engines) . Because the plane model contains more small parts, the approximate

correct design parameters can be obtained after 15 cycles and total 320 iterations.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 158

5.3 Robustness

In this section, the robustness for the different initial guess is tested when using the

matchCSM for the fuselage fitting problem. 6 sets of different design parameters are as-

signed to the parametric fuselage model, as in Table 5.12 - 5.17. There are diverse initial

guesses in their 6 sets. They included: initial guess bigger than the target (Figure5.8) ,

initial guess smaller then the target (Figure5.9), the initial guess cross the target (Fig-

ure5.10), the initial guess fluctuates around the target (Figure5.11), initial guess rotated

in one direction (Figure5.12)and initial guess rotated in 3 directions (Figure5.13). As

shown in the Figures, the normalized design parameters are all equal or almost equal to

1. This means the program is robust for different types of initial guesses.

The original fuselage model is shown in Figure5.7, and the design parameters are shown

in Table5.11.

Table 5.11: Design Parameters of Rotated Fuselage

Section1 Section2 Section3 Section4 Section5 Section6

X Location 0 1 4 8 12 16

Z Location 0 0.1 0.4 0.4 0.3 0.2

Width 0 1 1.6 1.6 1 0.8

Height 0 1 2 2 1.2 0.4

X Rotation 0

Y Rotation 0

Z Rotation 0

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 159

Figure 5.7: Original fuselage model

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 160

5.3.1 Initial Guess Larger than the Target Configuration

Table 5.12: 1st Set of Initial Design Parameters for Rotated Fuselage

Section1 Section1 Section3 Section4 Section5 Section6

X Location 0 2 5 9 14 20

Z Location 0 0.2 0.5 0.6 0.4 0.3

Width 0.1 2.1 4.6 3.6 2.8 0.1

Height 0.1 2.1 4.6 3.6 2.8 0.1

X Rotation 0

Y Rotation 0

Z Rotation 0

(a) Initial guess and target (b) Normalized design parameters

Figure 5.8: Fuselage fitting results based on the 1st initial guess

As shown in the above, starting from the large initial guess, the original design parameters

can be obtained after using matchCSM as fitting technique.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 161

5.3.2 Initial Guess Smaller than the Target Configuration

Table 5.13: 2nd Initial Design Parameters of Rotated Fuselage

Section1 Section1 Section3 Section4 Section5 Section6

X Location 0 2 5 9 14 14

Z Location 0 0.2 0.5 0.6 0.4 0.3

Width 0.1 0.3 0.6 0.8 0.6 0.1

Height 0.1 0.3 0.6 0.8 0.6 0.1

X Rotation 0

Y Rotation 0

Z Rotation 0

(a) Initial guess and target (b) Normalized design parameters

Figure 5.9: Fuselage fitting results based on the 2nd initial guess

As shown in the above, starting from the small initial guess, the original design parameters

can be obtained after using matchCSM as fitting technique.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 162

5.3.3 Initial Guess Cross the Target Configuration

Table 5.14: 3rd Initial Design Parameters of Rotated Fuselage

Section1 Section1 Section3 Section4 Section5 Section6

X Location 0 2 5 9 14 20

Z Location 0.2 0.6 0.8 1.4 0.8 0.6

Width 0.1 1.3 1.8 2.3 1.2 0.1

Height 0.1 1.3 1.8 2.3 1.2 0.1

X Rotation 0

Y Rotation 0

Z Rotation 0

(a) Initial guess and target (b) Normalized design parameters

Figure 5.10: Fuselage fitting results based on the 3rd initial guess

As shown in the above, starting from the initial guess configuration cross the cloud of

points, the original design parameters can be obtained after using matchCSM as fitting

technique.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 163

5.3.4 Initial Guess Fluctuates around the Target Configuration

Table 5.15: 4th Initial Design Parameters of Rotated Fuselage

Section1 Section1 Section3 Section4 Section5 Section6

X Location 0 2 5 9 14 20

Z Location 0.2 -0.2 0.2 -0.2 0.2 -0.2

Width 0.1 1.3 1.8 2.3 1.2 0.1

Height 0.1 1.3 1.8 2.3 1.2 0.1

X Rotation 0

Y Rotation 0

Z Rotation 0

(a) Initial guess and target (b) Normalized design parameters

Figure 5.11: Fuselage fitting results based on the 4th initial guess

As shown in the above, starting from the initial guess configuration fluctuates the cloud

of points, the original design parameters can be obtained after using matchCSM as fitting

technique.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 164

5.3.5 Initial Guess Rotated in 1 Direction

Table 5.16: 5th Initial Design Parameters of Rotated Fuselage

Section1 Section1 Section3 Section4 Section5 Section6

X Location 0 2 5 9 14 20

Z Location 0.2 -0.2 0.2 -0.2 0.2 -0.2

Width 0.1 1.3 1.8 2.3 1.2 0.1

Height 0.1 1.3 1.8 2.3 1.2 0.1

X Rotation 20

Y Rotation 0

Z Rotation 0

(a) Initial guess and target (b) Normalized design parameters

Figure 5.12: Fuselage fitting results based on the 5th initial guess

As shown in the above, starting from the initial guess configuration rotated in 1 direction,

the original design parameters can be obtained after using matchCSM as fitting technique.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 165

5.3.6 Initial Guess Rotated in 6 Direction

Table 5.17: 6th Initial Design Parameters of Rotated Fuselage

Section1 Section1 Section3 Section4 Section5 Section6

X Location 0 2 5 9 14 20

Z Location 0.2 -0.2 0.2 -0.2 0.2 -0.2

Width 0.1 1.3 1.8 2.3 1.2 0.1

Height 0.1 1.3 1.8 2.3 1.2 0.1

X Rotation 20

Y Rotation 20

Z Rotation 20

(a) Initial guess and target (b) Normalized design parameters

Figure 5.13: Fuselage fitting results based on the 6th initial guess

As shown in the above, starting from the initial guess configuration rotated in 3 directions,

the original design parameters can be obtained after using matchCSM as fitting technique.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 166

5.4 Efficiency

In this section, the efficiency of matchCSM is tested in 3 ways. First, one tests the general

running time for different types of geometry models. Second, using the wing as the

geometry model, one tests the running time based on different number of faces. Third,

also using the wing as the geometry model, one tests the running time based on different

number of points.

5.4.1 Complexity of the Algorithm

For analyzing the complexity of the program, we recall the sparse technique in Chapter 3,

section 3.3.2. In this Chapter, the Hession matrix for 3D problem is shown in Figure 5.14.

After using sparse technique, the space of storing the Jacobian matrix O(m), where m is

the number of points. For the arithmetic of sparse Jacobian matrix, there are 2×n×n×m

plus and multiply operations in block A. There are 2×n×m multiply operations in block

B1, B2, C1 and C2. There are 2 ×m multiply operations in block D1 − D4. Therefore,

the complexity of arithmetic is O(m) due to n << m.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 167

Figure 5.14: Hession matrix structure for 3D problem

5.4.2 Time Analysis for Different Geometry Configurations

In this section, the running times of different types geometry models generation are

recorded. For all the tested cases, the maximum number of iterations IterMax is set as

30. The maximum number of cycle is 15. If the final RMS is not reduced in 2 cycles, the

process will be stopped. The coefficient of classification cof is set as 1.5. From Table 5.18,

the running time for each case is listed. The Time(optimizer) means the time ignored the

geometry building time. Per ILM means the time for calculating each iteration function.

Per Initialization means the time for each initialization/classification process. Per

Derivative means the time for generating the derivative of each design parameters.

The total running time of the multiple-component configurations is much more than the

time of single-component configurations. The reason is that the generation of multiple-

component configurations involves the UNION Boolean operation in the ocsmBuild func-

tion. The UNION operation is provided by the OpenCASCADE library, and is very time

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 168

consuming. Because the geometry building process is not the key point in the geometry

fitting research, the time ignored in the ocsmBuild is also recorded for analyzing the

efficiency of the fitting algorithm. If one focus on the optimization algorithm (ignoring

the ocsmBuild time), the running time of generating multiple-component configurations

is reduced to less than 10% of the original running time.

Table 5.18: Running Time of Generating Different Parametric Models

Geometry model Box Rotated Box Fuselage Wing Glider Plane

Number of points 10758 44358 6114 1731 22930 30516

Cycle 7 10 15 11 15 15

Iterations 138 310 146 103 207 313

Time/iter 0.05 0.23 0.86 0.67 45.93 238.34

Time(optimizer)/iter 0.03 0.19 0.55 0.04 4.75 7.81

Total time 22.69 97.64 141.69 75.92 10148.37 77034.54

Total time (optimizer) 19.80 85.13 94.75 8.83 1434.91 4334.24

Per ILM 0.02 0.12 0.09 0.01 2.49 3.55

Per Initialization 0.11 0.08 0.02 0.02 0.35 0.31

Per Derivative 0.01 0.06 0.45 0.04 2.23 4.22

Per Build 0.02 0.04 0.32 0.65 42.09 232.27

The plane model is the most complicate geometry model being fitted in this research. To

sum up, the plane fitting process can be finished in 21 hours as total time for 3 × 105

points in the cloud (by matchCSM of a MacBook Pro). The core optimization algorithm

(not count geometry building time) only takes 70 minutes in it.

From Figure 5.15, there is the running time regarding fitting different type configurations.

As shown in the figures, the more complex the geometry model, the more time needs to

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 169

be spent on the ILM function and generating the Jacobian matrix. In the first 2 cases

(box fitting), the time of geometry building takes 10% of the total running time. The

time ignoring the ”build time” almost can be seen as the running time of the optimization

algorithm. For the fuselage case, the optimizer time takes 70% of the total running time.

For the wing case, the optimizer time takes 10% of the total running time, because the

wing model (.csm file) involves the internal calculations for generating the geometry

model (like calculating span based on the area and aspect ratio). Therefore, the more

complex the geometry model, the more time needs to be spent on the geometry build. In

the glider case, the total running time is reduced 85% after ignoring the build time. For

the plane case, the time is reduced 93%.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Box	 Rotated	 Box	 Fuselage	 Wing	 Glider	 Plane	

Total	 Build	

Total	 Jacobian	

Total	 IniEalizaEon	

Total	 ILM	

Figure 5.15: Running time distribution for different configurations

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 170

5.4.3 Test 8 Different Number of Design Parameters

In this section, the wing is used as the fitting geometry model. We are focusing on the

running time changed with the number of design parameters.

In ESP platform, the number of design parameters not only impacts the running time of

each iteration function (due to the different different n in Jacobian matrix). As shown

in Figure 5.16, there are the 8 design parameters model and 64 design parameters (each

section on the wing has a set design parameters) model. During generating the wing

model in Figure 5.16b, al l the faces will be blend together in order to making sure the

number of faces for this two models are same. The geometry structure (shape) of these

cases are the same except the number of design parameters. The results of time is listed

in Table 5.19.

(a) 8 design parameters wing (b) 64 design parameters wing

Figure 5.16: Different number of design parameters for the wing generation

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 171

Table 5.19: Running Time for Wings in Different Number of Design Parameters (DPs)

Number of points 1731

Number of faces 8

Number of DPs 8 16 24 32 40 48 56 64

Cycle 10 10 10 8 9 9 10 10

Iterations 131 127 125 144 177 175 243 266

Time/iter 0.69 1.06 1.42 1.81 2.16 2.49 2.91 3.33

Time(optimizer)/iter 0.04 0.06 0.07 0.07 0.08 0.09 0.11 0.11

Total time 98.79 99.65 103.26 109.75 117.16 124.93 145.36 157.38

Total time (optimizer) 10.79 15.54 17.06 18.82 27.42 30.17 42.19 50.21

Per ILM 0.005 0.009 0.014 0.019 0.024 0.030 0.034 0.041

Per Initialization 0.0128 0.0129 0.0128 0.0127 0.0128 0.0129 0.0128 0.0128

Per Derivative 0.0046 0.0045 0.0045 0.0044 0.0045 0.0046 0.0045 0.0045

Per Build 0.41 0.41 0.41 0.42 0.41 0.42 0.41 0.41

As shown in the Figure 5.17, the vertical axis is the normalized time TN (normalized time

is the ratio of current time value to the first time value, the formula is TNi = Ti/T1).

The time per ILM function increased linearly with the number of design parameters due

to the more columns in Jacobian matrix. Here, sparse techniques developed in Chapter

3 reduced the complexity of matrix (and linear equations) calculation into O(n). The

time per initialization/classification, the time for generating sensitives for each design

parameter and the time for building the geometry model are keep constants.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 172

Figure 5.17: Running time analysis based on different number of design parameters

5.4.4 Test 8 Different Number of Faces

Because the OpenCSM constitutes the geometry models based on faces, the points in

cloud should be classified to different faces during the classifying process. And the ”oc-

smGetVel” also generates the sensitivities of design parameters based on different faces.

In this section, the wing is used as the fitting geometry model. We are focusing on the

running time changed with the number of faces. The design parameters and geometry

structure are the same except the number of faces. The results of time is listed in Table

5.20.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 173

Table 5.20: Running Time for Wings in Different Number of Faces

Number of points 1731

Number of DPs 8

Number of faces 8 14 20 26 32 38 44 50

Cycle 10 10 10 8 9 9 10 10

Iterations 131 124 125 144 177 175 243 266

Time/iter 0.69 1.05 1.41 1.78 2.14 2.46 2.88 3.28

Time(optimizer)/iter 0.04 0.05 0.05 0.05 0.06 0.06 0.07 0.07

Total time 98.79 155.37 192.26 269.18 394.80 447.56 721.92 897.81

Total time (optimizer) 10.79 14.23 16.06 16.95 24.06 25.80 35.15 40.63

Per ILM 0.005 0.006 0.006 0.005 0.005 0.005 0.005 0.005

Per Initialization 0.0128 0.0131 0.0133 0.0134 0.0143 0.0157 0.0155 0.0163

Per Derivative 0.0045 0.0054 0.0056 0.0057 0.0067 0.0068 0.0072 0.0079

Per Build 0.41 0.67 0.90 1.13 1.36 1.57 1.83 2.09

As shown in the Figure 5.18, the time per ILM function keeps constant and does not

change with the number of faces. However, the time per initialization/classification, time

for generating sensitives for each design parameter and the time for each build function

are increased linearly with the number of faces.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 174

Figure 5.18: Running time analysis based on different number of faces

5.4.5 Test 8 Different Number of Points in Cloud

In this section, the wing is also used as the fitting geometry model. We are focusing on

the running time changed with the number of points in cloud. The number of points

is changed from 1731 to 13848. The design parameters and geometry structure are the

same except the number of points in cloud. The results of time is listed in Table 5.21.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 175

Table 5.21: Running Time for Wings in Different Number of Points in Cloud

Number of DPs 8

Number of faces 8

Number of points 1731 3462 5193 6924 8655 10386 12117 13848

Cycle 10 10 9 8 7 7 7 7

Iterations 131 119 125 116 72 89 107 107

Time/iter 0.69 0.73 0.78 0.78 0.85 0.87 0.89 0.93

Time(optimizer)/iter 0.04 0.08 0.11 0.14 0.18 0.21 0.24 0.27

Total time 98.79 95.43 105.05 97.84 68.71 84.73 102.29 107.39

Total time (optimizer) 10.79 14.56 18.98 21.11 17.96 23.69 30.96 35.10

Per ILM 0.005 0.010 0.013 0.018 0.023 0.027 0.030 0.034

Per Initialization 0.0128 0.0280 0.0405 0.0553 0.0688 0.0843 0.0938 0.1121

Per Derivative 0.0045 0.0077 0.0109 0.0140 0.0184 0.0210 0.0241 0.0274

Per Build 0.41 0.41 0.42 0.40 0.42 0.42 0.41 0.42

As shown in the Figure 5.17, the time per ILM function, the time per initialization/clas-

sification and the time for generating sensitives for each design parameter are increased

linearly with the number of design parameters because the sparse techniques developed

in Chapter 3 reduced the complexity of matrix (and linear equations) calculation into

O(n). At the same time, the time per build function is keep constants.

Chapter 5. Analysis of Accuracy, Robustness and Efficiency 176

Figure 5.19: Running time analysis based on different number of points

It can be concluded that after applying the algorithm developed in this paper, generating

the parametric model from a cloud of points can be solved in the reasonable time.

Chapter 6

Conclusion

6.1 Summary

The objective of this work is to fit a parametric geometry model to a cloud of unclassi-

fied points, and to do so accurately and efficiently. The fitting process uses a modified

gradient-based optimization method that is applied to the whole cloud, without the need

for a user to segment or classify the points. It minimizes the least square of the distances

from the geometry model to the points in the cloud.

The basic optimization technique used is the Levenberg-Marquardt algorithm, which is a

combination of the gradient descent and Newton’s methods. In order to overcome a few

shortcomings of the Levenberg-Marquardt algorithm, ideas are borrowed from a heuristic

optimization method (Simulated Annealing) to help it improve the fitting accuracy and

to help it avoid local minima in the objective function. This new Improved Levenberg-

Marquardt (ILM) algorithm also can be used as a good optimization method in other

applications, such as traffic equilibrium problems. The results of ILM are compared

177

Chapter 6. Conclusion 178

with published results, and it shows that the ILM algorithm is generally better than the

traditional optimization methods in terms of robustness, efficiency, and accuracy.

In order to apply the fitting algorithm to cases when the initial design parameters are not

very good, a new (re)initialization technique and a modified objective function are used.

The (re)initialization technique has been designed so as to avoid a problem associated

with a poor initial guess, namely the situation when some of the points in the cloud

are associated with the discrete points on the opposite side of the configuration. The

modified objective function is needed in cases when the initial guess is either too large

or too small. This modified objective function reduces the likelihood that the optimizer

gets stuck at a local minimum.

Early development of the fitting method was accomplished with fairly simple analytical

shapes. For configurations with multiple components, the (re)initialization technique is

generalized into a (re)classification technique, in which points in the cloud are associated

with a particular component in the configuration, based upon their distance to the various

components. To avoid mis-classifications, especially in the early stages of the fitting

process, points in the cloud that are near the intersections (as evidenced by the fact that

they are equally close to two or more components) are temporarily ignored. As the fitting

process proceeds (and the configuration nears the cloud of points), the points near the

intersections are added back into the optimization problem. It has been observed that

this new method can avoid the mis-classification problem and converges up to 3 cycles

faster in the fitting process.

To expand the applicability of this technique beyond simple analytical shapes, the above

techniques have been integrated into the Engineering Sketch Pad (ESP), which is used to

parametrize and define virtually any configuration. Since ESP has the ability to compute

the sensitivity of the configuration with respect to the design parameters, it has proven

Chapter 6. Conclusion 179

to a be robust and efficient for fairly complex aerospace applications, such as the fitting

of a transport-type aircraft (with flow-through engines). The software that couples the

fitting process to ESP is called matchCSM, and it will be made generally available as part

of future ESP distributions.

The new fitting process has been applied to a variety of configurations. In order to

make the algorithm efficient, sparse matrix techniques are employed, which improve the

running speed from m3 to m during the optimization. As a result, the running time for

each iteration of the gradient optimization algorithm is shown to increase linearly with

the number of points in cloud. This makes the fitting of real-world problems tractable.

For example, the plane (transport aircraft with engines) can be fit 21 hours (70 minutes

for running optimization algorithm) for 3 × 105 points in the cloud (by matchCSM on a

MacBook Pro).

6.2 Conclusions

Fitting a parametric geometry model to a cloud of points is accomplished by a new

gradient-based optimization method, called the Improved Levenberg-Marquardt (ILM)

algorithm. This technique, which combines ideas from the classical Levenberg-Marquardt

(LM) method and from the simulated annealing method, helps to improve the fitting ac-

curacy and reduces the likelihood that it finds a local minimum. Because this modification

overcomes the local minimum problem, the number of cycles (reinitialization/classifica-

tion) is reduced, thereby improving the overall rate of convergence.

To demonstrate that ILM is a general improvement to LM, it has been applied to a traffic

equilibrium problem. By comparing the performance of LM and ILM, it has been shown

that ILM generally performs better than LM in terms of accuracy and convergence rate.

Chapter 6. Conclusion 180

A new (re)initialization technique and a modified objective function are key to improving

the robustness of the optimization technique. In most cases, this reduces the likelihood

that the optimizer will get stuck at a local minimum when the initial guess is not close

to the cloud of points. This has been demonstrated by applying the new fitting process

to a multiple-component configuration.

Through using the sparse matrix techniques, the running time for each iteration of the

gradient-based optimization algorithm is shown to increase linearly with the number of

points in cloud. This makes the fitting a large problems tractable.

Using the ESP platform, the new algorithm can be applied to many types of parametric

models. This whole fitting algorithms is accurate, efficient, and robust when integrated

in to ESP via the matchCSM program.

6.3 Suggested Future Work

There are four suggestions regarding the future works in this research.

Compared to the original LM method, the Improved Levenberg-Marquardt (ILM) algo-

rithm has been shown to improve the possibility that optimization process converges to

a global minimum value for the optimization problem. But there is no guarantee that

the global minimum value can be reached at the end. For the future work, one can

further improve the combination of the gradient-based and heuristic techniques so as to

further improve the robustness (possibility of obtaining global minimum value) of the

optimization algorithm.

The classification technique introduced here reduce the number of mis-classified points

during the fitting process. However, for complex geometry configurations (that contain

Chapter 6. Conclusion 181

many tiny parts), there are still some points that are mis-classified in the intersection

areas during the fitting process. For the future, the classification can be further improved

for reducing the number of mis-classified points. This will improve the performance of

the whole fitting process.

After applying this technique into ESP, the fitting process suffers from the long com-

putation times needed for ESP to rebuild the configuration with the new set of design

parameters; this can be seen by the large ocsmBuild time consumed, especially in the

“UNION” Boolean operation. For improving the efficiency of the generation of paramet-

ric geometry model in the real problem, the “UNION” Boolean operation provided by

the OpenCASCADE library should be improved.

Currently, the technique has three inputs: a cloud of points, an initial guess of design

parameters, and a constructive geometry model. For making the generating parametric

model process more automatic and intelligent, one could develop a technique that can

determine the constructive geometry model based on the cloud of points automatically.

This might use techniques developed for machine vision and learning. Then the inputs

of the process can be reduced to two components: a cloud of points and initial guess of

design parameters.

Appendix A

Appendix: Pseudocode for

MatchCSM

// -- //

// //

// matchCSM.c //

// With Classify Technique //

// with the modified objective function //

// optimization algorithm: Levenberg-Marquardt + Simulated Annealing //

// //

// written by Pengcheng Jia //

// Oct.31.2016 at ACML (Aerospace Computational Methods Lab) //

// //

// -- //

182

Appendix A. Appendix: Pseudocode for MatchCSM 183

// -- //

// //

// Declarations //

// 1. sparse Technique //

// 2. min and max value //

// 3. Levenberg-Marquardt //

// //

// -- //

static int SPA_SQU(// A = J’*J

double Js[], // Jacobian matrix in sparse format

double As1[], // As is the sparse format of A = J’ * J As1 is n*n

double As2[], // As2 is n * 2*NUM_PITS

double As3[], // As3 is 2 * NUM_PITS

double As4[], // As4 is NUM_PITS

int ntgt, // number of points

int ndv); // number of design parameters

static int SPA_MatVec(// B = J’ * g

double Js[], // input which is Jacobian matrix sparse format

double g[], // input which is gradient vector

double B[], // output whihc B is for Ax = B

int ntgt, // number of points

int ndv); // number of design parameters

static int ApMult(// Ap = A*p (used in con gradient)

double As1[], // n*n

double As2[], // n * 2*NUM_PITS

double As3[], // 2 * NUM_PITS

Appendix A. Appendix: Pseudocode for MatchCSM 184

double As4[], // NUM_PITS

double p[],

double Ap[], // output of the matrix

int ntgt, // number of points

int ndv); // number of design parameters

static int ConGrad(// A*x = b, get -> x

double As1[], // input matrix

double As2[],

double As3[],

double As4[],

double b[], // input vector

double x[], // output vector

int ntgt, // number of points

int ndv); // number of design parameters

static int Levenberg_Marquart(

double X[], // (input) coordinates of points in cloud

double Y[],

double Z[],

int dv_ipmtr[], // (input) index of design parameters

int dv_irow[], // (input) index of row

int dv_icol[], // (input) index of col

double dv_lbnd[], // (input) low bounds for design parameters

double dv_ubnd[], // (input) up bounds for design parameters

int ndv, // (input) number of design parameters

int ntgt, // (input) number of points in cloud

double ParD[], // (input) inital design parameters

Appendix A. Appendix: Pseudocode for MatchCSM 185

double lambda_ini, // (input) initial lambda value

double cof, // (input) cofficient of classification

double ParD_reslt[], // output = new design parameters

int *iter_reslt, // output = total iteration number

double *resi_reslt, // output = RMS of the distances

double residual[]); // output = RMS history

// -- //

// //

// Main Function //

// //

// -- //

int main(int argc, // number of inputs

char *argv[]) // inputs values

{

ROUTINE(matchCSM); // name the routine

// if the input format is not correct, return error --------

if (argc < 5) {

printf("==> ERROR:: not enough input arguments\n");

printf("==> The general format of input should be as follow:\n");

printf("==> csm_model target_points cycles_number classify_coff\n");

exit(0);

}

// load the geometry model -------------------------

// load process including the intial design parameters in it

Appendix A. Appendix: Pseudocode for MatchCSM 186

status = ocsmLoad(casefile, &modl);

// build the geometry model -------------------------

buildTo = 0; // for all

nbody = 0;

status = ocsmBuild(modl, buildTo, &builtTo, &nbody, NULL);

// get the number of faces for the geometry model --------

for (ibody = 1; ibody <= MODL->nbody; ibody++) {

if (MODL->body[ibody].onstack != 1) continue;

Nface = MODL->body[ibody].nface; // number of faces

}

// get the number of design parameters ---------------

ndv = 0;

for (ipmtr = 1; ipmtr <= MODL->npmtr; ipmtr++) {

if (MODL->pmtr[ipmtr].type == OCSM_EXTERNAL) {

for (irow = 1; irow <= MODL->pmtr[ipmtr].nrow; irow++) {

for (icol = 1; icol <= MODL->pmtr[ipmtr].ncol; icol++) {

ndv++; // accumulated the number of design parameters

}

}

}

}

// get the indexes and bounds of the design parameters --------

ndv = 0;

Appendix A. Appendix: Pseudocode for MatchCSM 187

for (ipmtr = 1; ipmtr <= MODL->npmtr; ipmtr++) {

if (MODL->pmtr[ipmtr].type == OCSM_EXTERNAL) {

int idx = 0;

for (irow = 1; irow <= MODL->pmtr[ipmtr].nrow; irow++) {

for (icol = 1; icol <= MODL->pmtr[ipmtr].ncol; icol++) {

// get the bounds for each design parameter

status = ocsmGetBnds(modl, ipmtr, irow, icol,

&lbound, &ubound);

dv_ipmtr[ndv] = ipmtr; // indexs of design parameters

dv_irow[ndv] = irow; // row index

dv_icol[ndv] = icol; // colum index

// design paramters provided by .csm file

Par[ndv] = MODL->pmtr[ipmtr].value[idx];

dv_lbnd[ndv] = lbound; // up bound of design parameter

dv_ubnd[ndv] = ubound; // low bound of design parameter

ndv++;

idx++;

}

}

}

}

// set the new design parameters based on the bound set in model ------

for (idv = 0; idv < ndv; idv++) {

// if parameter is lower than low bound

Appendix A. Appendix: Pseudocode for MatchCSM 188

if (ParD[idv] < dv_lbnd[idv]){

ParD[idv] = dv_lbnd[idv];

}

// if parameter is bigger than up bound

if (ParD[idv] > dv_ubnd[idv]){

ParD[idv] = dv_ubnd[idv];

}

}

// read targt file of cloud of pints ---------------------------

// count the number of points in cloud

ntgt = 0;

fp = fopen(targetfile, "r");

if (fp == NULL) {

printf("Error Reading Target File\n");

exit(0);

}

while (1) {

fscanf(fp, "%lf %lf %lf", &xdum, &ydum, &zdum);

if (feof(fp)) break;

ntgt++; // number of points in cloud

}

fclose(fp);

// input the values of target file

fp = fopen(targetfile, "r");

for (i = 0; i < ntgt; i++){

// X,Y,Z are the coordinates of points

Appendix A. Appendix: Pseudocode for MatchCSM 189

fscanf(fp, "%lf %lf %lf", &X[i], &Y[i], &Z[i]);

}

fclose(fp);

// loop for reinitial and run Improved Levenberg-Marquardt --------

status = Levenberg_Marquart(X,Y,Z, dv_ipmtr, dv_irow, dv_icol,

dv_lbnd, dv_ubnd, ndv, ntgt, ParD,

1, cof, ParD_reslt, &iter_reslt,

&resi_reslt, residual);

iter_total = iter_reslt; // record the number of iterations

resi_temp = resi_reslt; // temperary residual record

// record the history of RMS for iterations

for (i = 0; i < ItMx; i++){

RMS[i] = residual[i];

}

// reinitialization technique ------------------

for (i = 1; i < CYCLE; i++){

// reduce the coefficient of classification in each cycle

cofN-=dCof;

// be sure the minimum cofN = 1

if (cofN <= 1){

cofN = 1;

}

// keep the result of design parameters

for (j = 0; j < ndv; j++){

ParD[j] = ParD_reslt[j];

Appendix A. Appendix: Pseudocode for MatchCSM 190

}

// run initialize and ILM again

status = Levenberg_Marquart(X,Y,Z, dv_ipmtr, dv_irow, dv_icol,

dv_lbnd, dv_ubnd, ndv, ntgt, ParD,

1, cofN, ParD_reslt, &iter_reslt,

&resi_reslt, residual);

// record the RMS history for each cycle

for (k = 0; k < ItMx; k++){

RMS[i*ItMx + k] = residual[k];

}

// accumulate the number of iterations

iter_total += iter_reslt;

CycTol++;

// break rule

if (fabs(resi_reslt-resi_temp) < 10e-6){

printf("==> CYCLE STOP: because the RMS not reduce in 2 cycles\n");

break;

}

resi_temp = resi_reslt;

}

cleanup: // --

FREE(All Variables);

return status;

}

// -- //

Appendix A. Appendix: Pseudocode for MatchCSM 191

// //

// Matrix multiplication //

// sparse matrix technique applied //

// (J’*J, J*g, and A*p) //

// //

// -- //

int SPA_SQU(

double Js[], // Jacobian matrix in sparse format

double As1[], // As is the sparse format of A = J’ * J As1 is n*n

double As2[], // As2 is n * 2*NUM_PITS

double As3[], // As3 is 2 * NUM_PITS

double As4[], // As4 is NUM_PITS

int ntgt, // number of points

int ndv) // number of design parameters

{

ROUTINE(SPA_SQU);

LEN_PARA = ndv; // number of design parameters

NUM_PITS = ntgt; // number of target points

NUM_PITS3 = 3 * ntgt; // 3 times number of target points

LEN_JS = ndv + 2 ; // number of cols for Jacobian matrix

// As1

for (int i = 0; i < LEN_PARA; i++){

for (int j = 0; j < LEN_PARA; j++){

sum = 0.0;

for (int k = 0; k < NUM_PITS3; k++){

Appendix A. Appendix: Pseudocode for MatchCSM 192

sum += Js[k*LEN_JS+i]*Js[k*LEN_JS+j];

}

As1[i*LEN_PARA+j] = sum;

}

}

// As2

for (int i = 0; i < LEN_PARA; i++){

for (int j = 0; j < NUM_PITS; j++){

As2[i*2*NUM_PITS+j] = Js[j *LEN_JS +i] * \

Js[j* LEN_JS +LEN_PARA]+ \

Js[(j+ NUM_PITS)*LEN_JS +i] * \

Js[(j+ NUM_PITS)*LEN_JS +LEN_PARA]+ \

Js[(j+2*NUM_PITS)*LEN_JS +i] * \

Js[(j+2*NUM_PITS)*LEN_JS +LEN_PARA];

As2[i*2*NUM_PITS+j+NUM_PITS] \

= Js[j *LEN_JS +i] * \

Js[j* LEN_JS +LEN_PARA+1]+ \

Js[(j+ NUM_PITS)*LEN_JS +i] * \

Js[(j+ NUM_PITS)*LEN_JS +LEN_PARA+1]+ \

Js[(j+2*NUM_PITS)*LEN_JS +i] * \

Js[(j+2*NUM_PITS)*LEN_JS +LEN_PARA+1];

}

}

// As3 and As4

for (int i = 0; i < NUM_PITS; i++){

As3[i] = pow(Js[i *LEN_JS+LEN_PARA],2) + \

Appendix A. Appendix: Pseudocode for MatchCSM 193

pow(Js[(i+ NUM_PITS)*LEN_JS+LEN_PARA],2) + \

pow(Js[(i+2*NUM_PITS)*LEN_JS+LEN_PARA],2);

As3[i+NUM_PITS] = pow(Js[i *LEN_JS+LEN_PARA+1],2) + \

pow(Js[(i+ NUM_PITS)*LEN_JS+LEN_PARA+1],2) + \

pow(Js[(i+2*NUM_PITS)*LEN_JS+LEN_PARA+1],2);

As4[i] = Js[i *LEN_JS+LEN_PARA] * \

Js[i *LEN_JS+LEN_PARA+1] + \

Js[(i+ NUM_PITS)*LEN_JS+LEN_PARA] * \

Js[(i+ NUM_PITS)*LEN_JS+LEN_PARA+1] + \

Js[(i+2*NUM_PITS)*LEN_JS+LEN_PARA] * \

Js[(i+2*NUM_PITS)*LEN_JS+LEN_PARA+1];

}

return status;

}

int SPA_MatVec(

double Js[], // input which is Jacobian matrix sparse format

double g[], // input which is gradient vector

double B[], // output whihc B is for Ax = B

int ntgt, // number of points

int ndv) // number of design parameters

{

ROUTINE(SPA_MatVec);

// the elements B(1:n)

for (int i = 0; i < LEN_PARA; i++){

sum = 0.0;

Appendix A. Appendix: Pseudocode for MatchCSM 194

for (int j = 0; j < NUM_PITS3; j++){

sum += Js[j*LEN_JS + i] * g[j];

}

B[i] = sum;

}

// the elements B(1:n)

for (int i = 0; i < NUM_PITS; i++){ ?

B[LEN_PARA+i] = Js[i *LEN_JS + LEN_PARA] * \

g[i] + \

Js[(i+ NUM_PITS)*LEN_JS + LEN_PARA] * \

g[NUM_PITS+i] + \

Js[(i+2*NUM_PITS)*LEN_JS + LEN_PARA] * \

g[2*NUM_PITS+i];

B[LEN_PARA+i+NUM_PITS] = Js[i *LEN_JS + LEN_PARA+1] * \

g[i] + \

Js[(i+ NUM_PITS)*LEN_JS + LEN_PARA+1] * \

g[NUM_PITS+i] + \

Js[(i+2*NUM_PITS)*LEN_JS + LEN_PARA+1] * \

g[2*NUM_PITS+i];

}

return status;

}

int ApMult(

double As1[], // n*n

double As2[], //

double As3[],

Appendix A. Appendix: Pseudocode for MatchCSM 195

double As4[],

double p[],

double Ap[], // output of the matrix

int ntgt, // number of points

int ndv) // number of design parameters

{

ROUTINE(ApMult);

// Ap(1:n)

for (int i = 0; i < LEN_PARA; i++){

sum1 = 0.0;

sum2 = 0.0;

for (int j = 0; j < NUM_PARA2; j++){

if (j < LEN_PARA){

sum1 += As1[i*LEN_PARA+j] * p[j];

}else if (j >= LEN_PARA){

sum2 += As2[i*LEN_COOR + j-LEN_PARA] * p[j];

}

}

Ap[i] = sum1 + sum2;

}

// Ap(n+1:2*m+n)

for (int i = 0; i < NUM_PITS; i++){

sum3 = 0.0;

sum4 = 0.0;

for (int j = 0; j < LEN_PARA; j++){

sum3 += As2[j*LEN_COOR + i] * p[j];

sum4 += As2[j*LEN_COOR + i+NUM_PITS]* p[j];

Appendix A. Appendix: Pseudocode for MatchCSM 196

}

Ap[LEN_PARA + i] = sum3 + As3[i] *\

p[LEN_PARA + i] + \

As4[i]*p[LEN_PARA+NUM_PITS+i];

Ap[LEN_PARA + i + NUM_PITS] = sum4 + As3[i+NUM_PITS]*\

p[LEN_PARA + NUM_PITS+i] + \

As4[i]*p[LEN_PARA+i];

}

return status;

}

// -- //

// //

// Solving Systems of Linear Equations by LU decompostion //

// //

// -- //

int ConGrad(// A*x = b, get -> x

double As1[], // input matrix

double As2[],

double As3[],

double As4[],

double b[], // input vector

double x[], // output vector

int ntgt, // number of points

int ndv) // number of design parameters

{

double ERR = 1e-10;

Appendix A. Appendix: Pseudocode for MatchCSM 197

ROUTINE(ConGrad);

for (int i = 0; i < NUM_PARA2; i++){

r[i] = b[i]; // r = b - A*x, because initial x = 0, r = b

p[i] = r[i]; // initial p = r,

}

double rs_old = 0.0;

for (int i = 0; i < NUM_PARA2; i++){ // rs_old = r’*r

rs_old += pow(r[i],2);

}

if (fabs(rs_old -0.0) < 1e-10){

for (int i = 0; i < NUM_PARA2; i++){

x[i] = 0.0;

}

}

int IterMax = 50;

double beta = 0.0;

double rs_new = 0.0;

// if residual is not equal 0

if (!(fabs(rs_old - 0.0) < 1e-10)){

// iteration loop

for (int iter = 0; iter < IterMax; iter++){

// Ap = A*p

ApMult(As1,As2,As3,As4,p,Ap,ntgt,ndv);

// beta is a scalar

beta = 0.0;

for (int i = 0; i < NUM_PARA2; i++){

beta += p[i]*Ap[i];

Appendix A. Appendix: Pseudocode for MatchCSM 198

}

alpha = rs_old/beta; //alpha is a scalar

// get new r value and x value

for (int i = 0; i < NUM_PARA2; i++){

x[i] = x[i]+ alpha* p[i];

r[i] = r[i]- alpha*Ap[i];

}

// rs_new = r’*r is a scalar

rs_new = 0.0;

for (int i = 0; i < NUM_PARA2; i++){

rs_new += pow(r[i],2);

}

// stopping rule

if (sqrt(rs_new)<ERR){

rs_old = rs_new;

break;

}

// update p value which is vector

for (int i = 0; i < NUM_PARA2; i++){

p[i] = r[i] + (rs_new/rs_old)*p[i];

}

// update the rs_old value

rs_old = rs_new;

}

}

cleanup: // ----------------------------

Appendix A. Appendix: Pseudocode for MatchCSM 199

FREE(ALL VARIABLES);

return status;

}

// -- //

// //

// Improved Levenberg-Marquardt Technique (ILM) //

// include the initialization, classification, LM //

// //

// ---//

int Levenberg_Marquart(

double X[], // (input) coordinates of points in cloud

double Y[],

double Z[],

int dv_ipmtr[], // (input) index of design parameters

int dv_irow[], // (input) index of row

int dv_icol[], // (input) index of col

double dv_lbnd[], // (input) low bounds for design parameters

double dv_ubnd[], // (input) up bounds for design parameters

int ndv, // (input) number of design parameters

int ntgt, // (input) number of points in cloud

double ParD[], // (input) inital design parameters

double lambda_ini, // (input) initial lambda value

double cof, // (input) cofficient of classification

double ParD_reslt[], // output = new design parameters

int *iter_reslt, // output = total iteration number

Appendix A. Appendix: Pseudocode for MatchCSM 200

double *resi_reslt, // output = RMS of the distances

double residual[]) // output = RMS history

{

DEFINE(ALL VARIABLES)

ROUTINE(Levenberg_Marquart);

// build the new model based on the input design parameters ------

for (idv = 0; idv < ndv; idv++) {

status = ocsmSetValuD(modl, dv_ipmtr[idv],

dv_irow[idv], dv_icol[idv], ParD[idv]);

}

buildTo = 0; // for all

nbody = 0;

status = ocsmBuild(modl, buildTo, &builtTo, &nbody, NULL);

// generate discrete points on the geometry model ---------------------

// get the number of faces on the body which is on the stack

for (ibody = 1; ibody <= MODL->nbody; ibody++) {

if (MODL->body[ibody].onstack != 1) continue;

Nface = MODL->body[ibody].nface;

}

// get the total number of discrete points in model

for (ibody = 1; ibody <= MODL->nbody; ibody++) {

if (MODL->body[ibody].onstack != 1) continue;

// get the bound of geometry

status = EG_getBoundingBox(MODL->body[ibody].ebody, box);

// get whole size of geometry

Appendix A. Appendix: Pseudocode for MatchCSM 201

size = sqrt(SQR(box[3]-box[0]) + \

SQR(box[4]-box[1]) + \

SQR(box[5]-box[2]));

// set the u,v space

params[0] = 0.0100 * size;

params[1] = 0.0050 * size;

params[2] = 15.0;

// generate the discrete pints on body which is on stack

status = EG_makeTessBody(MODL->body[ibody].ebody, params,

&(MODL->body[ibody].etess));

// get the xyz and uv value from the geometry model

ndpnt = 0; // initial the total of discrete pints is 0

PintsIdx[0] = ndpnt; // start point index of each face

for (iface = 1; iface <= MODL->body[ibody].nface; iface++){

status = EG_getTessFace(MODL->body[ibody].etess, iface,

&npnt, &xyz, &uv, &ptype, &pindx,

&ntri, &tris, &tric);

// this loop for get the number of discete pints on model

ndpnt += npnt;

Pints[iface-1] = npnt; // number of points in each face

PintsIdx[iface] = ndpnt; // start point index of each face

// get the attribute of each face

status = EG_attributeRet(MODL->body[ibody].face[iface].eface,

"_faceID", &atype, &len, &ints,

&reals, &str);

for (ipnt = 0; ipnt < npnt; ipnt++){

// record the coordinates of discrete points

Appendix A. Appendix: Pseudocode for MatchCSM 202

xd[ndpnt+ipnt] = xyz[ipnt*3];

yd[ndpnt+ipnt] = xyz[ipnt*3+1];

zd[ndpnt+ipnt] = xyz[ipnt*3+2];

ud[ndpnt+ipnt] = uv[ipnt*2];

vd[ndpnt+ipnt] = uv[ipnt*2+1];

// record the body and face id

dbody[ndpnt+ipnt] = ibody;

dface[ndpnt+ipnt] = iface;

// record the attribute of each face

fID1d[ndpnt+ipnt] = ints[0];

fID2d[ndpnt+ipnt] = ints[1];

fID3d[ndpnt+ipnt] = ints[2];

}

}

}

// classification and initialization process -------------------------

// initial the number of points will be used in fitting process

int Cnpnt = 0;

// if the cof > 1, less points in cloud are counted to as fitting target

if (cof > 1){

Cnpnt = 0;

// find the shortest distances from discrete points for each target

for (i = 0; i < ntgt; i++){

// for each point in cloud, loop the distrete points

for (k = 0; k < ndpnt; k++){

dis[k] = pow(X[i] - xd[k],2) + \

Appendix A. Appendix: Pseudocode for MatchCSM 203

pow(Y[i] - yd[k],2) + \

pow(Z[i] - zd[k],2);

}

// get the array of shortest distance

// from one target pints to each face

for (iface = 0; iface < Nface; iface++){

double valDis = dis[PintsIdx[iface]];

int indexDis = PintsIdx[iface];

// loop all discrete points on each face

// find the shortest distance for each face

for (ipnt = PintsIdx[iface]; ipnt < PintsIdx[iface+1]; ipnt++){

if (valDis > dis[ipnt]){

valDis = dis[ipnt];

indexDis = ipnt;

}

}

// disMins is the minimum distance for each face

// disMinsIdx is the index of minimum distance for each face

disMins[iface] = valDis;

disMinsIdx[iface] = indexDis;

}

// the minimum distance * cofficient is still the minmum distance,

// then record this discrete point

double disMinF = min2(disMins,Nface);

int disMinFIdx = min (disMins,Nface);

// use (minimum distance * cofficient) replace minimum distance

double disMinF_iter = cof*disMinF;

Appendix A. Appendix: Pseudocode for MatchCSM 204

disMins[disMinFIdx] = disMinF_iter;

// if it is still the shortest distance,

// record all information of this discrete point

if (fabs(disMinF_iter - min2(disMins,Nface)) < 10e-16){

// record the related discrete points

Xd[Cnpnt] = xd[disMinsIdx[disMinFIdx]];

Yd[Cnpnt] = yd[disMinsIdx[disMinFIdx]];

Zd[Cnpnt] = zd[disMinsIdx[disMinFIdx]];

Ud[Cnpnt] = ud[disMinsIdx[disMinFIdx]];

Vd[Cnpnt] = vd[disMinsIdx[disMinFIdx]];

ibd[Cnpnt] = dbody[disMinsIdx[disMinFIdx]];

ifd[Cnpnt] = dface[disMinsIdx[disMinFIdx]];

fID1[Cnpnt]= fID1d[disMinsIdx[disMinFIdx]];

fID2[Cnpnt]= fID2d[disMinsIdx[disMinFIdx]];

fID3[Cnpnt]= fID3d[disMinsIdx[disMinFIdx]];

// record the related target points

Xc[Cnpnt] = X[i];

Yc[Cnpnt] = Y[i];

Zc[Cnpnt] = Z[i];

Cnpnt++;

}

}

// find the shortest distances from cloud points for each discrete

for (i = 0; i < ndpnt; i++){

// for each discrete point, loop the cloud points

for (k = 0; k < ntgt; k++){

dis_DtP[k] = pow(X[k] - xd[i],2) + \

Appendix A. Appendix: Pseudocode for MatchCSM 205

pow(Y[k] - yd[i],2) + \

pow(Z[k] - zd[i],2);

}

// in the target points,

// record the index of the minimum distance for discrete

idx_dis[i] = min(dis_DtP,ntgt);

// record the related discrete points

Xd[Cnpnt] = xd[i];

Yd[Cnpnt] = yd[i];

Zd[Cnpnt] = zd[i];

Ud[Cnpnt] = ud[i];

Vd[Cnpnt] = vd[i];

ibd[Cnpnt] = dbody[i];

ifd[Cnpnt] = dface[i];

fID1[Cnpnt]= fID1d[i];

fID2[Cnpnt]= fID2d[i];

fID3[Cnpnt]= fID3d[i];

// record the related target points

Xc[Cnpnt] = X[idx_dis[i]];

Yc[Cnpnt] = Y[idx_dis[i]];

Zc[Cnpnt] = Z[idx_dis[i]];

// increase the number of total points will be fitted

Cnpnt++;

}

}

// if the cof = 1, the total number of points = target + discrete

// almost the same process as (cof > 1)

Appendix A. Appendix: Pseudocode for MatchCSM 206

if (cof == 1){

Cnpnt = ntgt+ndpnt;

// find the shortest distances from discrete points for each target

for (i = 0; i < ntgt; i++){

for (k = 0; k < ndpnt; k++){

dis[k] = pow(X[i] - xd[k],2) + \

pow(Y[i] - yd[k],2) + \

pow(Z[i] - zd[k],2);

}

idx_dis[i] = min(dis,ndpnt);

// record the related discrete points

Xd[i] = xd[idx_dis[i]];

Yd[i] = yd[idx_dis[i]];

Zd[i] = zd[idx_dis[i]];

Ud[i] = ud[idx_dis[i]];

Vd[i] = vd[idx_dis[i]];

ibd[i] = dbody[idx_dis[i]];

ifd[i] = dface[idx_dis[i]];

fID1[i]= fID1d[idx_dis[i]];

fID2[i]= fID2d[idx_dis[i]];

fID3[i]= fID3d[idx_dis[i]];

// record the related target points

Xc[i] = X[i];

Yc[i] = Y[i];

Zc[i] = Z[i];

}

// find the shortest distances from cloud points for each discrete

Appendix A. Appendix: Pseudocode for MatchCSM 207

for (i = 0; i < ndpnt; i++){

// for each discrete point, loop the target points

for (k = 0; k < ntgt; k++){

dis_DtP[k] = pow(X[k] - xd[i],2) + \

pow(Y[k] - yd[i],2) + \

pow(Z[k] - zd[i],2);

}

// in the target points

// record the index of the minimum distance for point i

idx_dis[i] = min(dis_DtP,ntgt);

// record the related discrete points

Xd[i+ntgt] = xd[i];

Yd[i+ntgt] = yd[i];

Zd[i+ntgt] = zd[i];

Ud[i+ntgt] = ud[i];

Vd[i+ntgt] = vd[i];

ibd[i+ntgt] = dbody[i];

ifd[i+ntgt] = dface[i];

fID1[i+ntgt]= fID1d[i];

fID2[i+ntgt]= fID2d[i];

fID3[i+ntgt]= fID3d[i];

// record the related target points

Xc[i+ntgt] = X[idx_dis[i]];

Yc[i+ntgt] = Y[idx_dis[i]];

Zc[i+ntgt] = Z[idx_dis[i]];

}

}

Appendix A. Appendix: Pseudocode for MatchCSM 208

// define the parameters which will be used later

NUM_PARA2 = ndv+2*Cnpnt; // the length of design + parametric coordinates

LEN_PARA = ndv; // the number of design parameters

LEN_COOR = 2*Cnpnt; // number of total parametric coordinates (u,v)

NUM_PITS = Cnpnt; // number of one parametric coordinates u

NUM_PITS3 = 3 * Cnpnt; // 3 times number of target points

LEN_JS = ndv + 2 ; // number of cols for Jacobian matrix

mm = LEN_JS*NUM_PITS3; // number of elements in Jacobian matrix

epsilon = 10e-10; // tolerance (small threshold)

IterMax = 30; // maximal number of (main) iterations

lambda_sqrt = sqrt(lambda_ini); // the lambda value

// generate objective function --------------------------

for (i = 0; i < NUM_PITS; i++){

gx[i] = (-Xc[i]+Xd[i]);

gy[i] = (-Yc[i]+Yd[i]);

gz[i] = (-Zc[i]+Zd[i]);

}

// combine the gx,gy,gz together

for (i = 0; i < NUM_PITS; i++){

g[i] = gx[i];

g[i+ NUM_PITS] = gy[i];

g[i+2*NUM_PITS] = gz[i];

}

// generate the deritaive of the objective function ---------------

for (i = 0; i < NUM_PITS; i++){

Appendix A. Appendix: Pseudocode for MatchCSM 209

resi += (pow(gx[i],2)+pow(gy[i],2)+pow(gz[i],2));

}

resi = sqrt(resi/(NUM_PITS3)); // initial residual

residual[0] = resi; // record this into array

// generate the derivative of design parameters --------------------

// generate the derivatives for each design parameter

for (idv = 0; idv < ndv; idv++) {

// pick which design parameter will be derivatived

status = ocsmSetVelD(modl, 0, 0, 0, 0.0);

status = ocsmSetVelD(modl, dv_ipmtr[idv], dv_irow[idv],

dv_icol[idv], 1.0);

// build the model

buildTo = 0;

nbody = 0;

status = ocsmBuild(modl, buildTo, &builtTo, &nbody, NULL);

// generate the derivative of design parameters

for (i = 1; i <= Nface; i++){

int uvid = 0;

// generate the UVs will be used in ocsmGetVel

for (j = NumFacIdx[i-1]; j < NumFacIdx[i]; j++){

UVs[uvid*2+0] = Us[j];

UVs[uvid*2+1] = Vs[j];

uvid++;

}

// get the sensitivity for each point

status = ocsmGetVel(modl, ibd[1], OCSM_FACE,

Appendix A. Appendix: Pseudocode for MatchCSM 210

i, NumFac[i], UVs, Vels);

// put the sensitivity into Jacobian

int velid = 0;

for (j = NumFacIdx[i-1]; j < NumFacIdx[i]; j++){

// derivative of design parameter for x

J[Pid[j] *LEN_JS + idv] = Vels[velid*3+0];

// derivative of design parameter for y

J[(Pid[j]+ NUM_PITS)*LEN_JS + idv] = Vels[velid*3+1];

// derivative of design parameter for z

J[(Pid[j]+2*NUM_PITS)*LEN_JS + idv] = Vels[velid*3+2];

velid++;

}

}

}

// generate the derivative of parametric coordinates ----------------

for (itgt = 0; itgt < NUM_PITS; itgt++) {

uv_der[0] = Ud[itgt];

uv_der[1] = Vd[itgt];

// generate the derivative of u and v

status = EG_evaluate(MODL->body[ibd[itgt]].face[ifd[itgt]].eface,

uv_der, eval);

// write that into Jacobian

// derivative of u

J[itgt *LEN_JS + LEN_PARA] = eval[3];

J[(itgt+ NUM_PITS)*LEN_JS + LEN_PARA] = eval[4];

J[(itgt+2*NUM_PITS)*LEN_JS + LEN_PARA] = eval[5];

Appendix A. Appendix: Pseudocode for MatchCSM 211

// derivative of v

J[itgt *LEN_JS + LEN_PARA +1] = eval[6];

J[(itgt+ NUM_PITS)*LEN_JS + LEN_PARA +1] = eval[7];

J[(itgt+2*NUM_PITS)*LEN_JS + LEN_PARA +1] = eval[8];

}

// Improved Levenberg-Marquardt method -----------------------------

// par is ParD + u + v

for (int i = 0; i < LEN_PARA; i++){

par[i] = ParD[i];

}

for (int i = 0; i < NUM_PITS; i++){

par[i+LEN_PARA] = Ud[i];

par[i+LEN_PARA+NUM_PITS] = Vd[i];

}

// initial the ifd new and resi_temp

for (i = 0; i < NUM_PITS; i++){

ifd_new[i] = ifd[i];

}

resi_temp = resi;

// begin of the ILM loop --------

for (iter = 1; iter <= IterMax; iter++){

// remove the panelty term after 5 iterations

if (iter == 6){

NUM_PITS = Cnpnt-ndpnt;

NUM_PARA2 = ndv+2*NUM_PITS;

LEN_PARA = ndv;

Appendix A. Appendix: Pseudocode for MatchCSM 212

LEN_COOR = 2*NUM_PITS;

NUM_PITS3 = 3 * NUM_PITS;

LEN_JS = ndv + 2 ;

mm = LEN_JS*NUM_PITS3;

// rewrite the Jacobian

for (itgt = 0 ; itgt < NUM_PITS; itgt++){

for (idv = 0; idv < LEN_PARA; idv++){

// for design parameter

J[itgt *LEN_JS + idv] = \

J[itgt *LEN_JS + idv];

J[(itgt+ NUM_PITS)*LEN_JS + idv] = \

J[(itgt+ Cnpnt)*LEN_JS + idv];

J[(itgt+2*NUM_PITS)*LEN_JS + idv] = \

J[(itgt+2*Cnpnt)*LEN_JS + idv];

// for u

J[itgt *LEN_JS + LEN_PARA] = \

J[itgt *LEN_JS + LEN_PARA];

J[(itgt+ NUM_PITS)*LEN_JS + LEN_PARA] = \

J[(itgt+ Cnpnt)*LEN_JS + LEN_PARA];

J[(itgt+2*NUM_PITS)*LEN_JS + LEN_PARA] = \

J[(itgt+2*Cnpnt)*LEN_JS + LEN_PARA];

// for v

J[itgt *LEN_JS + LEN_PARA +1] = \

J[itgt *LEN_JS + LEN_PARA +1];

J[(itgt+ NUM_PITS)*LEN_JS + LEN_PARA +1] = \

J[(itgt+ Cnpnt)*LEN_JS + LEN_PARA +1];

J[(itgt+2*NUM_PITS)*LEN_JS + LEN_PARA +1] = \

Appendix A. Appendix: Pseudocode for MatchCSM 213

J[(itgt+2*Cnpnt)*LEN_JS + LEN_PARA +1];

}

}

// rewrite objective function

for (i = 0; i < NUM_PITS; i++){

g[i] = g[i];

g[i+ NUM_PITS] = g[i+ Cnpnt];

g[i+2*NUM_PITS] = g[i+2*Cnpnt];

}

// rewrite par

for (i = 0; i < NUM_PITS; i++){

par[i+LEN_PARA] = par[i+LEN_PARA];

par[i+LEN_PARA+NUM_PITS] = par[i+LEN_PARA+Cnpnt];

}

}

// mutiply the J’*J = A (A is formed by As1,As2,As3,As4)

SPA_SQU(J,As1,As2,As3,As4,NUM_PITS,LEN_PARA);

// A + unit matrix

for (i = 0; i < LEN_PARA; i++){

As1[i*LEN_PARA+i] += lambda_sqrt;

}

for (i = 0; i < LEN_COOR; i++){

As3[i] += lambda_sqrt;

}

// output -> B = J’*g

SPA_MatVec(J,g,B,NUM_PITS,LEN_PARA);

// Conjointed gradient calculate the x of Ax = B

Appendix A. Appendix: Pseudocode for MatchCSM 214

// get the del_par which is the delta of par

ConGrad(As1,As2,As3,As4,B,del_par,NUM_PITS,LEN_PARA);

progress = 0.0; // initial progress = 0

for (i = 0; i < NUM_PARA2; i++){

// norm of the progress

progress += pow(del_par[i],2);

}

// stopping rule

if (progress < epsilon){

break;

}

// iteration fomular

for (i = 0; i < NUM_PARA2; i++){

par_temp[i] = par[i] - del_par[i];

}

// fix the bound of design parameters

for (idv = 0; idv < LEN_PARA; idv++) {

// if parameter is lower than low bound

if (par_temp[idv] < dv_lbnd[idv]){

par_temp[idv] = dv_lbnd[idv];

}

// if parameter is bigger than up bound

if (par_temp[idv] > dv_ubnd[idv]){

par_temp[idv] = dv_ubnd[idv];

}

}

// seperate the par into dv and uv

Appendix A. Appendix: Pseudocode for MatchCSM 215

for (i = 0; i < LEN_PARA; i++){

ParD_temp[i] = par_temp[i];

}

for (i = 0; i < NUM_PITS; i++){

Ud_temp[i] = par_temp[i+LEN_PARA];

Vd_temp[i] = par_temp[i+LEN_PARA+NUM_PITS];

}

// for regenerate the geometry model --------------------------

// set the new design parameters into model

for (idv = 0; idv < ndv; idv++) {

status = ocsmSetValuD(modl, dv_ipmtr[idv],

dv_irow[idv], dv_icol[idv], ParD_temp[idv]);

}

// build model

buildTo = 0;

nbody = 0;

status = ocsmBuild(modl, buildTo, &builtTo, &nbody, NULL);

// if the numbers of faces are same----------------

if (MODL->body[ibd[1]].nface == nfaceOld){

// creat the new face’s atrribute (translate table)

for (ibody = 1; ibody <= MODL->nbody; ibody++) {

if (MODL->body[ibody].onstack != 1) continue;

for (iface = 1; iface <= MODL->body[ibody].nface; iface++){

// get the attribute of each face

EG_attributeRet(MODL->body[ibody].face[iface].eface,

Appendix A. Appendix: Pseudocode for MatchCSM 216

"_faceID", &atype, &len, &ints,

&reals, &str);

// record the face id

fID1_inter[iface-1] = ints[0];

fID2_inter[iface-1] = ints[1];

fID3_inter[iface-1] = ints[2];

ifd_inter[iface-1]= iface;

}

}

// translate the face id based on the new model

for (i = 0; i < NUM_PITS; i++){

for (j = 0; j < nfaceOld; j++){

if (fID1[i] == fID1_inter[j] && \

fID2[i] == fID2_inter[j] && \

fID3[i] == fID3_inter[j]){

ifd_new[i] = ifd_inter[j];

fID1_new[i] = fID1_inter[j];

fID2_new[i] = fID2_inter[j];

fID3_new[i] = fID3_inter[j];

}

}

}

// Generate the discrete points based on the new UV

for (i = 0; i < NUM_PITS; i++){

uv_disc[0] = Ud_temp[i];

uv_disc[1] = Vd_temp[i];

status = ocsmGetXYZ(modl, ibd[i], OCSM_FACE,

Appendix A. Appendix: Pseudocode for MatchCSM 217

ifd_new[i], 1, uv_disc, xyz_disc);

Xd_temp[i] = xyz_disc[0];

Yd_temp[i] = xyz_disc[1];

Zd_temp[i] = xyz_disc[2];

}

// if the numbers of faces are different ----------------

// update the design parameters and break

}else if (MODL->body[ibody].nface != nfaceOld){

// updata par

for (int i = 0; i < NUM_PARA2; i++){

par[i] = par_temp[i];

}

break;

}

// updated the result of the face attribute

for (int i = 0; i < NUM_PITS; i++){

fID1[i] = fID1_new[i];

fID2[i] = fID2_new[i];

fID3[i] = fID3_new[i];

}

// regenerate the objective function ----------------------

for (i = 0; i < NUM_PITS; i++){

gx_temp[i] = (-Xc[i]+Xd_temp[i]);

gy_temp[i] = (-Yc[i]+Yd_temp[i]);

gz_temp[i] = (-Zc[i]+Zd_temp[i]);

Appendix A. Appendix: Pseudocode for MatchCSM 218

}

for (i = 0; i < NUM_PITS; i++){

g_temp[i] = gx_temp[i];

g_temp[i+ NUM_PITS] = gy_temp[i];

g_temp[i+2*NUM_PITS] = gz_temp[i];

}

// norm of the objective function ---------------------------

resi_temp = 0.0;

for (i = 0; i < NUM_PITS; i++){

resi_temp += (pow(gx_temp[i],2)+\

pow(gy_temp[i],2)+\

pow(gz_temp[i],2));

}

resi_temp = sqrt(resi_temp/(NUM_PITS3));

residual[iter] = resi_temp;

// recalculate the Jacobian matrix --------------------------

// generate the derivative of design parameters

for (idv = 0; idv < LEN_PARA; idv++){

// pick which design parameter will be derivatived

status = ocsmSetVelD(modl, 0, 0, 0, 0.0);

status = ocsmSetVelD(modl, dv_ipmtr[idv], dv_irow[idv],

dv_icol[idv], 1.0);

// build the model

buildTo = 0;

nbody = 0;

Appendix A. Appendix: Pseudocode for MatchCSM 219

status = ocsmBuild(modl, buildTo, &builtTo, &nbody, NULL);

// generate the derivative of design parameters

for (i = 1; i <= Nface; i++){

// generate the UVs will be used in ocsmGetVel

int uvid = 0;

for (j = NumFacIdx[i-1]; j < NumFacIdx[i]; j++){

UVs[uvid*2+0] = Us[j];

UVs[uvid*2+1] = Vs[j];

uvid++;

}

// get the sensitivity for each point

status = ocsmGetVel(modl, ibd[1], OCSM_FACE, i,

NumFac[i], UVs, Vels);

// put the sensitivity into Jacobian

int velid = 0;

for (j = NumFacIdx[i-1]; j < NumFacIdx[i]; j++){

// derivative of design parameter for coordinates

J_temp[Pid[j] *LEN_JS + idv] = Vels[velid*3+0];

J_temp[(Pid[j]+ NUM_PITS)*LEN_JS + idv] = Vels[velid*3+1];

J_temp[(Pid[j]+2*NUM_PITS)*LEN_JS + idv] = Vels[velid*3+2];

velid++;

}

}

}

// generate the derivative of u and v ----------------

for (itgt = 0; itgt < NUM_PITS; itgt++) {

Appendix A. Appendix: Pseudocode for MatchCSM 220

uv_der[0] = Ud_temp[itgt];

uv_der[1] = Vd_temp[itgt];

// generate the derivative of u and v

EG_evaluate(MODL->body[ibd[itgt]].face[ifd_new[itgt]].eface,

uv_der, eval);

// derivative of u

J_temp[itgt *LEN_JS + LEN_PARA] = eval[3];

J_temp[(itgt+ NUM_PITS)*LEN_JS + LEN_PARA] = eval[4];

J_temp[(itgt+2*NUM_PITS)*LEN_JS + LEN_PARA] = eval[5];

// derivative of v for z

J_temp[itgt *LEN_JS + LEN_PARA +1] = eval[6];

J_temp[(itgt+ NUM_PITS)*LEN_JS + LEN_PARA +1] = eval[7];

J_temp[(itgt+2*NUM_PITS)*LEN_JS + LEN_PARA +1] = eval[8];

}

// ILM method update parameter rule ---------------------

// accept, improvement

if (residual[iter] < residual[iter-1]){

// reduce lambda, move to next iteration

lambda_sqrt = lambda_sqrt/2;

// updata par

for (int i = 0; i < NUM_PARA2; i++){

par[i] = par_temp[i];

}

// updata g which is the "gradient vector" of objective

for (int i = 0; i < NUM_PITS3; i++){

g[i] = g_temp[i];

Appendix A. Appendix: Pseudocode for MatchCSM 221

}

// updata J which is the Jacobian of objective

for (int i = 0; i < mm; i++){

J[i] = J_temp[i];

}

// not accept

}else{

// increase lambda, recompute the step

lambda_sqrt = lambda_sqrt*2;

// Simulated Annealing which accept result if increaese a little

if (residual[iter] < exp(progress)*residual[iter-1]){

for (int i = 0; i < NUM_PARA2; i++){

par[i] = par_temp[i]; // updata par

}

for (int i = 0; i < NUM_PITS3; i++){

g[i] = g_temp[i]; // updata par

}

for (int i = 0; i < mm; i++){

J[i] = J_temp[i]; // updata J

}

}else{

residual[iter] = residual[iter-1];

resi_temp = residual[iter];

if (fabs(residual[iter] - residual[iter-4]) < 10e-8){

break;

}

}

Appendix A. Appendix: Pseudocode for MatchCSM 222

}

}

// output the result design parameters

for (i = 0; i < LEN_PARA; i++){

ParD_reslt[i] = par[i];

}

// output the iteration number and final RMS

*iter_reslt = iter;

*resi_reslt = resi_temp;

cleanup: // ----------------------------

FREE(ALL VARIABLES);

return status;

}

Appendix B

Appendix: Readme File for Using

MatchCSM

* *

* ReadMe file for matchCSM *

* This is the program for fitting the parametric model *

* from the cloud of points *

* *

* Written by Pengcheng Jia *

* Nov.09.2016 at ACML *

This folder contains 3 files and one folder.

They are Makefile, matchCSM.c, GenPintsCSM.c and Demo folder.

223

Appendix B. Appendix: Readme File for Using MatchCSM 224

You should download the Engineering Sketch Pad (ESP) as the platform

and OpenCASCAD as geometry library first.

The web you can download these is as following:

http://raphael.mit.edu/ESP/ for OCC680 (choose based on your system)

http://raphael.mit.edu/ESP/archive/ for ESP1.09.tgz

1.================ How to compile/build the code ================

1.1 cd ~/$DISROOT set the ESP folder as root folder

1.2 Copy the "Makefile" into the $DISROOT/src/OpenCSM. Replace the

the original one.

1.3 Copy the "matchCSM.c and GenPintsCSM.c " into the $DISROOT/src/OpenCSM

1.4 Follow the same instruction of building ESP

(2. easy run for testing, if you choose this step, please ignore step 2)

2.1 get into ESPMatchCSM/Demo/Fuselage6

2.2 Copy the "fuselage6Pints.txt and fuselage6Ini.csm "

into the $DISROOT/bin

2.3 type the follow into terminal:

cd ~/$DISROOT/bin ./matchCSM fuselage6Ini fuselage6Pints 15 1.2

2.=================== How to use the program ===================

Appendix B. Appendix: Readme File for Using MatchCSM 225

2.1 "GenPintsCSM.c" (Generate the points of cloud), If you already have

the points data that need to be fitted, then skip this process

2.1.1 Open the terminal window

2.1.2 Type the following command in the terminal:

cd ~/$DISROOT/bin ./GenPintsCSM GeometryName(.csm)

GeometryName(.csm) is the input of GenPintsCSM function.

It is the geometry model that contains the correct design

parameters. Some examples of GeometryName.csm can be

found in Demo folder.

Example: ESPMatchCSM/Demo/Box/box.csm

2.1.3 Output results

After running this process, the cloud of points

file will be generated in the bin folder and named as

1. "GeometryNamePints" :XYZ of the each points in cloud

2. "GeometryNamePints2" :XYZ and face number of each points in cloud

3. "GeometryNamePar" :design parameters for generating the points

2.2 "matchCSM.c" (Run the fitting algorithm for the points of cloud)

2.2.1 Open the terminal window

2.2.2 Type the following command in the terminal:

cd ~/$DISROOT/bin ./matchCSM GeometryNameIni(.csm)

GeometryNamePints(.txt) Cycle Coefficient

GeometryNameIni(.csm), GeometryNamePints(.txt),

Cycle, Coefficient are inputs for matchCSM function.

1. GeometryNameIni(.csm) is the geometry model that contains

the initial guess of design parameters. Some examples of

Appendix B. Appendix: Readme File for Using MatchCSM 226

GeometryNameIni.csm can be found in Demo folder.

Example: ESPMatchCSM/Demo/Box/boxIni.csm

2. GeometryNamePints(.txt) is the cloud of points file that

will need be fitted. The format of it should be 3 columns

in txt file. The first column are the X coordinates of

points, the second coloum are the Y coordinates of the

points, the third column are the Z coordinates of the

points. This file can be provided by user, or generated

in the 2.1 step. Some examples of GeometryNamePints.txt

can be found in Demo folder.

Example: ESPMatchCSM/Demo/Box/boxPints.csm

3. Cycle is the maximum number of cycles during running

the fitting algorithm. The larger this number, the

more accurte of the fitting reuslts, however, the larger

this number, the more running time will be needed.

Generally, for the sample geometry, this number

could be set as 10, for the complate geometry,

this number could be set as 15~20.

4. Cofficient is the number that will be used in

classification technique. When it is set as larger

than 1, durning the first several fitting cycles,

the points in the junction between two components

will not be count. This reduce the mis-classification

problem. But for the geometry that contains small parts,

Appendix B. Appendix: Readme File for Using MatchCSM 227

large this number will lead to insufficient points on

small faces. Generally, for the sample geometry,

this number could be set as 2, for the complate geometry,

this number could be set as 1~1.2.

2.2.3 Output results

After running this process, fitting reuslts for the

cloud of points file will be generated in the bin

folder and named as

1. "Ini_Parameters" : initial guess of design parameters

2. "InitialB" : discrete of points from initial

design parameters

3. "InitialA" : discrete of points after

initialization

4. "Result_Fitting" : discrete of points from fitting result

design parameters

5. "Result_Parameters1" : result design parameters after

1 cycle fitting

6. "Result_ParametersF" : result design parameters after total

fitting process

7. "RMS" : RMS of distances history

8. "Result" : result of design parameters and

running time analysis

Appendix C

Appendix: Example of the Result

File for MatchCSM

* *

* Finished the LM calculation *

* This is the finial result of the optimization *

* fuselage6 Fitting Problem *

* *

==> Total number of points in cloud is 6114

==> [Maximum Cycles, Cofficient Classification] [15, 2.0000000]

==> Total number of cycles for LM is 15

==> Total number of iterations for LM is 146

228

Appendix C. Appendix: Example of the Result File for MatchCSM 229

==> Total running time for LM is 141.6911080

==> Per Iteration time for LM is 0.8609382

==> Per Iteration time for LM(NoBuild) is 0.5477885

==> ocsmBuild time in per Iteration is 0.3131497

==> The finial RMS is 0.0012419

* *

* Singal Running Time Analysis *

* This includes singal running time for each function; *

* and also the total running time per Iteration. *

* *

=====> Once time for each part <=====

==> per ocsmBuild(init) time is 0.0843590

==> per tess(init) time is 0.1282840

==> per initial/class time is 0.1199840

==> per ocsmBuild(Jaco) time is 0.0097040

==> per LM function time is 0.0608990

==> per ocsmBuild(attr) time is 0.0850650

==> per attribution time is 0.0049290

==> per objective time is 0.0000620

==> per ocsmGetVel(Jaco) time is 0.0162490

==> per EG_evaluate(Jaco) time is 0.0055440

==> per LM update rule time is 0.0000010

Appendix C. Appendix: Example of the Result File for MatchCSM 230

=====> Average once time for each part <=====

==> average per ocsmBuild(init) time is 0.0816946

==> average per tess(init) time is 0.1136664

==> average per initial/class time is 0.1172431

==> average per ocsmBuild(Jaco) time is 0.0096186

==> average per LM function time is 0.0899018

==> average per ocsmBuild(attr) time is 0.0823027

==> average per attribution time is 0.0061358

==> average per objective time is 0.0000988

==> average per ocsmGetVel(Jaco) time is 0.0185507

==> average per EG_evaluate(Jaco) time is 0.0060615

==> average per LM update rule time is 0.0003739

==> average per Iteration time is 0.8609382

==> average per Iteration(NoBuild) time is 0.5477885

* *

* Total Running Time Analysis *

* This includes total running time for each function; *

* and also the total running time for each algorithm. *

* Algorithm includes: *

* 1. Initialization/Classification *

* 2. Jacobian *

* 3. Levenberg Marquart *

* 4. Attribution *

* *

Appendix C. Appendix: Example of the Result File for MatchCSM 231

=====> Total time for each part <=====

==> total ocsmBuild(init) time is 1.2254190

==> total tess(init) time is 1.7049960

==> total initial/class time is 1.7586460

==> total ocsmBuild(Jaco) time is 33.7036740

==> total LM function time is 13.1256680

==> total ocsmBuild(attr) time is 12.0161890

==> total attribution time is 0.8958210

==> total objective time is 0.0144210

==> total ocsmGetVel(Jaco) time is 65.0016470

==> total EG_evaluate(Jaco) time is 0.8849760

==> total LM update rule time is 0.0545840

=====> Total time for each algorithm <=====

==> totoal Initi/class time verify = 4.6890610

==> totoal Jacobian time verify = 99.5902970

==> totoal LM time verify = 13.1946730

==> totoal attribute time verify = 12.9120100

==> totoal others time = 11.3050670

=====> Total time for each algorithm (No ocsmBuild) <======

==> totoal Initi/class time verify = 3.4636420

==> totoal Jacobian time verify = 65.8866230

==> totoal LM time verify = 13.1946730

==> totoal attribute time verify = 0.8958210

==> totoal others time = 11.3050670

Appendix C. Appendix: Example of the Result File for MatchCSM 232

==> totoal ocsmBuild time = 46.9452820

==> totoal time without ocsmBuild = 94.7458260

* *

* Result of Design Parameters *

* *

==> [Initial, Result]

==> [0.1000000, 0.1017897]

==> [2.1000000, 0.9987739]

==> [2.6000000, 1.5999559]

==> [2.6000000, 1.6000878]

==> [1.8000000, 1.0016746]

==> [0.1000000, 0.7988748]

==> [0.1000000, 0.0969182]

==> [2.1000000, 0.9974154]

==> [2.6000000, 2.0001656]

==> [2.6000000, 2.0000629]

==> [1.8000000, 1.2031732]

==> [0.1000000, 0.3985131]

==> [0.0000000, 0.0000000]

==> [2.0000000, 1.0000000]

==> [5.0000000, 4.0000000]

==> [9.0000000, 8.0000000]

==> [14.0000000, 12.0000000]

==> [18.0000000, 15.9986388]

Appendix C. Appendix: Example of the Result File for MatchCSM 233

==> [0.0000000, 0.0005694]

==> [0.2000000, 0.0998148]

==> [0.5000000, 0.4000871]

==> [0.6000000, 0.3999738]

==> [0.4000000, 0.3003751]

==> [0.3000000, 0.1997758]

Bibliography

[1] Nirant V. Puntambekar, Andrei G. Jablokow, and H.Joseph Sommer III. Uni-

fied review of 3d model generation for reverse engineering. Computer Integrated

Manufacturing Systems, 7(4):259 – 268, 1994. ISSN 0951-5240. doi: http:

//dx.doi.org/10.1016/0951-5240(94)90015-9. URL http://www.sciencedirect.

com/science/article/pii/0951524094900159.

[2] ZHOU Min. A new approach of composite surface reconstruction based on re-

verse engineering. Procedia Engineering, 23(0):594 – 599, 2011. ISSN 1877-

7058. doi: http://dx.doi.org/10.1016/j.proeng.2011.11.2552. URL http://www.

sciencedirect.com/science/article/pii/S1877705811053951. {PEEA} 2011.

[3] Roseline Beniere, Gerard Subsol, Gilles Gesquiere, Francois Le Breton, and William

Puech. A comprehensive process of reverse engineering from 3d meshes to {CAD}

models. Computer-Aided Design, 45(11):1382 – 1393, 2013. ISSN 0010-4485. doi:

http://dx.doi.org/10.1016/j.cad.2013.06.004. URL http://www.sciencedirect.

com/science/article/pii/S0010448513001012.

[4] Beniere R, Subsol G, Gesquiere G, Le Breton F, and Puech W. Recovering primi-

tives in 3d cad meshes. SPIE electronic imaging 2011, 3D imaging, interaction and

measurement, 7864:1–9, 2011.

234

http://www.sciencedirect.com/science/article/pii/0951524094900159
http://www.sciencedirect.com/science/article/pii/0951524094900159
http://www.sciencedirect.com/science/article/pii/S1877705811053951
http://www.sciencedirect.com/science/article/pii/S1877705811053951
http://www.sciencedirect.com/science/article/pii/S0010448513001012
http://www.sciencedirect.com/science/article/pii/S0010448513001012

Bibliography 235

[5] Wenlei Xiao, Lianyu Zheng, Ji Huan, and Pei Lei. A complete cad/cam/cnc so-

lution for step-compliant manufacturing. Robotics and Computer-Integrated Man-

ufacturing, 31(0):1 – 10, 2015. ISSN 0736-5845. doi: http://dx.doi.org/10.1016/j.

rcim.2014.06.003. URL http://www.sciencedirect.com/science/article/pii/

S073658451400043X.

[6] T Wu, F Portheine, A Popovic, P Bast, M Wehmoeller, and K Radermacher.

An interface for the data exchange between {CAS} and cad/cam systems. In-

ternational Congress Series, 1256(0):703 – 709, 2003. ISSN 0531-5131. doi: http:

//dx.doi.org/10.1016/S0531-5131(03)00282-6. URL http://www.sciencedirect.

com/science/article/pii/S0531513103002826. {CARS} 2003. Computer As-

sisted Radiology and Surgery. Proceedings of the 17th International Congress and

Exhibition.

[7] Michael J. Pratt, Bill D. Anderson, and Tony Ranger. Towards the standard-

ized exchange of parameterized feature-based {CAD} models. Computer-Aided De-

sign, 37(12):1251 – 1265, 2005. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.

cad.2004.12.005. URL http://www.sciencedirect.com/science/article/pii/

S0010448505000035.

[8] Hiroki Yoshihara, Tatsuya Yoshii, Tadahiro Shibutani, and Takashi Maekawa.

Topologically robust b-spline surface reconstruction from point clouds using level

set methods and iterative geometric fitting algorithms. Computer Aided Geometric

Design, 29(7):422 – 434, 2012. ISSN 0167-8396. doi: http://dx.doi.org/10.1016/j.

cagd.2012.03.007. URL http://www.sciencedirect.com/science/article/pii/

S0167839612000337. Geometric Modeling and Processing 2012.

[9] Ulrich Bauer and Konrad Polthier. Generating parametric models of tubes from

laser scans. Computer-Aided Design, 41(10):719 – 729, 2009. ISSN 0010-4485. doi:

http://www.sciencedirect.com/science/article/pii/S073658451400043X
http://www.sciencedirect.com/science/article/pii/S073658451400043X
http://www.sciencedirect.com/science/article/pii/S0531513103002826
http://www.sciencedirect.com/science/article/pii/S0531513103002826
http://www.sciencedirect.com/science/article/pii/S0010448505000035
http://www.sciencedirect.com/science/article/pii/S0010448505000035
http://www.sciencedirect.com/science/article/pii/S0167839612000337
http://www.sciencedirect.com/science/article/pii/S0167839612000337

Bibliography 236

http://dx.doi.org/10.1016/j.cad.2009.01.002. URL http://www.sciencedirect.

com/science/article/pii/S0010448509000177. Selected Papers from the 2007

New Advances in Shape Analysis and Geometric Modeling Workshop.

[10] Lip M. Lai and Matthew M.F. Yuen. Blending of mesh objects to parametric

surface. Computers and Graphics, 46(0):283 – 293, 2015. ISSN 0097-8493. doi:

http://dx.doi.org/10.1016/j.cag.2014.09.030. URL http://www.sciencedirect.

com/science/article/pii/S0097849314001186.

[11] Akemi Galvez and Andres Iglesias. A new iterative mutually coupled hybrid

ga-pso approach for curve fitting in manufacturing. Applied Soft Computing,

13(3):1491 – 1504, 2013. ISSN 1568-4946. doi: http://dx.doi.org/10.1016/j.

asoc.2012.05.030. URL http://www.sciencedirect.com/science/article/pii/

S1568494612002918. Hybrid evolutionary systems for manufacturing processes.

[12] Hongwei Lin. Adaptive data fitting by the progressive-iterative approximation.

Computer Aided Geometric Design, 29(7):463 – 473, 2012. ISSN 0167-8396. doi:

http://dx.doi.org/10.1016/j.cagd.2012.03.005. URL http://www.sciencedirect.

com/science/article/pii/S0167839612000313. Geometric Modeling and Pro-

cessing 2012.

[13] Wenni Zheng, Pengbo Bo, Yang Liu, and Wenping Wang. Fast b-spline curve

fitting by l-bfgs. Computer Aided Geometric Design, 29(7):448 – 462, 2012.

ISSN 0167-8396. doi: http://dx.doi.org/10.1016/j.cagd.2012.03.004. URL http://

www.sciencedirect.com/science/article/pii/S0167839612000301. Geomet-

ric Modeling and Processing 2012.

[14] Zhang Lei, Gu Tianqi, Zhao Ji, Ji Shijun, Sun Qingzhou, and Hu Ming.

An adaptive moving total least squares method for curve fitting. Measure-

ment, 49(0):107 – 112, 2014. ISSN 0263-2241. doi: http://dx.doi.org/10.1016/

http://www.sciencedirect.com/science/article/pii/S0010448509000177
http://www.sciencedirect.com/science/article/pii/S0010448509000177
http://www.sciencedirect.com/science/article/pii/S0097849314001186
http://www.sciencedirect.com/science/article/pii/S0097849314001186
http://www.sciencedirect.com/science/article/pii/S1568494612002918
http://www.sciencedirect.com/science/article/pii/S1568494612002918
http://www.sciencedirect.com/science/article/pii/S0167839612000313
http://www.sciencedirect.com/science/article/pii/S0167839612000313
http://www.sciencedirect.com/science/article/pii/S0167839612000301
http://www.sciencedirect.com/science/article/pii/S0167839612000301

Bibliography 237

j.measurement.2013.11.050. URL http://www.sciencedirect.com/science/

article/pii/S0263224113006039.

[15] Xiangchao Zhang, Hao Zhang, Xiaoying He, Min Xu, and Xiangqian Jiang.

Chebyshev fitting of complex surfaces for precision metrology. Measurement,

46(9):3720 – 3724, 2013. ISSN 0263-2241. doi: http://dx.doi.org/10.1016/

j.measurement.2013.04.017. URL http://www.sciencedirect.com/science/

article/pii/S0263224113001243.

[16] Simon Flory. Fitting curves and surfaces to point clouds in the presence of obstacles.

Computer Aided Geometric Design, 26(2):192 – 202, 2009. ISSN 0167-8396. doi:

http://dx.doi.org/10.1016/j.cagd.2008.04.003. URL http://www.sciencedirect.

com/science/article/pii/S0167839608000289.

[17] Jui-Sheng Chou, Min-Yuan Cheng, Yu-Wei Wu, and Anh-Duc Pham. Optimizing

parameters of support vector machine using fast messy genetic algorithm for dispute

classification. Expert Systems with Applications, 41(8):3955 – 3964, 2014. ISSN

0957-4174. doi: http://dx.doi.org/10.1016/j.eswa.2013.12.035. URL http://www.

sciencedirect.com/science/article/pii/S0957417413010105.

[18] Damir Vucina, Zeljan Lozina, and Igor Pehnec. Computational procedure for

optimum shape design based on chained bezier surfaces parameterization. En-

gineering Applications of Artificial Intelligence, 25(3):648 – 667, 2012. ISSN

0952-1976. doi: http://dx.doi.org/10.1016/j.engappai.2011.11.007. URL http:

//www.sciencedirect.com/science/article/pii/S0952197611002181.

[19] Michael Athanasopoulos, Hassan Ugail, and Gabriela Gonzalez Castro. Parametric

design of aircraft geometry using partial differential equations. Advances in Engi-

neering Software, 40(7):479 – 486, 2009. ISSN 0965-9978. doi: http://dx.doi.org/10.

http://www.sciencedirect.com/science/article/pii/S0263224113006039
http://www.sciencedirect.com/science/article/pii/S0263224113006039
http://www.sciencedirect.com/science/article/pii/S0263224113001243
http://www.sciencedirect.com/science/article/pii/S0263224113001243
http://www.sciencedirect.com/science/article/pii/S0167839608000289
http://www.sciencedirect.com/science/article/pii/S0167839608000289
http://www.sciencedirect.com/science/article/pii/S0957417413010105
http://www.sciencedirect.com/science/article/pii/S0957417413010105
http://www.sciencedirect.com/science/article/pii/S0952197611002181
http://www.sciencedirect.com/science/article/pii/S0952197611002181

Bibliography 238

1016/j.advengsoft.2008.08.001. URL http://www.sciencedirect.com/science/

article/pii/S0965997808001531.

[20] Jonathan Byrne, Philip Cardiff, Anthony Brabazon, and Michael ONeill. Evolving

parametric aircraft models for design exploration and optimisation. Neurocom-

puting, 142(0):39 – 47, 2014. ISSN 0925-2312. doi: http://dx.doi.org/10.1016/

j.neucom.2014.04.004. URL http://www.sciencedirect.com/science/article/

pii/S092523121400530X. {SI} Computational Intelligence Techniques for New

Product Development.

[21] Christof Ledermann, Claus Hanske, Jorg Wenzel, Paolo Ermanni, and Roland

Kelm. Associative parametric {CAE} methods in the aircraft pre-design. Aerospace

Science and Technology, 9(7):641 – 651, 2005. ISSN 1270-9638. doi: http:

//dx.doi.org/10.1016/j.ast.2005.05.001. URL http://www.sciencedirect.com/

science/article/pii/S1270963805000726.

[22] Jinggao Li, Byung Chul Kim, and Soonhung Han. Parametric exchange of

round shapes between a mechanical {CAD} system and a ship {CAD} sys-

tem. Computer-Aided Design, 44(2):154 – 161, 2012. ISSN 0010-4485. doi:

http://dx.doi.org/10.1016/j.cad.2011.08.003. URL http://www.sciencedirect.

com/science/article/pii/S0010448511001916.

[23] Pengbo Bo, Ruotian Ling, and Wenping Wang. A revisit to fitting paramet-

ric surfaces to point clouds. Computers and Graphics, 36(5):534 – 540, 2012.

ISSN 0097-8493. doi: http://dx.doi.org/10.1016/j.cag.2012.03.036. URL http:

//www.sciencedirect.com/science/article/pii/S0097849312000751. Shape

Modeling International (SMI) Conference 2012.

[24] Peter J. Bickel and Kjell A. Doksum. Mathematical statistics: Basic and selected

topics. Pearson Prentice-Hall, 1, 2001.

http://www.sciencedirect.com/science/article/pii/S0965997808001531
http://www.sciencedirect.com/science/article/pii/S0965997808001531
http://www.sciencedirect.com/science/article/pii/S092523121400530X
http://www.sciencedirect.com/science/article/pii/S092523121400530X
http://www.sciencedirect.com/science/article/pii/S1270963805000726
http://www.sciencedirect.com/science/article/pii/S1270963805000726
http://www.sciencedirect.com/science/article/pii/S0010448511001916
http://www.sciencedirect.com/science/article/pii/S0010448511001916
http://www.sciencedirect.com/science/article/pii/S0097849312000751
http://www.sciencedirect.com/science/article/pii/S0097849312000751

Bibliography 239

[25] Nau D. Mantyla M. and Shah J. Challenges in feature based manufacturing re-

search. Communications of the ACM, 39:77–85, 1996.

[26] Tamas Varady, Ralph R Martin, and Jordan Cox. Reverse engineering of geometric

models–an introduction. Computer-Aided Design, 29(4):255 – 268, 1997. ISSN

0010-4485. doi: http://dx.doi.org/10.1016/S0010-4485(96)00054-1. URL http:

//www.sciencedirect.com/science/article/pii/S0010448596000541. Reverse

Engineering of Geometric Models.

[27] Ping-Yi Chao and Yu chou Wang. A data exchange framework for networked

cad/cam. Computers in Industry, 44(2):131 – 140, 2001. ISSN 0166-3615. doi: http:

//dx.doi.org/10.1016/S0166-3615(00)00082-8. URL http://www.sciencedirect.

com/science/article/pii/S0166361500000828.

[28] H. Pottmann, S. Leopoldseder, M. Hofer, T. Steiner, and W. Wang. Industrial

geometry: recent advances and applications in {CAD}. Computer-Aided De-

sign, 37(7):751 – 766, 2005. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.

cad.2004.08.013. URL http://www.sciencedirect.com/science/article/pii/

S0010448504001988.

[29] Hai-Jun Rong, Ya-Xin Jia, and Guang-She Zhao. Aircraft recognition using mod-

ular extreme learning machine. Neurocomputing, 128(0):166 – 174, 2014. ISSN

0925-2312. doi: http://dx.doi.org/10.1016/j.neucom.2012.12.064. URL http:

//www.sciencedirect.com/science/article/pii/S0925231213010023.

[30] Saeid Motavalli. Review of reverse engineering approaches. Computers and In-

dustrial Engineering, 35(1-2):25 – 28, 1998. ISSN 0360-8352. doi: http://dx.

doi.org/10.1016/S0360-8352(98)00011-4. URL http://www.sciencedirect.com/

science/article/pii/S0360835298000114.

http://www.sciencedirect.com/science/article/pii/S0010448596000541
http://www.sciencedirect.com/science/article/pii/S0010448596000541
http://www.sciencedirect.com/science/article/pii/S0166361500000828
http://www.sciencedirect.com/science/article/pii/S0166361500000828
http://www.sciencedirect.com/science/article/pii/S0010448504001988
http://www.sciencedirect.com/science/article/pii/S0010448504001988
http://www.sciencedirect.com/science/article/pii/S0925231213010023
http://www.sciencedirect.com/science/article/pii/S0925231213010023
http://www.sciencedirect.com/science/article/pii/S0360835298000114
http://www.sciencedirect.com/science/article/pii/S0360835298000114

Bibliography 240

[31] N. Werghi, R. Fisher, C. Robertson, and A. Ashbrook. Object reconstruction

by incorporating geometric constraints in reverse engineering. Computer-Aided

Design, 31(6):363 – 399, 1999. ISSN 0010-4485. doi: http://dx.doi.org/10.

1016/S0010-4485(99)00038-X. URL http://www.sciencedirect.com/science/

article/pii/S001044859900038X.

[32] Jianbing Huang and Chia-Hsiang Menq. Automatic cad model reconstruction

from multiple point clouds for reverse engineering. Journal of Computing and In-

formation Science in Engineering, 2(3):160 – 170, 2003. ISSN 1530-9827. doi:

10.1115/1.1529210. URL http://dx.doi.org/10.1115/1.1529210.

[33] Syed Afaq Ali Shah, Mohammed Bennamoun, and Farid Boussaid. A novel fea-

ture representation for automatic 3d object recognition in cluttered scenes. Neu-

rocomputing, 205:1 – 15, 2016. ISSN 0925-2312. doi: http://dx.doi.org/10.1016/

j.neucom.2015.11.019. URL http://www.sciencedirect.com/science/article/

pii/S0925231215017385.

[34] Duc Fehr, William J. Beksi, Dimitris Zermas, and Nikolaos Papanikolopoulos. Co-

variance based point cloud descriptors for object detection and recognition. Com-

puter Vision and Image Understanding, 142:80 – 93, 2016. ISSN 1077-3142. doi:

http://dx.doi.org/10.1016/j.cviu.2015.06.008. URL http://www.sciencedirect.

com/science/article/pii/S1077314215001368.

[35] Weisheng Li, Peng Dong, Bin Xiao, and Lifang Zhou. Object recognition

based on the region of interest and optimal bag of words model. Neurocom-

puting, 172:271 – 280, 2016. ISSN 0925-2312. doi: http://dx.doi.org/10.1016/j.

neucom.2015.01.083. URL http://www.sciencedirect.com/science/article/

pii/S0925231215005925.

http://www.sciencedirect.com/science/article/pii/S001044859900038X
http://www.sciencedirect.com/science/article/pii/S001044859900038X
http://dx.doi.org/10.1115/1.1529210
http://www.sciencedirect.com/science/article/pii/S0925231215017385
http://www.sciencedirect.com/science/article/pii/S0925231215017385
http://www.sciencedirect.com/science/article/pii/S1077314215001368
http://www.sciencedirect.com/science/article/pii/S1077314215001368
http://www.sciencedirect.com/science/article/pii/S0925231215005925
http://www.sciencedirect.com/science/article/pii/S0925231215005925

Bibliography 241

[36] Junhwan Kim, Michael J. Pratt, Raj G. Iyer, and Ram D. Sriram. Standard-

ized data exchange of {CAD} models with design intent. Computer-Aided De-

sign, 40(7):760 – 777, 2008. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.

cad.2007.06.014. URL http://www.sciencedirect.com/science/article/pii/

S0010448507001625. Current State and Future of Product Data Technologies

(PDT).

[37] H. Tsige-Tamirat, U. Fischer, A. Serikov, and S. Stickel. Use of mccad for

the conversion of {ITER} {CAD} data to {MCNP} geometry. Fusion Engi-

neering and Design, 83(10-12):1771 – 1773, 2008. ISSN 0920-3796. doi: http:

//dx.doi.org/10.1016/j.fusengdes.2008.07.040. URL http://www.sciencedirect.

com/science/article/pii/S092037960800238X. Proceedings of the Eight Inter-

national Symposium of Fusion Nuclear Technology ISFNT-8 {SI}.

[38] Byung Chul Kim, Duhwan Mun, Soonhung Han, and Michael J. Pratt. A method

to exchange procedurally represented 2d {CAD} model data using {ISO} 10303

{STEP}. Computer-Aided Design, 43(12):1717 – 1728, 2011. ISSN 0010-4485. doi:

http://dx.doi.org/10.1016/j.cad.2011.07.006. URL http://www.sciencedirect.

com/science/article/pii/S0010448511001837.

[39] Sang-Uk Cheon, Byung Chul Kim, Duhwan Mun, and Soonhung Han. A procedural

method to exchange editable 3d data from a free-hand 2d sketch modeling system

into 3d mechanical {CAD} systems. Computer-Aided Design, 44(2):123 – 131,

2012. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.cad.2011.10.003. URL

http://www.sciencedirect.com/science/article/pii/S0010448511002624.

[40] J Whyte, N Bouchlaghem, A Thorpe, and R McCaffer. From {CAD} to virtual

reality: modelling approaches, data exchange and interactive 3d building design

tools. Automation in Construction, 10(1):43 – 55, 2000. ISSN 0926-5805. doi: http:

http://www.sciencedirect.com/science/article/pii/S0010448507001625
http://www.sciencedirect.com/science/article/pii/S0010448507001625
http://www.sciencedirect.com/science/article/pii/S092037960800238X
http://www.sciencedirect.com/science/article/pii/S092037960800238X
http://www.sciencedirect.com/science/article/pii/S0010448511001837
http://www.sciencedirect.com/science/article/pii/S0010448511001837
http://www.sciencedirect.com/science/article/pii/S0010448511002624

Bibliography 242

//dx.doi.org/10.1016/S0926-5805(99)00012-6. URL http://www.sciencedirect.

com/science/article/pii/S0926580599000126.

[41] V. Stamati, G. Antonopoulos, Ph. Azariadis, and I. Fudos. A parametric feature-

based approach to reconstructing traditional filigree jewelry. Computer-Aided De-

sign, 43(12):1814 – 1828, 2011. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.

cad.2011.07.002. URL http://www.sciencedirect.com/science/article/pii/

S0010448511001692.

[42] Sebastian Ochmann, Richard Vock, Raoul Wessel, and Reinhard Klein. Automatic

reconstruction of parametric building models from indoor point clouds. Computers

& Graphics, 54:94 – 103, 2016. ISSN 0097-8493. doi: http://dx.doi.org/10.1016/j.

cag.2015.07.008. URL http://www.sciencedirect.com/science/article/pii/

S0097849315001119. Special Issue on CAD/Graphics 2015.

[43] Jiju Peethambaran and Ramanathan Muthuganapathy. Reconstruction of

water-tight surfaces through delaunay sculpting. Computer-Aided Design, 58

(0):62 – 72, 2015. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.

cad.2014.08.021. URL http://www.sciencedirect.com/science/article/pii/

S0010448514001900. Solid and Physical Modeling 2014.

[44] M. Sevaux and Y. Mineur. A curve-fitting genetic algorithm for a styling ap-

plication. European Journal of Operational Research, 179(3):895 – 905, 2007.

ISSN 0377-2217. doi: http://dx.doi.org/10.1016/j.ejor.2005.03.065. URL http:

//www.sciencedirect.com/science/article/pii/S0377221705007642.

[45] Xiuyang Zhao, Caiming Zhang, Li Xu, Bo Yang, and Zhiquan Feng. Iga-based

point cloud fitting using b-spline surfaces for reverse engineering. Information Sci-

ences, 245(0):276 – 289, 2013. ISSN 0020-0255. doi: http://dx.doi.org/10.1016/

http://www.sciencedirect.com/science/article/pii/S0926580599000126
http://www.sciencedirect.com/science/article/pii/S0926580599000126
http://www.sciencedirect.com/science/article/pii/S0010448511001692
http://www.sciencedirect.com/science/article/pii/S0010448511001692
http://www.sciencedirect.com/science/article/pii/S0097849315001119
http://www.sciencedirect.com/science/article/pii/S0097849315001119
http://www.sciencedirect.com/science/article/pii/S0010448514001900
http://www.sciencedirect.com/science/article/pii/S0010448514001900
http://www.sciencedirect.com/science/article/pii/S0377221705007642
http://www.sciencedirect.com/science/article/pii/S0377221705007642

Bibliography 243

j.ins.2013.04.022. URL http://www.sciencedirect.com/science/article/pii/

S0020025513003198. Statistics with Imperfect Data.

[46] Chongyang Deng and Hongwei Lin. Progressive and iterative approximation for

least squares b-spline curve and surface fitting. Computer-Aided Design, 47(0):32 –

44, 2014. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.cad.2013.08.012. URL

http://www.sciencedirect.com/science/article/pii/S0010448513001528.

[47] Yuki Kineri, Mingsi Wang, Hongwei Lin, and Takashi Maekawa. B-spline surface

fitting by iterative geometric interpolation/approximation algorithms. Computer-

Aided Design, 44(7):697 – 708, 2012. ISSN 0010-4485. doi: http://dx.doi.

org/10.1016/j.cad.2012.02.011. URL http://www.sciencedirect.com/science/

article/pii/S0010448512000528.

[48] James Andrews and Carlo H. Sequin. Generalized, basis-independent kinematic

surface fitting. Computer-Aided Design, 45(3):615 – 620, 2013. ISSN 0010-4485. doi:

http://dx.doi.org/10.1016/j.cad.2012.10.047. URL http://www.sciencedirect.

com/science/article/pii/S0010448512002667.

[49] Edgar Janunts, Marc KannengieBer, and Achim Langenbucher. Parametric fit-

ting of corneal height data to a biconic surface. Zeitschrift fur Medizinis-

che Physik, 1(0):–, 2014. ISSN 0939-3889. doi: http://dx.doi.org/10.1016/j.

zemedi.2014.02.005. URL http://www.sciencedirect.com/science/article/

pii/S0939388914000324.

[50] N. Venkaiah and M.S. Shunmugam. Evaluation of form data using computational

geometric techniques-part ii: Cylindricity error. International Journal of Machine

Tools and Manufacture, 47(7–8):1237 – 1245, 2007. ISSN 0890-6955. doi: http://

dx.doi.org/10.1016/j.ijmachtools.2006.08.011. URL http://www.sciencedirect.

com/science/article/pii/S0890695506002069.

http://www.sciencedirect.com/science/article/pii/S0020025513003198
http://www.sciencedirect.com/science/article/pii/S0020025513003198
http://www.sciencedirect.com/science/article/pii/S0010448513001528
http://www.sciencedirect.com/science/article/pii/S0010448512000528
http://www.sciencedirect.com/science/article/pii/S0010448512000528
http://www.sciencedirect.com/science/article/pii/S0010448512002667
http://www.sciencedirect.com/science/article/pii/S0010448512002667
http://www.sciencedirect.com/science/article/pii/S0939388914000324
http://www.sciencedirect.com/science/article/pii/S0939388914000324
http://www.sciencedirect.com/science/article/pii/S0890695506002069
http://www.sciencedirect.com/science/article/pii/S0890695506002069

Bibliography 244

[51] A.M. Malyscheff, T.B. Trafalis, and S. Raman. From support vector machine

learning to the determination of the minimum enclosing zone. Computers and

Industrial Engineering, 42(1):59 – 74, 2002. ISSN 0360-8352. doi: http://dx.

doi.org/10.1016/S0360-8352(02)00003-7. URL http://www.sciencedirect.com/

science/article/pii/S0360835202000037.

[52] Tohru Kanada. Evaluation of spherical form errors-computation of sphericity by

means of minimum zone method and some examinations with using simulated

data. Precision Engineering, 17(4):281 – 289, 1995. ISSN 0141-6359. doi: http:

//dx.doi.org/10.1016/0141-6359(95)00017-8. URL http://www.sciencedirect.

com/science/article/pii/0141635995000178.

[53] Kenichi Kanatani and Yasuyuki Sugaya. Performance evaluation of iterative

geometric fitting algorithms. Computational Statistics and Data Analysis, 52

(2):1208 – 1222, 2007. ISSN 0167-9473. doi: http://dx.doi.org/10.1016/j.

csda.2007.05.013. URL http://www.sciencedirect.com/science/article/pii/

S0167947307002150.

[54] Simon Flory and Michael Hofer. Constrained curve fitting on manifolds. Computer-

Aided Design, 40(1):25 – 34, 2008. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/

j.cad.2007.01.012. URL http://www.sciencedirect.com/science/article/pii/

S0010448507000280. Constrained Design of Curves and Surfaces.

[55] Jun Wang and Zeyun Yu. Quadratic curve and surface fitting via squared dis-

tance minimization. Computers and Graphics, 35(6):1035 – 1050, 2011. ISSN

0097-8493. doi: http://dx.doi.org/10.1016/j.cag.2011.09.001. URL http://www.

sciencedirect.com/science/article/pii/S0097849311001464.

[56] Simon Flory and Michael Hofer. Surface fitting and registration of point clouds

using approximations of the unsigned distance function. Computer Aided Geometric

http://www.sciencedirect.com/science/article/pii/S0360835202000037
http://www.sciencedirect.com/science/article/pii/S0360835202000037
http://www.sciencedirect.com/science/article/pii/0141635995000178
http://www.sciencedirect.com/science/article/pii/0141635995000178
http://www.sciencedirect.com/science/article/pii/S0167947307002150
http://www.sciencedirect.com/science/article/pii/S0167947307002150
http://www.sciencedirect.com/science/article/pii/S0010448507000280
http://www.sciencedirect.com/science/article/pii/S0010448507000280
http://www.sciencedirect.com/science/article/pii/S0097849311001464
http://www.sciencedirect.com/science/article/pii/S0097849311001464

Bibliography 245

Design, 27(1):60 – 77, 2010. ISSN 0167-8396. doi: http://dx.doi.org/10.1016/j.

cagd.2009.09.001. URL http://www.sciencedirect.com/science/article/pii/

S0167839609000971.

[57] L. Pourkarimi, M.A. Yaghoobi, and M. Mashinchi. Efficient curve fitting: An

application of multiobjective programming. Applied Mathematical Modelling,

35(1):346 – 365, 2011. ISSN 0307-904X. doi: http://dx.doi.org/10.1016/j.

apm.2010.06.009. URL http://www.sciencedirect.com/science/article/pii/

S0307904X10002374.

[58] Charlie C.L. Wang and Gershon Elber. Multi-dimensional dynamic program-

ming in ruled surface fitting. Computer-Aided Design, 51(0):39 – 49, 2014.

ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.cad.2014.02.004. URL http:

//www.sciencedirect.com/science/article/pii/S0010448514000281.

[59] D. Chaudhuri and A. Samal. A simple method for fitting of bounding rectan-

gle to closed regions. Pattern Recognition, 40(7):1981 – 1989, 2007. ISSN 0031-

3203. doi: http://dx.doi.org/10.1016/j.patcog.2006.08.003. URL http://www.

sciencedirect.com/science/article/pii/S0031320306003530.

[60] Quan Wang and Kim L. Boyer. The active geometric shape model: A new ro-

bust deformable shape model and its applications. Computer Vision and Im-

age Understanding, 116(12):1178 – 1194, 2012. ISSN 1077-3142. doi: http:

//dx.doi.org/10.1016/j.cviu.2012.08.004. URL http://www.sciencedirect.com/

science/article/pii/S1077314212001154.

[61] Akemi Galvez and Andres Iglesias. Efficient particle swarm optimization approach

for data fitting with free knot -splines. Computer-Aided Design, 43(12):1683 – 1692,

2011. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.cad.2011.07.010. URL

http://www.sciencedirect.com/science/article/pii/S0010448511001874.

http://www.sciencedirect.com/science/article/pii/S0167839609000971
http://www.sciencedirect.com/science/article/pii/S0167839609000971
http://www.sciencedirect.com/science/article/pii/S0307904X10002374
http://www.sciencedirect.com/science/article/pii/S0307904X10002374
http://www.sciencedirect.com/science/article/pii/S0010448514000281
http://www.sciencedirect.com/science/article/pii/S0010448514000281
http://www.sciencedirect.com/science/article/pii/S0031320306003530
http://www.sciencedirect.com/science/article/pii/S0031320306003530
http://www.sciencedirect.com/science/article/pii/S1077314212001154
http://www.sciencedirect.com/science/article/pii/S1077314212001154
http://www.sciencedirect.com/science/article/pii/S0010448511001874

Bibliography 246

[62] Akemi Galvez and Andres Iglesias. Particle swarm optimization for non-uniform

rational b-spline surface reconstruction from clouds of 3d data points. Information

Sciences, 192(0):174 – 192, 2012. ISSN 0020-0255. doi: http://dx.doi.org/10.1016/

j.ins.2010.11.007. URL http://www.sciencedirect.com/science/article/pii/

S0020025510005529. Swarm Intelligence and Its Applications.

[63] Hongmei Kang, Falai Chen, Yusheng Li, Jiansong Deng, and Zhouwang Yang.

Knot calculation for spline fitting via sparse optimization. Computer-Aided De-

sign, 58(0):179 – 188, 2015. ISSN 0010-4485. doi: http://dx.doi.org/10.1016/j.

cad.2014.08.022. URL http://www.sciencedirect.com/science/article/pii/

S0010448514001912. Solid and Physical Modeling 2014.

[64] Emilio Carrizosa and Dolores Romero Morales. Supervised classification and math-

ematical optimization. Computers and Operations Research, 40(1):150 – 165,

2013. ISSN 0305-0548. doi: http://dx.doi.org/10.1016/j.cor.2012.05.015. URL

http://www.sciencedirect.com/science/article/pii/S0305054812001190.

[65] Yang Liu and Masatoshi Shimoda. Non-parametric shape optimization method

for natural vibration design of stiffened shells. Computers and Structures, 146

(0):20 – 31, 2015. ISSN 0045-7949. doi: http://dx.doi.org/10.1016/j.compstruc.

2014.08.003. URL http://www.sciencedirect.com/science/article/pii/

S0045794914001850.

[66] Sahibsingh A. Dudani, Kenneth J. Breeding, and R.B. McGhee. Aircraft identifi-

cation by moment invariants. Computers, IEEE Transactions on, C-26(1):39–46,

Jan 1977. ISSN 0018-9340. doi: 10.1109/TC.1977.5009272.

[67] Feng Zhang, Shang qian Liu, Da bao Wang, and Wei Guan. Aircraft recogni-

tion in infrared image using wavelet moment invariants. Image and Vision Com-

puting, 27(4):313 – 318, 2009. ISSN 0262-8856. doi: http://dx.doi.org/10.1016/

http://www.sciencedirect.com/science/article/pii/S0020025510005529
http://www.sciencedirect.com/science/article/pii/S0020025510005529
http://www.sciencedirect.com/science/article/pii/S0010448514001912
http://www.sciencedirect.com/science/article/pii/S0010448514001912
http://www.sciencedirect.com/science/article/pii/S0305054812001190
http://www.sciencedirect.com/science/article/pii/S0045794914001850
http://www.sciencedirect.com/science/article/pii/S0045794914001850

Bibliography 247

j.imavis.2008.08.007. URL http://www.sciencedirect.com/science/article/

pii/S0262885608001807.

[68] Jan Flusser, Tomas Suk, and Barbara Zitova. Moments and Moment Invariants in

Pattern Recognition. John Wiley & Sons, Ltd, 2009. ISBN 9780470684757. doi:

10.1002/9780470684757.ch2. URL http://dx.doi.org/10.1002/9780470684757.

ch2.

[69] Yiliang Zeng, Jinhui Lan, Chuanzhao Han, Kewei Huang, Jiehui Li, and Xuefei

Shi. Aircraft recognition based on improved iterative threshold selection and skele-

ton zernike moment. Optik - International Journal for Light and Electron Optics,

125(14):3733 – 3737, 2014. ISSN 0030-4026. doi: http://dx.doi.org/10.1016/j.

ijleo.2014.01.135. URL http://www.sciencedirect.com/science/article/pii/

S003040261400309X.

[70] U.H. Augsdorfer, N.A. Dodgson, and M.A. Sabin. Artifact analysis on b-splines,

box-splines and other surfaces defined by quadrilateral polyhedra. Computer Aided

Geometric Design, 28(3):177 – 197, 2011. ISSN 0167-8396. doi: http://dx.doi.

org/10.1016/j.cagd.2010.04.002. URL http://www.sciencedirect.com/science/

article/pii/S0167839610000397.

[71] INFORMS Computing Society. The nature of mathematical program-

ming. Mathematical Programming Glossary, 2010. URL http://glossary.

computing.society.informs.org/ver2/mpgwiki/index.php?title=Extra:

Mathematical_programming.

[72] Matthias Ehrgott. Multicriteria optimization. Birkhauser, 2012.

[73] David A. Van Veldhuisen Carlos A. Coello Coello, Gary B. Lamont. Evolutionary

algorithms for solving multi-objective problems. Springer, 2012.

http://www.sciencedirect.com/science/article/pii/S0262885608001807
http://www.sciencedirect.com/science/article/pii/S0262885608001807
http://dx.doi.org/10.1002/9780470684757.ch2
http://dx.doi.org/10.1002/9780470684757.ch2
http://www.sciencedirect.com/science/article/pii/S003040261400309X
http://www.sciencedirect.com/science/article/pii/S003040261400309X
http://www.sciencedirect.com/science/article/pii/S0167839610000397
http://www.sciencedirect.com/science/article/pii/S0167839610000397
http://glossary.computing.society.informs.org/ver2/mpgwiki/index.php?title=Extra:Mathematical_programming
http://glossary.computing.society.informs.org/ver2/mpgwiki/index.php?title=Extra:Mathematical_programming
http://glossary.computing.society.informs.org/ver2/mpgwiki/index.php?title=Extra:Mathematical_programming

Bibliography 248

[74] Ching-Lai Hwang and Abu Syed Md Masud. Multiple objective decision making,

methods and applications: a state-of-the-art survey. Springer-Verlag, 2012. ISBN

978-0-387-09111-2.

[75] Gerhard Venter. Review of optimization techniques. Research Gate, 2010.

[76] Jussi Hakanen. Introduction to unconstrained optimization - gradient-based meth-

ods, 2014. URL http://users.jyu.fi/~jhaka/opt/TIES483_unconstrained_

gradient2.pdf.

[77] Banzhaf Wolfgang, Nordin Peter, Keller Robert, and Francone Frank. Genetic

Programming ? An Introduction. Morgan Kaufmann, 1998. ISBN 978-1558605107.

[78] Lin Wang, Bo Yang, and Jeff Orchard. Particle swarm optimization using dy-

namic tournament topology. Applied Soft Computing, 48:584 – 596, 2016. ISSN

1568-4946. doi: http://dx.doi.org/10.1016/j.asoc.2016.07.041. URL http://www.

sciencedirect.com/science/article/pii/S1568494616303763.

[79] Yudong Zhang, Shuihua Wang, , and Genlin Ji. A comprehensive survey on par-

ticle swarm optimization algorithm and its applications. Mathematical Problems

in Engineering, 2015:38, 2015. doi: http://dx.doi.org/10.1155/2015/931256. URL

http://dx.doi.org/10.1155/2015/931256.

[80] John McCullock. Introduction to the particle swarm optimization, 2012. URL

http://mnemstudio.org/particle-swarm-introduction.htm.

[81] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.

Science, 220:671–680, 1983.

[82] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller.

Equation of state calculations by fast computing machines. J. Chem. Phys., 21:

1087–1092, 1953.

http://users.jyu.fi/~jhaka/opt/TIES483_unconstrained_gradient2.pdf
http://users.jyu.fi/~jhaka/opt/TIES483_unconstrained_gradient2.pdf
http://www.sciencedirect.com/science/article/pii/S1568494616303763
http://www.sciencedirect.com/science/article/pii/S1568494616303763
http://dx.doi.org/10.1155/2015/931256
http://mnemstudio.org/particle-swarm-introduction.htm

Bibliography 249

[83] Yinglong Wang, Guangle Bu, Yongkun Wang, Tingran Zhao, Zhen Zhang, and

Zhaoyou Zhu. Application of a simulated annealing algorithm to design and

optimize a pressure-swing distillation process. Computers & Chemical Engi-

neering, 95:97 – 107, 2016. ISSN 0098-1354. doi: http://dx.doi.org/10.1016/

j.compchemeng.2016.09.014. URL http://www.sciencedirect.com/science/

article/pii/S0098135416303003.

[84] Granville V., Krivanek M., and Rasson. Simulated annealing: A proof of conver-

gence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6):

652?656, 1994. doi: doi:10.1109/34.295910.

[85] Xuewu Du, Peng Zhang, and Wenya Ma. Some modified conjugate gradient meth-

ods for unconstrained optimization. Journal of Computational and Applied Math-

ematics, 305:92 – 114, 2016. ISSN 0377-0427. doi: http://dx.doi.org/10.1016/j.

cam.2016.04.004. URL http://www.sciencedirect.com/science/article/pii/

S0377042716301686.

[86] Yaohua Hu, Xiaoqi Yang, and Chee-Khian Sim. Inexact subgradient methods

for quasi-convex optimization problems. European Journal of Operational Re-

search, 240(2):315 – 327, 2015. ISSN 0377-2217. doi: http://dx.doi.org/10.1016/j.

ejor.2014.05.017. URL http://www.sciencedirect.com/science/article/pii/

S037722171400424X.

[87] Armin Ataei and Qian Wang. A probabilistic ellipsoid algorithm for linear optimiza-

tion problems with uncertain {LMI} constraints. Automatica, 52:248 – 254, 2015.

ISSN 0005-1098. doi: http://dx.doi.org/10.1016/j.automatica.2014.11.010. URL

http://www.sciencedirect.com/science/article/pii/S000510981400569X.

http://www.sciencedirect.com/science/article/pii/S0098135416303003
http://www.sciencedirect.com/science/article/pii/S0098135416303003
http://www.sciencedirect.com/science/article/pii/S0377042716301686
http://www.sciencedirect.com/science/article/pii/S0377042716301686
http://www.sciencedirect.com/science/article/pii/S037722171400424X
http://www.sciencedirect.com/science/article/pii/S037722171400424X
http://www.sciencedirect.com/science/article/pii/S000510981400569X

Bibliography 250

[88] J. Sobieszczanski-Sobieski and R.T. Haftka. Multidisciplinary aerospace design

optimization: survey of recent developments. Struct. Multidiscip. Optim., 14(1):

1–23, 1997.

[89] Shuangcheng Sun, Hong Qi, Fangzhou Zhao, Liming Ruan, and Bingxi Li. Inverse

geometry design of two-dimensional complex radiative enclosures using krill herd

optimization algorithm. Applied Thermal Engineering, 98:1104 – 1115, 2016. ISSN

1359-4311. doi: http://dx.doi.org/10.1016/j.applthermaleng.2016.01.017. URL

http://www.sciencedirect.com/science/article/pii/S1359431116000727.

[90] Zhenyu Yang, B. Sendhoff, Ke Tang, and Xin Yao. Target shape design opti-

mization by evolving b-splines with cooperative coevolution. Applied Soft Com-

puting, 48:672 – 682, 2016. ISSN 1568-4946. doi: http://dx.doi.org/10.1016/j.

asoc.2016.07.027. URL http://www.sciencedirect.com/science/article/pii/

S1568494616303532.

[91] S. Shaaban. Aero-economical optimization of wells turbine rotor geometry. Energy

Conversion and Management, 126:20 – 31, 2016. ISSN 0196-8904. doi: http://dx.

doi.org/10.1016/j.enconman.2016.07.068. URL http://www.sciencedirect.com/

science/article/pii/S019689041630646X.

[92] Paola Boito and Roberto Grena. Optimization of the geometry of fresnel linear

collectors. Solar Energy, 135:479 – 486, 2016. ISSN 0038-092X. doi: http://

dx.doi.org/10.1016/j.solener.2016.05.060. URL http://www.sciencedirect.com/

science/article/pii/S0038092X16301785.

[93] Xiaobin Cui, Jingxia Guo, and Jianxin Zheng. Optimization of geometry parame-

ters for ceramic cutting tools in intermittent turning of hardened steel. Materials

& Design, 92:424 – 437, 2016. ISSN 0264-1275. doi: http://dx.doi.org/10.1016/

http://www.sciencedirect.com/science/article/pii/S1359431116000727
http://www.sciencedirect.com/science/article/pii/S1568494616303532
http://www.sciencedirect.com/science/article/pii/S1568494616303532
http://www.sciencedirect.com/science/article/pii/S019689041630646X
http://www.sciencedirect.com/science/article/pii/S019689041630646X
http://www.sciencedirect.com/science/article/pii/S0038092X16301785
http://www.sciencedirect.com/science/article/pii/S0038092X16301785

Bibliography 251

j.matdes.2015.12.089. URL http://www.sciencedirect.com/science/article/

pii/S0264127515309473.

[94] Saeed Eini, Hamid Reza Shahhosseini, Majid Javidi, Mahdi Sharifzadeh, and

Davood Rashtchian. Inherently safe and economically optimal design using multi-

objective optimization: The case of a refrigeration cycle. Process Safety and

Environmental Protection, 104, Part A:254 – 267, 2016. ISSN 0957-5820. doi:

http://dx.doi.org/10.1016/j.psep.2016.09.010. URL http://www.sciencedirect.

com/science/article/pii/S0957582016302099.

[95] Nader Azad, Elkafi Hassini, and Manish Verma. Disruption risk management in

railroad networks: An optimization-based methodology and a case study. Trans-

portation Research Part B: Methodological, 85:70 – 88, 2016. ISSN 0191-2615. doi:

http://dx.doi.org/10.1016/j.trb.2016.01.001. URL http://www.sciencedirect.

com/science/article/pii/S0191261516000059.

[96] Matt Thompson. Natural gas storage valuation, optimization, market and credit

risk management. Journal of Commodity Markets, pages –, 2016. ISSN 2405-

8513. doi: http://dx.doi.org/10.1016/j.jcomm.2016.07.004. URL http://www.

sciencedirect.com/science/article/pii/S2405851315300167.

[97] Giovanni Margarido Righetto, Reinaldo Morabito, and Douglas Alem. A ro-

bust optimization approach for cash flow management in stationery companies.

Computers & Industrial Engineering, 99:137 – 152, 2016. ISSN 0360-8352. doi:

http://dx.doi.org/10.1016/j.cie.2016.07.010. URL http://www.sciencedirect.

com/science/article/pii/S0360835216302352.

[98] Carlos Gamarra and Josep M. Guerrero. Computational optimization techniques

applied to microgrids planning: A review. Renewable and Sustainable Energy

Reviews, 48:413 – 424, 2015. ISSN 1364-0321. doi: http://dx.doi.org/10.1016/j.

http://www.sciencedirect.com/science/article/pii/S0264127515309473
http://www.sciencedirect.com/science/article/pii/S0264127515309473
http://www.sciencedirect.com/science/article/pii/S0957582016302099
http://www.sciencedirect.com/science/article/pii/S0957582016302099
http://www.sciencedirect.com/science/article/pii/S0191261516000059
http://www.sciencedirect.com/science/article/pii/S0191261516000059
http://www.sciencedirect.com/science/article/pii/S2405851315300167
http://www.sciencedirect.com/science/article/pii/S2405851315300167
http://www.sciencedirect.com/science/article/pii/S0360835216302352
http://www.sciencedirect.com/science/article/pii/S0360835216302352

Bibliography 252

rser.2015.04.025. URL http://www.sciencedirect.com/science/article/pii/

S1364032115002956.

[99] Masoud Zebarjadi and Alireza Askarzadeh. Optimization of a reliable grid-

connected pv-based power plant with/without energy storage system by a heuris-

tic approach. Solar Energy, 125:12 – 21, 2016. ISSN 0038-092X. doi: http://

dx.doi.org/10.1016/j.solener.2015.11.045. URL http://www.sciencedirect.com/

science/article/pii/S0038092X15006684.

[100] G. Mendes, C. Ioakimidis, and P. Ferrao. On the planning and analysis of integrated

community energy systems: a review and survey of available tools. Renew Sustain

Energy Rev., 15:4836?4854, 2011.

[101] Vafaei M and Kazerani M. Optimal unit-sizing of a wind-hydrogen-diesel microgrid

system for a remote community. 2011 IEEE Trondheim PowerTech, page 1?7, 2011.

[102] N. Augustine and S. Suresh. Economic dispatch for a microgrid considering renew-

able energy cost functions. Innov Smart Grid, page 1?7, 2012.

[103] D. E. Olivares, C. A. Canizares, and M. Kazerani. A centralized energy management

system for isolated microgrids. IEEE Transactions on Smart Grid, 5(4):1864–1875,

July 2014. ISSN 1949-3053. doi: 10.1109/TSG.2013.2294187.

[104] Hong K. Lo and Anthony Chen. Traffic equilibrium problem with route-specific

costs: formulation and algorithms. Transportation Research, Part B:493–513, 2000.

[105] Fausto Saleri Alfio Quarteroni and Paola Gervasio. Scientific computing with MAT-

LAB and Octave. Springer, 2010. ISBN 978-3-642-45366-3.

[106] Griewank A and Walther A. Evaluating Derivatives: Principles and Techniques of

Algorithmic Differentiation. SIAM, 2008. ISBN 978-0898716597.

http://www.sciencedirect.com/science/article/pii/S1364032115002956
http://www.sciencedirect.com/science/article/pii/S1364032115002956
http://www.sciencedirect.com/science/article/pii/S0038092X15006684
http://www.sciencedirect.com/science/article/pii/S0038092X15006684

Bibliography 253

[107] Bechir Dali, Chong Li, and Jinhua Wang. Local convergence of newton’s method

on the heisenberg group. Journal of Computational and Applied Mathemat-

ics, 300:217 – 232, 2016. ISSN 0377-0427. doi: http://dx.doi.org/10.1016/j.

cam.2015.12.025. URL http://www.sciencedirect.com/science/article/pii/

S0377042715006378.

[108] Samir Adly, Huynh Van Ngai, and Van Vu Nguyen. Newton’s method for solving

generalized equations: Kantorovich’s and smale’s approaches. Journal of Mathe-

matical Analysis and Applications, 439(1):396 – 418, 2016. ISSN 0022-247X. doi:

http://dx.doi.org/10.1016/j.jmaa.2016.02.047. URL http://www.sciencedirect.

com/science/article/pii/S0022247X16001815.

[109] Anton Evgrafov. State space newton’s method for topology optimization. Com-

puter Methods in Applied Mechanics and Engineering, 278:272 – 290, 2014. ISSN

0045-7825. doi: http://dx.doi.org/10.1016/j.cma.2014.06.005. URL http://www.

sciencedirect.com/science/article/pii/S004578251400190X.

[110] Ailei Lang, Zhanjie Song, Gaiyun He, and Yicun Sang. Profile error evalua-

tion of free-form surface using sequential quadratic programming algorithm. Pre-

cision Engineering, 47:344 – 352, 2017. ISSN 0141-6359. doi: http://dx.doi.

org/10.1016/j.precisioneng.2016.09.008. URL http://www.sciencedirect.com/

science/article/pii/S0141635916302264.

[111] Emil Klintberg and Sebastien Gros. An inexact interior point method for op-

timizatioon of differential algebraic systems. Computers & Chemical Engineer-

ing, 92:163 – 171, 2016. ISSN 0098-1354. doi: http://dx.doi.org/10.1016/

j.compchemeng.2016.04.013. URL http://www.sciencedirect.com/science/

article/pii/S0098135416301090.

http://www.sciencedirect.com/science/article/pii/S0377042715006378
http://www.sciencedirect.com/science/article/pii/S0377042715006378
http://www.sciencedirect.com/science/article/pii/S0022247X16001815
http://www.sciencedirect.com/science/article/pii/S0022247X16001815
http://www.sciencedirect.com/science/article/pii/S004578251400190X
http://www.sciencedirect.com/science/article/pii/S004578251400190X
http://www.sciencedirect.com/science/article/pii/S0141635916302264
http://www.sciencedirect.com/science/article/pii/S0141635916302264
http://www.sciencedirect.com/science/article/pii/S0098135416301090
http://www.sciencedirect.com/science/article/pii/S0098135416301090

Bibliography 254

[112] Ji-Feng Bao, Chong Li, Wei-Ping Shen, Jen-Chih Yao, and Sy-Ming Guu. Approxi-

mate gauss-newton methods for solving underdetermined nonlinear least squares

problems. Applied Numerical Mathematics, 111:92 – 110, 2017. ISSN 0168-

9274. doi: http://dx.doi.org/10.1016/j.apnum.2016.08.007. URL http://www.

sciencedirect.com/science/article/pii/S016892741630157X.

[113] D.W. Marquardt. An algorithm for least squares estimation of nonlinear parame-

ters. SIAM Journal, 11:431–441, 1963.

[114] Jorge Nocedal and Stephen J. Wright. Numerical optimization, 1999.

[115] Mohammad Modarres and Ehsan Izadpanahi. Aggregate production planning by

focusing on energy saving: A robust optimization approach. Journal of Cleaner Pro-

duction, 133:1074 – 1085, 2016. ISSN 0959-6526. doi: http://dx.doi.org/10.1016/

j.jclepro.2016.05.133. URL http://www.sciencedirect.com/science/article/

pii/S0959652616306059.

[116] Xing Shi, Zhichao Tian, Wenqiang Chen, Binghui Si, and Xing Jin. A review on

building energy efficient design optimization rom the perspective of architects. Re-

newable and Sustainable Energy Reviews, 65:872 – 884, 2016. ISSN 1364-0321. doi:

http://dx.doi.org/10.1016/j.rser.2016.07.050. URL http://www.sciencedirect.

com/science/article/pii/S136403211630377X.

[117] Shengwei Wang and Zhenjun Ma. Supervisory and optimal control of building

hvac systems: A review. HVAC&R Research, 14(1):3–32, 2008. doi: 10.1080/

10789669.2008.10390991. URL http://www.tandfonline.com/doi/abs/10.1080/

10789669.2008.10390991.

http://www.sciencedirect.com/science/article/pii/S016892741630157X
http://www.sciencedirect.com/science/article/pii/S016892741630157X
http://www.sciencedirect.com/science/article/pii/S0959652616306059
http://www.sciencedirect.com/science/article/pii/S0959652616306059
http://www.sciencedirect.com/science/article/pii/S136403211630377X
http://www.sciencedirect.com/science/article/pii/S136403211630377X
http://www.tandfonline.com/doi/abs/10.1080/10789669.2008.10390991
http://www.tandfonline.com/doi/abs/10.1080/10789669.2008.10390991

Bibliography 255

[118] Congbo Li, Qinge Xiao, Ying Tang, and Li Li. A method integrating taguchi,

{RSM} and {MOPSO} to {CNC} machining parameters optimization for en-

ergy saving. Journal of Cleaner Production, 135:263 – 275, 2016. ISSN 0959-

6526. doi: http://dx.doi.org/10.1016/j.jclepro.2016.06.097. URL http://www.

sciencedirect.com/science/article/pii/S0959652616307740.

[119] E.T. Lau, Q. Yang, G.A. Taylor, A.B. Forbes, P.S. Wright, and V.N. Livina.

Optimisation of costs and carbon savings in relation to the economic dispatch

problem as associated with power system operation. Electric Power Systems Re-

search, 140:173 – 183, 2016. ISSN 0378-7796. doi: http://dx.doi.org/10.1016/j.

epsr.2016.06.025. URL http://www.sciencedirect.com/science/article/pii/

S0378779616302334.

[120] OConnor John J., Robertson Edmund F., and August Ferdinand Mobius. Mactutor

history of mathematics archive, 1997.

[121] J.F. Dannenhoffer and R. Haimes. Design sensitivity calculations directly on cad-

based geometry. Technical Report AIAA-2015-1370, 53rd AIAA Aerospace Sciences

Meeting, 2015.

[122] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes in C, The are of scientific computing. Cambridge University

Press, 1988. ISBN 0-521-35465-X.

[123] Ira H. Abbott and Albert E. Von Doenhoff. Theory of wing sections, including a

summary of airfoil data. Dover Publications Inc., 1949. ISBN 486-60586-8.

[124] Robert Haimes and John F. Dannenhoffer. The engineering sketch pad: A solid-

modeling, feature-based, web-enabled system for building parametric geometry.

AIAA, 3073, 2013.

http://www.sciencedirect.com/science/article/pii/S0959652616307740
http://www.sciencedirect.com/science/article/pii/S0959652616307740
http://www.sciencedirect.com/science/article/pii/S0378779616302334
http://www.sciencedirect.com/science/article/pii/S0378779616302334

Bibliography 256

[125] John F. Dannenhoffer and Robert Haimes. Design sensitivity calculations directly

on cad-based geometry. AIAA, 1370, 2015.

[126] John F. Dannenhoffer. Opencsm: An open-source constructive solid modeler for

mdao. AIAA, 0701, 2013.

PENGCHENG JIA Phone:	 (315)	 887	 0889	 	
Email:	 jpengcheng@yahoo.com	 	
Address:	 238	 Link	 Hall,	 Syracuse	 University,	 NY13244	

SUMMARY

● Ph.D.	 in	 Mechanical	 Engineering	 with	 5	 years	 optimization,	 computational	 fluid	 dynamic	 and	
energy	 experiences	 	

● M.Sc.	 in	 Computer	 Science	 with	 3	 years	 algorithm,	 artificial	 intelligence	 and	 software	
development	 experience	

● M.Sc.	 in	 Engineering	 Thermo	 Physics	 with	 2	 years	 power	 plant	 operation,	 combustion	 and	
heat	 transfer	 analysis	 experience	

● B.Sc.	 in	 Heating	 and	 Dynamics	 Engineering	 with	 4	 years	 HVAC,	 refrigeration	 and	 heat	 transfer	
experience.	

● 3	 years	 geometry	 modeling,	 CFD	 and	 optimization	 experience	 for	 AIR	 FORCE	 RESEARCH	
LABORATORY	

● 2	 years	 automotive	 product	 (IC	 engine)	 energy	 efficiency	 and	 calibration	 experience	 at	 BEIQI	
FOTON	 MOTOR	 CO.	

● Published	 7	 papers	 in	 the	 optimization,	 geometry	 modeling,	 combustion	 and	 heat	 transfer	
related	 areas.	
	

EDUCATION

● Ph.D.	 in	 Mechanical	 and	 Aerospace	 Engineering	 	 	 	 	 	 SYRACUSE	 UNIVERSITY,	 US	 	 	 2017	
	 	 	 	 	 	 	 	 Concentration:	 Geometry	 Modeling;	 Reverse	 Engineering;	 CFD;	 Optimization	
● M.Sc.	 in	 Computer	 Science	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 SYRACUSE	 UNIVERSITY,	 US	 	 In	 Progress	
	 	 	 	 	 	 	 	 Concentration:	 Algorithm	 Design,	 Artificial	 Intelligence	 and	 Machine	 Learning	 	
● M.Sc.	 in	 Engineering	 Thermo	 Physics	 	 	 	 	 	 	 	 	 	 	 	 BEIJING	 JIAOTONG	 UNIVERSITY,	 CHINA	 	 2012	
	 	 	 	 	 	 	 	 Concentration:	 Heat	 Pump	 Design,	 IC	 Engine,	 Heat	 Transfer	 and	 Energy	 Conservation	 	
● B.Sc.	 in	 Heat	 and	 Dynamics	 Engineering	 	 	 TIANJIN	 UNIVERSITY	 OF	 COMMERCE,	 CHINA	 2010	
	 	 	 	 	 	 	 	 Concentration:	 HVAC,	 Refrigeration	 System,	 Thermodynamics	 and	 Heat	 Transfer	
	

PROFESSIONAL EXPERIENCE

AIR	 FORCE	 RESEARCH	 LAB	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Syracuse	 University	 –	 Syracuse,	 NY	 –	 Aug.	 13	 –	 Dec	 16	
Research	 Assistant	 	

● Developed	 the	 artificial	 intelligence	 algorithms	 for	 generating	 parametric	 model	 from	 a	 cloud	
of	 points	 (Geometry	 Modeling)	

● Analyzed	 and	 improved	 the	 optimization/search	 algorithm	 that	 is	 used	 for	 large	 data	 mining	
(Nonlinear	 Regression)	

● Analyzed	 and	 developed	 the	 classification	 algorithm	 for	 multiple-‐component	 geometry	
generation	 (Reverse	 Engineering)	

● Developed	 geometry	 generation	 program	 for	 Engineering	 Sketch	 Pad	 (CAD/CAE	 software)	 in	
C/Java	

● Developed	 the	 sparse	 techniques	 for	 solving	 the	 large	 linear	 equations.	

SYRACUSE	 UNIVERSITY	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Syracuse,	 NY	 -‐	 Aug.	 12	 -‐	 May	 16	
Teaching	 Assistant	
● Assisted	 teaching	 three	 Mechanical	 Engineering	 courses	 in	 Syracuse	 University,	 which	 were	

Statics,	 Dynamics,	 and	 Thermodynamics.	
● Graded	 the	 homework	 for	 the	 whole	 class	 (140	 students)	 twice	 per	 week	 and	 made	 solutions	

for	 students	 	
● Provided	 recitations	 for	 reviewing	 the	 lecture,	 discussing	 the	 exercise	 and	 answering	

questions	 for	 all	 courses	 listed	 above	 	

BEIQI	 FOTON	 MOTOR	 CO.	 	 	 	 	 	 Beijing	 Jiaotong	 University	 -‐	 Beijing,	 China	 –	 Oct.	 10	 –	 Aug.	 12	
Research	 Assistant	 &	 Calibration	 Engineer	
● Analyzed	 the	 characteristics	 of	 pressure	 fluctuation	 in	 common	 rail	 of	 diesel	 engines	 by	

Fluent	 (Fuel	 Injection	 System,	 CFD)	
● Analyzed	 the	 performances	 of	 IC	 engines	 and	 model	 based	 control	 design	 (MBD)	 for	 ignition	

strategies	 system	 (Ignition	 System)	 	
● Collected	 and	 analyzed	 the	 data	 of	 engine	 (BENCH	 &	 OBD),	 via	 Measure	 Data	 Analyzer	 (MDA)	

in	 INCA	 (Calibration)	
● Optimized	 the	 engine	 control	 algorithms	 (ECS)	 to	 improve	 the	 combustion	 efficiency	 in	 the	

cylinders,	 via	 MATLAB/Simulink	 (MBD)	

DATANG	 INTL	 POWER	 GENERATIONAL	 CO.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Beijing,	 China	 –	 Oct.	 10	 –	 Aug.	 11	
Research	 Assistant	 	
● Analyzed	 the	 effects	 of	 flow	 velocity,	 voltage	 and	 specific	 resistance	 on	 droplet	 mass	

concentration	 distribution	 (CFD)	
● Compared	 the	 defogging	 performance	 during	 applying	 the	 DC	 and	 AC	 voltages	
● Analyzed	 the	 priority	 of	 impact	 for	 voltage,	 flow	 velocity	 and	 specific	 resistance	 on	 defogging	

efficiency	 	

CHINA	 ACADEMY	 OF	 RAILWAY	 SCIENCES	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Beijing,	 China	 –	 Oct.	 10	 –	 Aug.	 11	
Research	 Assistant	 	

● Developed	 a	 model	 of	 how	 the	 geothermal	 load	 affects	 ground	 temperature	 recovery.	
● Developed	 a	 3D	 coupled	 Finite	 Element	 Model	 (FEM)	 for	 a	 vertical	 geothermal	 heat	

exchanger.	
● Developed	 a	 monitor	 and	 evaluation	 system	 for	 the	 geothermal	 heat	 pump	 applied	 into	

railway	 stations.	

GARRISON	 COMMAND	 OF	 TIANJIN	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Tianjin,	 China	 -‐	 Oct.	 09	 -‐	 Jul.	 10	
HVAC	 System	 Designer	

● Designed	 the	 structure	 and	 the	 piping	 system	 of	 HVAC,	 and	 calculated	 the	 hydraulic	
diameter	 for	 each	 pipe.	

● Developed	 a	 prediction	 model	 of	 HAVC	 load	 for	 the	 individual	 building	 management	 system	

(BMS)	
● Simulated	 the	 heat	 flow	 and	 energy	 efficiency	 for	 the	 whole	 building	 by	 CFD	 (Fluent)	

	

PUBLICATION & PAPERS

● Generation	 of	 Parametric	 Aircraft	 Models	 from	 a	 Cloud	 of	 Points	 (via	 optimization	
methods)	

	 	 	 	 	 	 	 54rd	 AIAA	 Aerospace	 Sciences	 Conference,	 2015	
● Combustion	 Characteristics	 of	 Natural	 Gas	 in	 High	 Temperature	 and	 Oxygen-‐rich	 Condition	 	
	 	 	 	 	 	 	 Engineering	 Thermo	 physics	 Conference,	 2013	
● Combustion	 Characteristics	 of	 Gas	 at	 High-‐temperature	 and	 Rich-‐oxygen	 Conditions:	

Modeling	 and	 Experiment	 (design	 and	 setup	 the	 experiment	 control	 system)	
	 	 	 	 	 	 	 Master	 Thesis	 in	 Beijing	 Jiaotong	 University,	 2012	
● Probability	 of	 Electric	 Vehicle	 Promotion	 and	 Improvement	 of	 Electricity	 Generation	

Structure	 (via	 optimization	 methods)	
	 	 	 	 	 	 	 Honorable	 Mention	 Paper	 in	 Interdisciplinary	 Contest	 in	 Modeling,	 2011	
● Influence	 of	 the	 Wind	 Break	 Wall	 Structures	 upon	 Fluid	 Dynamic	 in	 Direct	 Air	 Cooled	

System	
	 	 	 	 	 	 	 Journal	 of	 Beijing	 Jiaotong	 University,	 2012	 	
● Characteristics	 of	 Radiation	 Heat	 Transfer	 of	 Typical	 Biomass	 Burning	 in	 Furnace	 	
	 	 	 	 	 	 	 Journal	 of	 Engineering	 Thermo	 physics,	 2011	
● Heat	 Transfer	 Characteristics	 of	 Coke	 Oven	 Gas	 Combustion	 in	 the	 Glass	 Melting	 Furnace	 	

Engineering	 Thermo	 physics	 Conference,	 2012	
	

TECHNICAL SKILLS

● HVAC	
● I.C.	 Engine	
● Fluent	 &	 Star-‐CD	
● Artificial	 Intelligence	

● Computer	 Graphics/	 OpenGL	
● Algorithm	 &	 Data	 structure	
● Operating	 System	 	
● Heat	 Transfer	

● C	 &	 C++	 Programming	
● MATLAB	 &	 Simulink	
● Python	 &	 Java	
● FEA	 &	 CFD	

	

	FITTING A PARAMETRIC MODEL TO A CLOUD OF POINTS VIA OPTIMIZATION METHODS
	Recommended Citation

	tmp.1503506527.pdf.Fng1q

