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Abstract 

 
We show that by unfolding the outdated EEG standard 

bandwidths in a fine-grade equidistant 99-point 

spectrum we can precisely detect alcoholism. Using 

this novel pre-processing step prior to entering a 

random forests classifier, our method substantially 

outperforms all previous results with a balanced 

accuracy of 97.4 percent. Our machine learning work 

contributes to healthcare and information systems. Due 

to its drastic and protracted consequences, alcohol 

consumption is always a critical issue in our society. 

Consequences of alcoholism in the brain can be 

recorded using electroencephalography (EEG). Our 

work can be used to automatically detect alcoholism in 

EEG mass data within milliseconds. In addition, our 

results challenge the medically outdated EEG standard 

bandwidths. 
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1. Introduction  

 
Alcoholism is a global addiction problem that is 

currently at the top of the list of addictions in many 

countries. The number of alcohol-dependent people in 

Germany is in the millions, with several tens of 

thousands dying every year as a result of alcohol 

consumption [1]. The long-term consequences of 

alcohol for the body, especially for the brain, are often 

underestimated. The comprehensive structure of the 

brain contains multiple systems that are responsible for 

the complete control of the human body. These 

multiple brain systems communicate through billions 

of neurons. The exchange of information between the 

neurons takes place via messenger substances, called 

neurotransmitters. Body reactions, feelings and mood 

are influenced depending on the amount and type of 

neurotransmitters. The brain balances the 

communication speed of the neurotransmitters. 

Alcohol, however, slows down the speed of this 

communication.  

 

Regular, long-term alcohol consumption leads to 

changes in the neurons, such as reduction of brain cells 

and shrinkage of brain mass. These changes can 

negatively affect some abilities such as coordination, 

regulation of body temperature, sleep, mood, cognitive 

abilities and memory [2]. Electroencephalography is a 

widely used approach to measure the functional state 

of the brain. EEG generates aperiodic time series data, 

which indicate the registration of electrical activities of 

the brain. Enormous amounts of data from multi-

channel EEG are examined by experts for disorders 

and effects in the brain. However, this analysis is very 

time-consuming and error-prone, as no standardized 

criteria exist [3-4]. Therefore, there is also a need to 

develop and apply an automatic classification method 

for identifying alcoholism. At present, several methods 

for solving problems have been proposed, which are 

achieving ever better results [5]. In EEG, the 

spontaneous activities of the brain are particularly 

relevant, which can be derived by a continuous 

measurement of brain waves at the skull surface. The 

frequency range of these spontaneous activities ranges 

from 0.5 to 30 Hz and is subdivided as follows in 

accordance with an international convention [6]: 
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Frequency 

Band 

Frequency range 

in Hz 

Characterization 

Delta 0.5 – 3.5 Hz Deep sleep 

 

Theta 3.5 – 7.5 Hz Measured in sleep 

and especially in 

dream phases. In 

brain diseases 

such as epilepsy, 

they also occur in 

waking phases 

 

Alpha 7.5 – 12.5 Hz Relaxed awake, 

closed eyes 

Beta 12.5 – 30 Hz Inner restlessness, 

stress, 

concentration 

 

Gamma > 30 Hz Extreme 

concentration 

 

Tab. 1 Standard EEG bandwidths [7][8] 

 

If EEG is applied to alcoholics and non-alcoholics, 

differences within the individual frequency bands, 

from delta to alpha, can be observed [9]. In the 

Machine Learning proposals published so far, this 

classification of frequency bands was taken into 

account and strictly followed. Mumtaz et al. [10] has 

already been able to make a good classification of 

alcoholics and non-alcoholics through linear regression 

on the classical frequency bands. Gopika Gopan et al. 

achieved good results with SVM and Fk-NN [11]. In 

this paper, however, the entire frequency range is 

considered as a whole and divided and analyzed into 

99 equal sections. Due to the fine division of the 

frequency bands, it may be possible to identify single, 

highly important frequency bands that would not have 

emerged with the other methods. 

 

 

2. Method  
 

Dataset and EEG noise removal  
 

The data set used in this paper comes from a large 

study investigating the correlation of genetic 

predisposition to alcoholism. The data set contains data 

from 64 electrodes on the scalp scanned at 256 Hz. The 

sensor positions of the 64 electrodes are shown in Fig. 

1. Altogether 122 subjects, divided into alcoholics and 

a control group, were examined. Each patient 

completed 120 tests with different stimulation. This 

stimulation was both visual and verbal depending on 

the test. In addition, the time of stimulation was also 

varied. The data set used was created by Henri 

Begleiter Neurodynamics Laboratory, State University 

of New York Health Center Brooklyn, New York and 

has no restrictions on use. Zhang et al. [12] describe in 

detail the data collection process. The full dataset is 

available from https://archive.ics.uci.edu/ml/machine-

learning-databases/eeg-mld/eeg.html. 

 

 
Fig. 1 EEG 10-20 system [13] 

 

The internationally standardized 10-20 system was 

used to position the electrodes. At the first international 

EEG congress, guidelines for the standardization of 

EEG measurements were proposed and implemented 

by Herbert H. Jasper. This mainly relates to the exact 

positioning of the electrodes on the scalp [14]. The 10-

20 method measures the distance from Nasion to Inion 

on the scalp and defines it as 100%. This distance is 

then divided in percent from the Nasion in the direction 

of the Inion. Starting with a 10% distance from Nasion 

towards the Inion, four further 20% distances follow, 

which then end with a 10% distance finishing at the 

Inion [Fig 1].  
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Fig 2 shows how the 64 electrodes are arranged 

according to the 10-20 system. 

 

Fig. 2 EEG sensor placement on the human scalp  

 

In order to better record brain activity, the subjects 

were exposed to various stimuli. Images from the 

Snodgrass and Vanderwart image sets have been 

selected for this purpose. Each subject was exposed to 

either a single stimulus or two stimuli. If two stimuli 

were shown, they were displayed in either the same or 

different states. Thus, the object displayed for the first 

stimulus could deviate from or be identical to the 

second stimulus. A central problem with EEG data sets 

is the high noise generated during data collection. The 

electrodes attached to the scalp must record the finest 

signals from the brain but which also leads to the 

recording of mixed signals. Above all the movement of 

the eyes, blinking, muscle activities as well as the 

heartbeat are found as disturbance data in the EEG data 

set [15]. The data must be cleaned up accordingly. In 

the history of electroencephalography, many different 

methods have been used for noise removal. For 

example, an attempt was made to remove mixed 

signals by regression within the time or frequency 

domain. However, if muscle movements are 

considered during EEG recording, they cannot be 

filtered out by regression because corresponding 

reference channels are missed [16]. Furthermore, a 

regression of the time domain tends to compensate for 

blinking, for example, which can lead to new artifacts 

in the EEG data [16]. Another approach was to filter  

out interfering signals such as blinking through 

Principal Component Analysis (PCA).  

This approach fails if the measured brain activity has 

an amplitude comparable to that of the signals caused 

by blinking. 

 

For this reason, the linear decomposition approach of 

Bell and Sejnowski is used to correct EEG data. 

Independent components within a data record can be 

selected using their Independent Component Analysis 

(ICA). There are three requirements for performing an 

ICA: (i) the mixed medium is linear and propagation 

delays are negligible (ii) the time courses of the 

sources are independent of each other (iii) the number 

of sources is equal to the number of their sensors [17]. 

All these three requirements are given by 

electroencephalographic data. Thus, the data are linear 

(i), interfering signals such as heartbeat are not coupled 

to the sources of EEG activity and thus independent 

and condition (iii) could be confirmed by numerical 

simulation [17]. For the analysis of EEG data, the lines 

of the Input Matrix x correspond to the signals of the 

electrodes, the lines of the Output Matrix u = Wx 

correspond to the time curves of the ICA components 

and the columns of the inverse matrix W
-1 indicate the 

projection force of the respective electrode component. 

The topography of the signals on the scalp provides 

information about their formation. Thus, blinking can 

be found in the front scalp area. In contrast to the PCA, 

the component time courses of activation are not 
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orthogonal. The corrected EEG data are corresponding 

to x' = (W)
-1

 u', where u' is the matrix of excitation 

waves, the series with noise signals are set to zero.  

 

Machine Learning Method 

 
This part of the paper covers spectral analysis and 

feature extraction, classification and validation. As 

explained above, the aim of this work was to extract 

the most predictive frequency bands for the separation 

of alcoholics and non-alcoholics from existing EEG 

data. 

 

a) Spectral Analysis and Feature Extraction 

 
The classical division of the frequency bands into 

alpha, beta, theta, delta and gamma bands was 

deliberately not used as a feature extraction criterion in 

this work. Instead, the frequency range from 0.5 Hz to 

50 Hz was divided into 99 frequency bands. These 

each had a span of 0.5 Hz. The hypothesis behind this 

division is that the information content of finer 

frequency bands is higher for our concern. Looking at 

the beta frequency band, it contains a lot of 

information within the 17.5 Hz range that is not useful 

for classifying alcoholics and non-alcoholics. This 

reduces the relevant information density. However, in 

order to achieve the best possible classification, the 

information density must be as high as possible. 

 

The EEG signal cleaned by the ICA must be 

transformed into a frequency signal [18], which is 

achieved by the EEG spectral analysis. Here, the EEG 

signal is reproduced as a function of frequencies with 

the aid of the Fourier transformation. The EEG signal 

is first broken down into many sinusoidal oscillations 

with a known wavelength. Now it is possible to check 

each wavelength for correspondence with the EEG 

signal with the aid of correlation analyses. The result 

of the Fourier transformation is the power spectrum, 

which allows the distribution of the frequencies of the 

EEG signal to be estimated [19-20]. Fig 3 describes the 

complete procedure in simplified form: 

 

a) EEG signal in its original form as a function 

of time 

 

b) EEG signal is divided into different sinusoidal 

signals depending on time and displayed 

between two of the classical frequency bands: 

delta and theta. Unless the strict division of 

frequency bands is abandoned, such things go 

unnoticed. 

 

c) Finally the Power spectrum. Now the 

frequency components of the EEG signal can 

be recognized. In this example, the highest 

activity is in the range of 10-12 Hz, which 

corresponds to the alpha frequency band in 

Fig.  1. 

 

 

 
Fig. 3 EEG Signal transformation [19] 
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Fig. 4 Random Forest Method 

 

b) Classification 

 

To answer the question, which are the most important 

frequency bands for the classification of alcoholism, 

the Random Forest was chosen as a classifier. Random 

Forest has made it possible to process the large amount 

of data efficiently. In addition, it was possible to draw 

direct conclusions about the most important variables 

for classification. The Random Forest was originally 

designed by Breiman [21]. It consists of many 

individual classification trees, whose individual 

classification outputs are used to determine the overall 

classification. The Random Forest process was 

described by Liaw and Wiener as follows [22]: 

 

1. Draw ntree bootstrap samples for the original 

data.   

2. For each of the bootstrap samples, an 

unpruned classification or regression tree 

grows, with the following modification: at 

each node, rather than choosing the best split 

among all predictors, randomly sample mtry of 

the predictors and choose the best split from 

among those variables. (Bagging can be 

thought of as the special case of random forest 

obtained when mtry = p, the number of 

predictors)  

3. Predict new data by aggregating the 

predictions of the ntree trees (i.e., majority 

votes for classification, average for 

regression).  

 

The Random Forest of the caret package was used for 

our classification. The data set was divided as follows:  

 

 

Training 75% (92 participants) and test 25% (30 

participants) with 10 repetitions each. The number of 

trees was n = 100 and the variable importance 

calculated by Random Forest were also displayed. The 

variable importance represents the statistical 

significance of each variable in the data related to the 

influence on the model. 

 

c) Validation 

 

In order to reach a reliable value from our Random 

Forest results, the method was supplemented by cross-

validation. Here we worked with the 10 times 10-CV. 

As a result, we were told which subjects were correctly 

and which incorrectly classified on the basis of the 

trained model. For this purpose, the cross-validation 

matrix of the model was generated. The cross-

validation classifies as follows: (i) True positive: The 

subject is alcoholic and the test has correctly indicated 

it (ii) False negative: The subject is alcoholic but the 

model has falsely classified him as non-alcoholic (iii) 

False positive: The patient is not an alcoholic but the 

model has classified him as an alcoholic (iv) True 

negative: The patient is not an alcoholic and has not 

been classified as an alcoholic by the model either. The 

cross validation provides information about the 

robustness of a model. In principle, the 1 truly positive 

and 4 truly negative values must be highly relative to 

the total number of test results. Only then can it be 

guaranteed that the model delivers good quality results. 

The following key figure is the cross-validation matrix. 

In addition, the accuracy of the model is calculated.  
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3. Results  

 
The Random Forest was trained on the data of 92 

participants and tested on the data of 30 participants 

with respective EEG power bands of spans 0.5 Hz. The 

10-CV was repeated 10 times on the training set. The 

result is shown in Table 2. The trained model with 

ntry= 100 and mtry= 50 has a total accuracy of 96.67 

percent (balanced accuracy of 97.4 percent). 

Prevalence of alcoholics is 36.667 percent.  

 
 Reference 

Non-

alcoholic 

Alcoholic 

Predicted 

Non-

alcoholic 

11 1 

Alcoholic 0 18 

 

Tab. 2 Confusion Matrix 

 

Our classifier performs very well (Table 3). 

 

Performance indicator Value  

Accuracy 96.667 % 

True positive rate 94.736 % 

True negative rate 100 % 

Positive predictive value 91.667 % 

Negative predictive value 100 % 

Balanced accuracy 97.377 % 

Kappa 0.930 

 

Tab. 3 Performance of our method 

 

The variable importance is shown in Fig. 5. This has 

been scaled to 100. Accordingly, variables 2 to 10 are 

subtracted relative to the first variable. The most 

important frequency band is 3.5-4 Hz. Measured by 

this, the band from 9.5-10 Hz has a value of 91.77, the 

band from 17-17.5 to 90.82. In addition, the following 

results were achieved: 2.5-3 Hz 83.20, 11.5-12 Hz 

80.87, 3-3.5 Hz 80.29. The frequency bands 6.5-7 Hz, 

4.5-5 Hz, 9-9.5 Hz and 1.5-2 Hz have a relative 

variable importance of 72.39 to 79.82. Overall 74 

frequency bands were below a relative variable 

importance of 50. Looking at the classical frequency 

bands, the most important variables are as follows: 

three variables in the theta range, three variables in the 

alpha range, three variables in the delta range and one 

variable in the beta range [Fig. 6]. 

 

4. Discussion  

 
This paper proposes a method with a balanced 

accuracy of 97.4 percent to identify alcoholics from 

EEG data. Unlike in the other cited papers, the 

classical frequency bands with the highest accuracy are 

not given, but go much deeper into the specific 

frequency ranges. Looking at the literature to date on 

the same topic, there is often no agreement as to which 

of the classical frequency bands is most relevant for the 

diagnosis of alcoholism. Ehlers and Phillips[23] see the 

alphaband as extremely relevant. Here a lower spectral 

power would be a signal for alcoholism. This research 

is also taken up by Bernice Projesz et al. [24]. 

However, he also regards the thetaband as extremely 

predictive. Here, strong drinkers would have more 

synchronization with their eyes closed than non-

alcoholics. Madhavi Rangaswamy et al. [25] also see a 

great deal of predictive power in the thetaband. Bernice 

Projesz et al. [24] explain that despite the good results 

with the thetaband, the beta frequency has become a 

strong indicator of alcoholism among scientists and 

medical professionals. However, the results of Wajid 

Mumtaz et al. [10] see a good classifier of alcoholics 

and non-alcoholics in the thetaband and the Hi-Gamma 

bands (30-40 Hz). Eveline A. de Bruin et al. [26] 

analyze the EEG data of heavy drinking students 

compared to light drinking students and also comes to 

the conclusion that the EEG data of heavy drinking 

students, especially in theta and Gamma band, differ 

enormously from the EEG data of the control group. 

 

The hypothesis of this paper was that a more detailed 

distribution of frequencies increases the quality of the 

available information and thus enables a better 

classification of alcoholics and non-alcoholics. The 

literature mentioned here only names the classical 

frequency bands as alcoholism indicators. As 

explained, there is disagreement over the best 

frequency band for use as an indicator. With our new 

approach we wanted to show that highly informative 

frequency ranges are available within the entire 

spectrum, independent of the classical frequency 

bands. Looking at the accuracy of the Random Forest, 

this finer frequency distribution proves us to be right: a 

classification based on our model is correct with a 

probability of 97.4%. Far more interesting, however, is 

where the 10 most important classifiers are found in 

the spectral range. Thus, three important variables can 

be found in the delta area, which has been almost 

ignored in previous publications. Looking at the 

information generated by an EEG, it seems fatal to 

ignore the delta area in classifications, since a large 

part of the data is generated in this area. The fact that 

the delta area has not played a role in the previous 

classification of alcoholics and non-alcoholics may 

have to do with the hypothesis mentioned above. With 

a large amount of data generated in the delta area, the 

density of relevant classification information 
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decreases. This problem can be resolved using our 

smaller division. Looking at the other results, there are 

also three variables in the alpha range. In the work of 

Wajid Mumtaz et al., the alpha range achieved an 

accuracy of 75.4 with linear regression of the 

alcoholics and control group.  

 

Fig. 5 Variable Importance  

Fig. 6 Top most predictive bandwidths marked in green 

 

While the thetaband seems to be of great relevance to 

us with three variables, only one variable can be found 

in the beta area. Overall, the results show why it may 

be appropriate to depart from the classical medical 

distribution of the frequency bands of the EEG. 

Another reason for this is the strict transitions of the 

frequency bands. Looking at our results, a cluster of 

very important frequency ranges were found, mainly in 

the Delta, Theta, Alpha and Beta I+II spectra. 

While previous work on the same dataset achieved 

accuracies between 78 and 95.83 percent (see Table 4), 

our approach significantly outperforms with 97.4 

percent (balanced accuracy).  

 

Year Reference Method Accuracy 

2007 

Yazdani & 

Setarehdan 

[27] 

k-Nearest-Neighbor, 

Naive Bayes 
87.5% 

2012 
Acharya 

[28] 

Support Vector 

Machine 
91.7% 

2015 
Gopan et 

al. [29] 

Support Vector 

Machine, Fuzzy k-

Nearest-Neighbor 

SVM: 78-95%, 

Fuzzy  

k-NN: 77-88% 

2017 
Bajaj et al. 

[30] 

Non-Negative Least 

Squares 
95.83% 

Tab. 4 Related work on the same dataset 
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5. Conclusion and Outlook  

 
In the context of this work it should be shown that ML 

methods for the classification of alcoholics and non-

alcoholics can achieve even better results using EEG 

features if the classical frequency bands are divided 

into smaller frequency bands. The results of this work 

have confirmed the hypothesis that the information 

content increases significantly as a result of this 

division. The results of this work are to be improved in 

the future by even more detailed observations of the 

smallest frequencies of the EEG electrodes. In 

addition, the individual electrodes will play a more 

important role in further work. These can be used to 

identify the predictive brain areas and thus to better 

predict long-term brain damage caused by alcoholism. 

Furthermore, the results of this work can be used in the 

search for endangered patients for diagnosis. Today, 

EEG diagnoses are mainly used in nine large fields: 

Diagnosis of epilepsy, dementia, brain tumors, strokes, 

autism, insomnia, alcoholism, anesthesia and coma and 

brain death [31]. All these nine fields have a very high 

impact on patients’ lives. For this reason it is of the 

utmost importance to diagnose with extreme care. 

Technical assistance could help doctors to make faster, 

more detailed decisions. On the one hand, this provides 

relief for doctors, who can make their decisions on the 

basis of more valid key figures. On the other hand, it 

reduces the likelihood of human error in his medical 

field and thus helps the respective patient. The field of 

research can therefore also be extended to other parts 

of EEG diagnosis. Dementia will be the main focus of 

further work and can build on existing work [32]. 

 

In addition, in future work we will transfer this novel 

pre-processing step (unfolding outdated standard 

bandwidths in fine-graded spectrums) prior to entering 

a Random Forests classifier to other applications 

outside EEG, such as pupillary hippus for user 

performance and cognitive load assessment [33-35], 

and frequencies of facial actions for cognitive load 

evaluation [36]. 

 

Furthermore, in future work we will transfer the novel 

pre-processing step (fine-graded spectrums) to feed 

other machine learning classifiers. 
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