5 research outputs found

    On the adaptive controls of nonlinear systems with different hysteresis model representations

    Get PDF
    The hysteresis phenomenon occurs in diverse disciplines ranging from physics to biology, from material science to mechanics, and from electronics to economics. When the hysteresis nonlinearity precedes a controlled system, the nonlinearity usually causes the overall closed-loop system to exhibit inaccuracies or oscillations, even leading to instability. Control techniques to mitigate the unwanted effects of hysteresis have been studied for decades and have recently once again attracted significant attention. In this thesis, several adaptive control strategies are developed for systems with different hysteresis model representations to guarantee the basic stability requirement of the closed-loop systems and to track a desired trajectory with a certain precision. These proposed strategies to mitigate the effects of hysteresis are as follows: i). With the classical Duhem model, an observer-based adaptive control scheme for a piezoelectric actuator system is proposed. Due to the unavailability of the hysteresis output, an observer-based adaptive controller incorporating a pre-inversion neural network compensator is developed for the purpose of mitigating the hysteretic effects; ii). With the Prandtl-Ishlinskii model, an adaptive tracking control approach is developed for a class of nonlinear systems in p-normal form by using the technique of adding a power integrator to address the challenge of how to fuse this hysteresis model with the control techniques to mitigate hysteresis, without necessarily constructing a hysteresis inverse; iii). With a newly proposed hysteresis model using play-like operators, two control strategies are proposed for a class of nonlinear systems: one with sliding mode control and the other with backstepping technique

    Robusno adaptivno upravljanje istosmjernim servomotorom s nelinearnom širokom zračnosti

    Get PDF
    In this paper, the problem of driving angular position of a direct current servomotor system with unmodeled wide backlash nonlinearity is addressed. In order to tackle this problem, a control scheme based on an adaptive super twisting algorithm is proposed. In order to implement the proposed controller, information about angular velocity is estimated by means of a robust differentiator. Based on a simplified model of the system, the proposed scheme increases robustness against unmodeled dynamics as backlash, as not all the parameters of the system nor the bounds of the perturbations are required to be known. Experimental results considering a wide backlash angle near to 2*PI, illustrate the feasibility and performance of the proposed control methodology.U ovom radu bavi se problemom kutnog pozicioniranja istosmjernog sevomotora s nemodeliranom nelinearnošću široke zračnosti. Za rješenje tog problema predlaže se korištenje upravljačke sheme bazirane na algoritmu adaptivnog uvijanja. Kako bi se implementiralo predloženo upravljanje, kutna brzina estimira se korištenjem robusnog diferencijatora. Bazirana na pojednostavljenom modelu sustava, predložena shema povećava robustnost u odnosu na nemodeliranu dinamiku kao što je zračnost. Pritom nije potrebno poznavanje svih parametara sustava niti očekivane granice smetnji. Eksperimetalni rezultati, koji uzimaju u obzir široki kut zračnosti od skoro pi$, ilustriraju izvodljivost i učinkovitost predloženog algoritma upravljanja

    Control of reluctance actuators for high-precision positioning

    Get PDF
    corecore