5 research outputs found

    Robust User Identification Based on Facial Action Units Unaffected by Users' Emotions

    Get PDF
    We report on promising results concerning the identification of a user just based on its facial action units. The related Random Forests classifier which analyzed facial action unit activity captured by an ordinary webcam achieved very good values for accuracy (97.24 percent) and specificity (99.92 percent). In combination with a PIN request the degree of specificity raised to over 99.999 percent. The proposed biometrical method is unaffected by a user's emotions, easy to use, cost efficient, non-invasive, and contact-free and can be used in human-machine interaction as well as in secure access control systems

    High-performance detection of alcoholism by unfolding the amalgamated EEG spectra using the Random Forests method

    Get PDF
    We show that by unfolding the outdated EEG standard bandwidths in a fine-grade equidistant 99-point spectrum we can precisely detect alcoholism. Using this novel pre-processing step prior to entering a random forests classifier, our method substantially outperforms all previous results with a balanced accuracy of 97.4 percent. Our machine learning work contributes to healthcare and information systems. Due to its drastic and protracted consequences, alcohol consumption is always a critical issue in our society. Consequences of alcoholism in the brain can be recorded using electroencephalography (EEG). Our work can be used to automatically detect alcoholism in EEG mass data within milliseconds. In addition, our results challenge the medically outdated EEG standard bandwidths

    Machine Learning Based Diagnostics of Developmental Coordination Disorder using Electroencephalographic Data

    Get PDF
    We report on promising results concerning the fast and accurate diagnosis of developmental coordination disorder (DCD) which heavily impacts the life of affected children with emotional and behavioral issues. Using a machine learning classifier on spectral data of electroencephalography (EEG) recordings and unfolding the traditional frequency bandwidth in a fine-graded equidistant 99-point spectrum we were able to reach an accuracy of over 99.35 percent having only one misclassification. Our machine learning work contributes to healthcare and information systems research. While current diagnostic methods in use are either complicated, time-consuming, or inaccurate, our automated machine-based approach is accurate and reliable. Our results also provide more insights into the relationship between DCD and brain activity which could stimulate future work in medicine

    High-performance detection of epilepsy in seizure-free EEG recordings: A novel machine learning approach using very specific epileptic EEG sub-bands

    Get PDF
    We applied machine learning to diagnose epilepsy based on the fine-graded spectral analysis of seizure-free (resting state) EEG recordings. Despite using unspecific agglomerated EEG spectra, our fine-graded spectral analysis specifically identified the two EEG resting state sub-bands differentiating healthy people from epileptics (1.5-2 Hz and 11-12.5 Hz). The rigorous evaluation of completely unseen data of 100 EEG recordings (50 belonging to epileptics and the other 50 to healthy people) shows that the approach works successfully, achieving an outstanding accuracy of 99 percent, which significantly outperforms the current benchmark of 70% to 95% by a panel of up to three experienced neurologists. Our epilepsy diagnosis classifier can be implemented in modern EEG analysis devices, especially in intensive care units where early diagnosis and appropriate treatment are decisive in life and death scenarios and where physicians’ error rates are particularly high. Our approach is accurate, robust, fast, and cost-efficient and substantially contributes to Information Systems research in healthcare. The approach is also of high practical and theoretical relevance
    corecore