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Abstract 

 
We report on promising results concerning the fast 

and accurate diagnosis of developmental coordination 
disorder (DCD) which heavily impacts the life of 
affected children with emotional and behavioral 
issues. Using a machine learning classifier on spectral 
data of electroencephalography (EEG) recordings 
and unfolding the traditional frequency bandwidth in 
a fine-graded equidistant 99-point spectrum we were 
able to reach an accuracy of over 99.35 percent 
having only one misclassification. Our machine 
learning work contributes to healthcare and 
information systems research. While current 
diagnostic methods in use are either complicated, 
time-consuming, or inaccurate, our automated 
machine-based approach is accurate and reliable. 
Our results also provide more insights into the 
relationship between DCD and brain activity which 
could stimulate future work in medicine. 

1. Introduction  

Developmental coordination disorders (DCD) are 
a subfield of motor disorders affecting children all 
around the world with a prevalence of 1.8 percent [1]. 
Since DCD is treatable and the negative impact on 
motoric abilities can be reduced by an early-stage 
diagnosis, a fast and reliable diagnosis system for the 
citizens would have a strong impact [2, 3].  

According to the Diagnostic and Statistical Manual 
of Mental Disorders DSM-5, DCD is defined as a 
motor disorder resulting in clumsiness, slowness, and 
inaccuracy in a dimension “significantly and 
persistently interfering with activities of daily living 
appropriate to chronological age and impacts 
academic/school productivity, prevocational and 
vocational activities, leisure, and play,” while not 

being attributable to intellectual, visual or neurological 
conditions [4]. 

DCD has a major impact on children in terms of 
limiting them in their educational and social life and 
having negative effects on their health [5, 6]. They are 
observed as having over five times more emotional 
and behavioral problems and with a significantly 
lower health-related quality of life compared to their 
peers [5, 6]. Children with DCD are at higher risk of 
developing symptoms of anxiety and depression than 
their typically developing peers [7]. There is a 
significant impact on educational achievement and 
therefore life chances for adolescents with DCD due 
to problems with reading skills, social communication 
difficulties, and hyperactivity, and inattention [8]. 

While DCD is affecting children all around the 
world with a prevalence of about 1.8, regionally 
prevalence is up to 17.9 percent [1, 9–13]. 

Questionnaires for mass screenings failed very 
often in terms of accuracy and reliability [14–16]. 

However, driven by increases in computational 
power and the availability of huge new datasets, IT-
based healthcare has undergone a dramatic upswing in 
the past years [17]. The field has witnessed spectacular 
advances in the ability of machines to understand data 
and this can be accompanied by extraordinary 
successes in medicine, in particular for diagnosing 
diseases [18, 19] or detecting higher orders of medical 
substance interactions [20]. The application of most 
modern machine learning using big data within the 
healthcare domain fosters this success [18–25]. 

To help detect DCD reliably and early, we propose 
a machine learning based algorithm for diagnosing 
DCD, which surpasses current methods in terms of 
accuracy and reliability. 

The most important contributions are: 
 
1) We built a highly effective classification 

model diagnosing DCD with a balanced 
accuracy of over 99.35 percent. 
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2) Our model substantially outperforms all 
existing approaches, including questionnaire-
based instruments in medical use. 

3) The approach is fast, robust, reliable, and 
independent from human influences. 

4) Our results on higher brain activation in 
Upper-Theta and Lower-Alpha EEG sub-
bands for DCD patients deepen 
understanding of the theory that people with 
DCD use different brain regions than control 
peers to support their motor performance and 
which is reflected in these specific EEG sub-
spectra (novel contribution to brain activation 
theory). 

 
The paper is organized as follows: next, we present an 
overview of currently used methods for DCD 
diagnostics, the progress of automatic detection of 
DCD, and the exemplary progress of automatic 
detection of other disorders, diseases, and addictions. 
After that the research methodology is divided a) to 
give information about the dataset used, and b) to 
describe our algorithm. Then we show the machine 
learning results regarding the performance evaluation 
and analysis of the EEG frequency bands. After 
discussing the results, we conclude our research while 
reflecting on the limitations of our work and providing 
suggestions for future research. 

2. Theoretical background  

There are five different approaches to motor 
assessment and treatment for children with DCD. 
These are to use different explanatory frameworks 
(Normative Functional Skill Approach, General 
Abilities Approach, Neurodevelopmental Theory, 
Dynamical Systems Theory, and the Cognitive 
Neuroscientific Approach) [2]. Based on these, several 
different diagnostic methods were derived. The 
current gold standard in diagnostics of DCD are 
standardized tests which allow manual assessments of 
motor skills. The Bruininks-Oseretsky Test of Motor 
Proficiency, Second Edition (BOT-2), and the 
Movement Assessment Battery for Children, Second 
Edition (MABC-2) represent the two most commonly 
used examples [26, 27]. There the children participate 
in a set of age-specific exercises and their motor-
coordinative abilities are assessed within the three 
motoric development dimensions of manual dexterity, 
ball skills, and balance. Although both tests have a 
high reliability between 78 and 97 percent as well as a 
consistency above 90 percent [15, 28, 29], these kinds 
of test require highly qualified practitioners, like 
occupational or physical therapists who also have to 
be familiar with statistical concepts to perform and 

evaluate the test correctly and achieve representative 
results. Even for experienced operators, an entire 
assessment including preparation, administration, 
processing, and evaluation takes at least 90 minutes 
[15].  

These motoric tests also tend to be very pricy with 
basic sets around $1,100 each. When using the BOT-
2, the following limitation must also be taken into 
account, that the norms used for the evaluation of the 
results are not generally valid but are reflective of the 
current demographics in the United States [15, 28, 29]. 
Due to the time consuming and expensive 
characteristics of these tests, some experts tend to use 
motoric questionnaires like the DCD-Q [30], CSAPPA 
[31], or M-ABC-Checklist which must be answered 
either by the child, its parents, or its teachers. As 
questionnaires filled in by parents or teachers (e.g. 
DCD-Q, M-ABC-Checklist) focus on rating motor-
coordinative abilities with the three motoric 
development dimensions and the daily activities [2], 
the questionnaires filled in by children (e.g. CSAPPA, 
All about Me Scale [32]) also focus on the self-
perceptions of the children, like confidence in walking 
or self-esteem. While these tests offer a good idea of 
how the child perceives the disorder itself [33], this 
self-assessment has proven to be neither specific nor 
sensitive enough [2]. Therefore, these questionnaires 
are just used as an initial step in the diagnostics of 
DCD. 

All these more traditional approaches tend to have 
a solid accuracy as well as consistency, and they also 
require a fair amount of time, money, and 
qualifications in order to be utilized. Thus, an 
automated method overcoming these limitations 
would be beneficial to diagnostics in DCD. Since the 
availability of electronic health data is increasing, this 
trend yields an opportunity for models and algorithms 
backed by Machine Learning to use their strength in 
detecting patterns in data to improve traditional 
healthcare [17, 18]. Previous studies on risk prediction 
of infections, outcomes of diseases, or diagnosis of 
symptoms have proven the capabilities of Machine 
Learning in Healthcare with great accuracy and levels 
of performance [17]. In the more specific domain of 
DCD, Martinez-Manzanera et. al. [34] used the 
Random Forest method in differential diagnostics to 
automatically detect ataxia and DCD. Sensor units 
provided motoric movement data on children with 
ataxia, DCD, and a control group executing an upper 
limb coordination task. While ataxia (74.4 percent) 
and the controls (87.4 percent) could be classified 
well, DCD could only be detected with an accuracy of 
24.8 percent on average [34].  

However, Machine Leaning was also used in the 
domain of EEG analysis: Different researchers 
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developed algorithms based on brain activity using 
EEG recordings that were able to predict disorders like 
alcoholism [22] or schizophrenia [35], detect epileptic 
seizures [36, 37], and classify sleep stages [38] faster 
and more accurately than human doctors. Driven by 
these interesting results, further Machine Learning 
related research on theories explaining the 
relationships between DCD and brain activity can 
benefit. For example, Zwicker et al. [39, 40] found 
indications for such correlations such as differing 
patterns in brain activities of healthy and 
developmentally challenged children during fine-
motor tasks or learning new skills. A deep 
understanding of the neurobiology of DCD, as well as 
strong evidence for a correlation between brain 
activity and DCD, are still absent. 

3. Method  

This research follows the Design Science 
methodology [41]. Our contribution is an IT-artifact to 
classify DCD on EEG data. The IT-artifact is an 
algorithm, rigorously evaluated by ten-fold cross-
validation. 

3.1. Dataset 

The dataset was provided by Vařeka et al. [42] and is 
publicly available without restrictions. It was created 
in 2013 at the University of West Bohemia of Pilsen 
(Czech Republic). It contains the EEG-data of 32 
school-age participants (age: 7-10 years; 11 females 
and 21 male) each 6-7 minutes long. The EEG data 
was acquired using 19 electrodes arranged according 
to the standard 10-20 system [43], with a sampling 
frequency set to 1 kHz and cut-off frequencies of 0.1 
and 250 Hz. Each time series includes 1,000 samples 
per second with a resolution of 0.1 µV.  

All participants suffered from impaired hearing 
and were divided into three groups. The MABC-2 
motor test provided an overall score ranging from 0 to 
100. Based on the individual results, the subjects were 
separated into three groups according to the traffic 
light system of Henderson et al. [27]: Subjects with a 
score above 67 were labeled as having no movement 
difficulties (green light). Subjects with an overall 
score between 67 and 57 were rated as having a risk of 
a movement difficulty (yellow light) and subjects with 
scores below 57 were labeled as having movement 
difficulties (red light). Sixteen of the subjects were in 
the green area and served as the control group, 4 were 
in the yellow area and 12 subjects scored within the 
red zone.  

Each subject completed 600 tests in total, separated 
in two equal runs of 300 stimulations. This stimulation 

was multimodal, meaning both auditory and visual, in 
which the sound of one of three animals (Goat, Dog, 
Cat) was synchronized with the picture of the animal. 
Using one of the animals (goat), always occurring with 
the matching sound and picture as reference or 
standard stimulus, additional rare stimuli were utilized 
to trigger a specific task. The task of each subject was 
to reply to the target stimulus by pressing one of two 
buttons attached to the armrests of the chair. One 
button was dedicated to a matching stimulus, where 
the sound of the animal matched the picture shown. 
The second button indicated a stimulus where the 
picture did not match the sound heard. 

The dataset also provides additional metadata 
including used hardware, used stimulation protocol, 
and detailed information about each participant of the 
study. The research group not only recorded the data 
but also validated and evaluated the quality of the 
recordings of each participant. In total the elicitation 
as well as the data itself are of impeccable quality. 

3.2. Machine Learning Method 

This part of the paper covers the pre-processing of 
the given data, the feature extraction in the form of 
the spectral analysis, and the classification as well as 
the validation of the created model (see Figure 1).  

Pre-processing: In a first step, the four subjects 
with a MABC-2 motorically score inside the yellow 
zone according to the traffic light system were 
removed from the dataset since they could not clearly 
be assigned to either the control group or the group 
suffering from a developmental disorder. 

 

 
 
Based on the 28 available seven-minute recordings, 
we applied a sliding window approach, partitioning 
the data into one-minute windows with a 30-second 
overlap. As suggested by Bell et al. [44], the linear 
decomposition approach was used to partially correct 
the EEG recordings since all three requirements 
described by Bell et al. [44] are fulfilled for EEG data 

Figure 1: Processing steps 
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in general. Since the electrodes attached to the scalp 
have to record the finest signals from the brain, mixed 
signals as well as disturbances like eye movement, 
muscle activities, and blinking are found in the data 
[45]. By utilizing the independent component analysis 
(ICA) any noise was detected and afterward removed.  

 
Spectral analysis and feature extraction: After 

preparing and cleaning the records of any noise, 
possible features could be extracted. Initially, Feature 
Engineering was applied to each sample in the form of 
dimensional reduction by calculating the mean over all 
19 channels of the original signal. To determine the 
activity of the brain represented by the EEG data [45, 
46], the responsible frequencies leading to the time 
series data had to be extracted. Therefore, the time 
domain of the samples was transformed into the 
frequency domain by utilizing the Fast-Fourier 
Transformation as a method for estimating the 
distribution of the frequency contained in the EEG 
recordings [47, 48]. Instead of using the classic 
division of the frequency bands into alpha, beta, theta, 
delta, and gamma [45, 46] we unfolded the band 
reaching from 0 up to 50 Hz in steps of 0.5Hz [49]. 
According to this approach, the information content of 
finer frequency bands was proven to be higher than the 
broad bands used in the classic division. Therefore, the 
resulting frequencies and corresponding amplitudes of 
the spectral analysis were separated in 99 bins, each 
covering a range of 0.5 Hz with the cumulated 
amplitude for this frequency area.  

 
Classification: To answer the question of whether 

it is possible to separate the healthy control group from 
the patients suffering from DCD, and if yes to 
determine which frequency bands are the most 
important. We used a Random Forest to generate 
multiple distinct decision trees whose terminal leaves 
represent the two classes DCD and Non-DCD. During 
training, spectral power thresholds of randomly 
selected sub-bands are calculated according to the 
class of an individual sample which are used to add 
decision nodes to the tree. When testing, a majority 
vote of the individual decision trees in the random 
forest is used to determine the final class of every 
sample. Originally proposed by Breiman [50] in 2001, 
Random Forest still stands out today due to its highly 
effective processing of large amounts of data and its 
excellent accuracy [22–25, 36] and performs very well 
with EEG data [51], especially in combination with the 
fine-grained EEG spectrum [22–25, 36]. It is also 
possible to draw direct conclusions about the most 
important variables for classification. We used the 
caret package in R to implement the classification 
using a common Training/Test Split of 75% and 25% 

of the recordings with 10 repetitions each using n = 
100 trees. After training and testing our specific 
Random Forest the variable importance used 
internally by the classifier could be extracted and 
observed. Each of the variables in the resulting data 
represents the statistical significance of a specific 
frequency band related to the influence on the model.  

 
Validation: We validated the classifier with a ten-

fold cross-validation. The accuracy of the model and 
further metrics were calculated and presented (see 
Table 1), as well as a confusion matrix (see Table 2).  

4. Results  

For the training of Random Forest, we applied the 
caret v6.0-82 package within an R x64 3.5.1 
environment running on a 16 GB RAM custom 
workstation. The training ran in a k-fold cross 
validation style on the training data with 10 iterations. 
During training, the test data was not shown to the 
model. The Random Forest classifier was built using 
500 voting trees. 

4.1. Performance evaluation 

We evaluated the classifier in terms of accuracy, 
sensitivity (true positive rate), specificity (true 
negative rate), precision (positive predictive value), 
negative predictive value), Cohen’s Kappa score, and 
balanced accuracy.  

Table 1 shows the excellent performance of our 
classifier with an accuracy of 99.47 percent in 
detecting DCD. Both true negative rate and positive 
predictive values are 100 percent. The true positive 
rate is 98.7 percent, and the negative predictive value 
is 99.12 percent. Prevalence is 40.74 percent. Cohen’s-
Kappa score is 98.9 percent.  

 
Performance indicator Value 
  

Accuracy 99.47 % 
True positive rate 98.70 % 
True negative rate 100 % 
Positive predictive value 100 % 
Negative predictive value 99.12 % 
Prevalence 40.74 % 
Balanced accuracy 
Kappa 

99.35 % 
98.90 % 

  
 

Table 1: Evaluation indicators 
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The confusion matrix (see Table 2) points out that 
there is only one misclassification, which is in the form 
of a false negative.  

 
  Predicted 

  DCD Non-DCD 

A
ct

ua
l DCD 76 1 

Non-
DCD 0 112 

 

Table 2: Confusion matrix of our classifier 

4.2. Importance of specific frequency bands 

The trained Random Forest classifier can be 
analyzed to gain information about the impact of 
specific frequency bands (variable importance) on the 
prediction. Figure 2 shows the variable importance of 
the 0.5 Hz frequency bands with the band between 6.5 
and 7 Hz having the highest impact representing 100 
percent. The importance of the remaining frequency 
bands was subtracted relative to this baseline. Having 
importance of 90.96 percent, the second runner-up 
frequency band was between 5.5 and 6 Hz followed by 
the band between 7 and 7.5 Hz having an importance 
of 82.70 percent. The remaining frequency bands in 
the top ten do have an importance as follows: 9 – 9.5 

Hz 81.37 percent, 8.5 – 9 Hz 77.48 percent, 7.5 – 8 Hz 
70.55 percent, 4.5 – 5 Hz 69.58 percent, 6 – 6.5 Hz 
69.23 percent, 9.5 – 10 Hz 68.33 Hz and the band 
between 5 and 5.5 Hz having an importance of 64.60 
percent. In contrast, the band between 40 and 40.5 Hz 
has no impact on the decision tree with an importance 
of 0 percent. Overall, 82 of 99 frequency bands were 
below the level of importance of 50%. 

In a subsequent procedure, the mean power value 
for the ten most important frequency bands was 
calculated for both classes, DCD, and control, using 
the results of the spectral analysis (see Table 3). 
Utilizing students’ two-sample t-tests with spectral 
data of the ten most important frequency bands as 
samples, we were able to revise if the real difference 
in the population´s power mean value exists and if yes 
if it is significant. We defined the null hypothesis 𝐻𝐻0 ∶
 𝜇𝜇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦 −  𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷 = 0 where  𝜇𝜇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦  is the 
populations mean in the power of all healthy children 
and 𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷 is the populations mean in the power of all 
children suffering from DCD, saying that there is no 
difference in the mean of both populations. Further, 
we defined the alternative hypothesis as 𝐻𝐻0 ∶
 𝜇𝜇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦 −  𝜇𝜇𝐷𝐷𝐷𝐷𝐷𝐷 ≠ 0 for a two-sided test saying there 
is a difference in the mean value of the two populations 
either being positive or negative. Test statistics are 
calculated by the t-Test. The resulting p-values for 
each of the ten tested frequency bands are shown in 
Table 3. The null hypothesis 𝐻𝐻0 could be rejected for 

Figure 2: Variable importance of the 0.5 Hz frequency bins in relation to the standard EEG bandwidths 
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all ten frequency bands with a confidence over 95 
percent since all p-values for 𝐻𝐻0 were below 0.05. 
Except for the lowest band between 4.5 – and 5 Hz the 
confidence in rejecting 𝐻𝐻0 and accepting the 
alternative hypothesis 𝐻𝐻0 is well above 99 percent (𝐻𝐻0 
p-value < 0.01). 

 
 

Frequency Power 
Control 

Power 
DCD 

p-
value 

Cohen’s 
d 

9.5-10 Hz 0.067368 0.080711 <0.001 0.30 

9-9.5 Hz 0.066915 0.077106 <0.01 0.24 

8.5-9 Hz 0.064018 0.075975 <0.001 0.30 

7.5-8 Hz 0.064493 0.076674 <0.001 0.32 

7-7.5 Hz 0.070555 0.084613 <0.001 0.33 

6.5-7 Hz 0.073230 0.089196 <0.001 0.33 

6-6.5 Hz 0.072716 0.086109 <0.001 0.30 

5.5-6 Hz 0.077876 0.087262 <0.01 0.22 

5-5.5 Hz 0.078451 0.088366 <0.01 0.24 

4.5-5Hz 0.089544 0.096962 <0.05 0.15 
 

Table 3: Analysis of the ten most important bands 
 

To validate the outcome of the two-sample t-test as 
well as measure the selectivity and effect size of the 
statistical method we calculated Cohen’s d for each of 
the ten most important frequency bands.  

As shown in Table 3 the frequency bands between 
6.5 and 8 Hz have the highest effect size. The mean in 
effect sizes over all ten most important frequency 
bands for DCD classification is 0.27. 

5. Discussion 

This paper hypothesized that machine learning 
technologies yield an opportunity to provide 
diagnostics in the domain of DCD. Several scientific 
reviews criticized traditional methods like manual 
tests for being time-consuming with a minimum 
duration of 90 minutes even for experienced 
practitioners, being expensive at a base-set price of 
over $1,100, and being subjective as a result of their 
dependence on the children and the practitioners. 
Cheaper and faster alternatives like questionnaires are 
not accurate enough to deliver reliable diagnoses. 
Manzanera et al. [34] suggested machine learning-
based approaches, which didn´t even perform as well 
as the already inaccurate questionnaires. In contrast to 
his approach utilizing motoric movement data like the 
traditional approaches, our approach was in focusing 
on the speculated difference in brain activity of 
healthy and DCD affected children. Underpinned by 

the theoretical work of Zwicker et al. [39] which 
suspected that brain activities between these two 
groups might be different, our model was indeed able 
to classify subjects suffering from DCD with a 
balanced accuracy of 99.35 percent using EEG 
recordings of the brain activity. Looking at this 
outstanding performance with only one single 
misclassification has proven us to be correct: a 
machine learning based classification of DCD is 
possible and even outperforms traditional approaches.  

As a result of the successful model, we were able 
to determine the ten most important frequency bands 
that were able to distinguish between DCD affected 
and healthy children. While using the traditional 
frequency bands might only have led us to a range of 
important bands between theta and alpha spanning a 
range of 9 Hz, the 99-band approach enabled us to 
narrow this range down to a range of 5 Hz, half the 
size between upper theta and lower alpha. It was also 
possible to distinguish the fine-grade bands inside 
each traditional band as shown in Fig. 1 to examine 
their influence in detail. 

Using the statistical methods of two-sample t-test 
as well as Cohen´s d we were able to confirm the 
theory by Zwicker et al [39] about the difference in 
brain activity: The average power of the two groups in 
the ten most important frequency bands shown in table 
3 were significantly different, proving that there is 
indeed a difference in brain activity. As the results 
show, the children suffering from DCD displayed 
greater activation in all these ten bands. This higher 
load in activation eventually leads to the described 
“cognitive fatigue” [39] of children suffering from 
DCD in executing motor movements like the tasks in 
the experiment of the dataset used. The results of 
Cohen´s d with a mean in effect size of 0.27 also show 
differing brain activity based on the power means.  

The greater activity in the traditional theta and 
alpha band might give some explanation of the 
slowness of DCD affected children described in the 
literature. While these two bands are considered 
characteristic of sleep phases or a relaxed state of mind 
in healthy children [52], DCD affected children had 
higher activations of these bands during mental 
workload through the stimuli and related motoric tasks 
of the experiment. All frequency bands inside the Beta 
and Gamma band, which are typically activated during 
stress, inner restlessness, and high concentration [52], 
have an importance below 50 percent or even below 
10 percent. Since children suffering from DCD are 
motorically impaired it might imply that they must 
concentrate more to complete a motoric task like 
pushing the correct button in the case of the 
experiment, which is not the case, based on the data 
shown in Figure 2. 
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6. Conclusion  

Though a correlation between DCD and brain 
activity has already been indicated [39, 40], machine-
driven research on this topic was absent. Multi-
classification of motor disorders performed weakly on 
DCD [34] driven by movement data, only reaching 
24.8 percent accuracy. With our algorithm, we were 
able to reliably detect DCD in children with only one 
misclassification. 

This research pursued the question of whether 
machine learning technologies in DCD detection can 
provide diagnostics. The results of our classifier 
demonstrate this question has to be answered as true.  

Our classifier could detect DCD in children in 
milliseconds, using seven minutes [46] of EEG data 
per participant, compared to manual testing methods 
with a duration of 90 minutes, if done quickly [15]. 

As a result, DCD diagnostics may break with the 
expensiveness, the lengthiness, the high expertise 
requirements, and the subjectivity of current, manual 
state-of-the-art testing methods.  

Additionally, being able to reliably detect DCD on 
EEG data, this research can confirm a correlation 
between DCD in children and brain activity.  

Furthermore, our findings of the relevance of each 
frequency band can enable more focused and specific 
research on DCD and thereby better understand this 
disorder.  

6.1. Limitations 

The ten-fold cross-validation provides high 
internal validity. However, the external validity has 
yet to be evaluated. Replication studies using other 
datasets with different participants are needed to add 
an external layer of validation.  

The IT artifact has been executed detached from 
the clinical application field. To validate the algorithm 
against specific and possible unknown influences and 
circumstances, an implementation in a clinical 
environment must be done. 

6.2 Future Work 

In future work, we will re-evaluate our results on 
different data sets to increase the external validity of 
our DCD detection algorithm. Therefore, we will use 
a data set with different participants. 

Besides, in future work, we will triangulate EEG 
sensor data with other physiological sensor data [25, 
53–59]. While we successfully evaluated our novel 
ML approach on several diseases [23, 24, 49, 53, 60–
63], addictions [64], stress [65] and personality traits 

[66], we will experimentally evaluate whether our 
approach is also robust under various conditions of a 
user's cognitive workload [67–69], concentration [70] 
and mindfulness [71, 72] by physicians and patients in 
multi-agent settings [73–76].  

To further evaluate the model, we will benchmark 
our Random Forest algorithm to other ML approaches, 
including convolutional neural networks [21, 77–79] 
and other ML methods like XGBoost [80] or support 
vector machines [81] on brain activities in the 
identified areas for detecting EDS [62] and further 
research on EEG data 

Furthermore, we will implement the IT artifact in 
a clinical environment. Figure 3 shows the related 
framework used for detection, treatment, and 
evaluation. By using this model, clinicians could use 
existing EEG data of a patient to provide an initial 
indicator for a possible diagnosis instead of 
performing time-consuming manual tests and so 
reduce the workload of the medical staff. 

 
Figure 3: DCD treatment-diagnose circle 

 
We will evaluate the technology acceptance [56, 82–
85] and trust [86, 87], as it is crucial for real-world 
scenarios. 
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