123 research outputs found

    Analysis of Underlaid D2D-Enhanced Cellular Networks: Interference Management and Proportional Fair Scheduler

    Full text link
    © 2013 IEEE. Device-to-device (D2D) communications have been proposed as a promising technology to improve network capacity and user experiences in the future mobile networks such as heterogeneous networks with densely deployed small cells, but it has not yet been fully incorporated into the existing cellular networks. Interference management is one of the critical issues when D2D communications using uplink resources and coexisting with conventional cellular communications, especially in the ultra-dense networks (UNDs). In this paper, we address the critical issue of interference management by a mode selection method, which is based on the maximum received signal strength (MRSS) for each D2D transmitter (TU). To analyze the capacity of a more practical D2D-enhanced network, we consider that the typical user is no longer a random user, i.e., random user selection by a round-robin (RR) scheduler, as assumed in most studies in the literature. Instead, a cellular user with the maximum proportional fair (PF) metric is chosen by its serving base station as the typical user, which is referred to as the PF scheduler in the cellular tier. Furthermore, we theoretically study the performance in terms of the coverage probability and the area spectral efficiency (ASE) for both the cellular network and the D2D one with the consideration of the PF scheduler in UDNs. Analytical results are obtained, and the accuracy of the proposed analytical framework is validated through Monte Carlo simulations. Through our theoretical and numerical analyses, we quantify the performance gains brought by D2D communications and the PF scheduler in cellular networks, and we find an optimum mode selection threshold β to maximize the total ASE in the network

    Robust transmission design for multicell D2D underlaid cellular networks

    Get PDF
    This paper investigates the robust transmission design (RTD) of a multicell device-to-device (D2D) underlaid cellular network with imperfect channel state information (CSI). The bounded model is adopted to characterize the CSI impairment and the aim is to maximize the worst-case sum rate of the system. To protect cellular communications, it is assumed that the interference from all D2D transmitters to each base station (BS) is power-limited. It is first shown that the worst-case signal-to-interference-plus-noise ratio (SINR) of each D2D link can be obtained directly, while that of cellular links cannot be similarly found since the channel estimation error vectors of cellular links are coupled in the SINR expressions. To solve the nonconvex problem, the objective function of the original problem is replaced with its lower bound, and the resulted problem is decomposed into multiple semidefinite programming (SDP) subproblems, which are convex and have computationally efficient solutions. An iterative RTD algorithm is then proposed to obtain a suboptimal solution. Simulation results show that D2D communication can significantly increase the performance of the conventional cellular systems while causing tolerable interference to cellular users. In addition, the proposed RTD algorithm outperforms the conventional nonrobust transmission design greatly in terms of network spectral efficiency

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin
    corecore