127 research outputs found

    Texture Synthesis for Mobile Data Communications

    Get PDF
    A digital camera mounted on a mobile phone is utilized as a data input device to obtain embedded data by analyzing the pattern of an image code such as a 2D bar code. This article proposes a new type of image coding method using texture image synthesis. Regularly arranged dotted-pattern is first painted with colors picked out from a texture sample, for having features corresponding to embedded data. Our texture synthesis technique then camouflages the dotted-patternusing the same texture sample while preserving the qualitycomparable to that of existing synthesis techniques. The texturedcode provides the conventional bar code with an aesthetic appealand is used for tagging data onto real texture objects, which canform a basis for ubiquitous mobile data communications. Thistechnical approach has the potential to explore new applicationfields of example-based, computer-generated texture images

    CopyRNeRF: Protecting the CopyRight of Neural Radiance Fields

    Full text link
    Neural Radiance Fields (NeRF) have the potential to be a major representation of media. Since training a NeRF has never been an easy task, the protection of its model copyright should be a priority. In this paper, by analyzing the pros and cons of possible copyright protection solutions, we propose to protect the copyright of NeRF models by replacing the original color representation in NeRF with a watermarked color representation. Then, a distortion-resistant rendering scheme is designed to guarantee robust message extraction in 2D renderings of NeRF. Our proposed method can directly protect the copyright of NeRF models while maintaining high rendering quality and bit accuracy when compared among optional solutions.Comment: 11 pages, 6 figures, accepted by iccv 2023 non-camera-ready versio

    Human-Centric Deep Generative Models: The Blessing and The Curse

    Get PDF
    Over the past years, deep neural networks have achieved significant progress in a wide range of real-world applications. In particular, my research puts a focused lens in deep generative models, a neural network solution that proves effective in visual (re)creation. But is generative modeling a niche topic that should be researched on its own? My answer is critically no. In the thesis, I present the two sides of deep generative models, their blessing and their curse to human beings. Regarding what can deep generative models do for us, I demonstrate the improvement in performance and steerability of visual (re)creation. Regarding what can we do for deep generative models, my answer is to mitigate the security concerns of DeepFakes and improve minority inclusion of deep generative models. For the performance of deep generative models, I probe on applying attention modules and dual contrastive loss to generative adversarial networks (GANs), which pushes photorealistic image generation to a new state of the art. For the steerability, I introduce Texture Mixer, a simple yet effective approach to achieve steerable texture synthesis and blending. For the security, my research spans over a series of GAN fingerprinting solutions that enable the detection and attribution of GAN-generated image misuse. For the inclusion, I investigate the biased misbehavior of generative models and present my solution in enhancing the minority inclusion of GAN models over underrepresented image attributes. All in all, I propose to project actionable insights to the applications of deep generative models, and finally contribute to human-generator interaction

    Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography

    Full text link
    Data hiding is the process of embedding information into a noise-tolerant signal such as a piece of audio, video, or image. Digital watermarking is a form of data hiding where identifying data is robustly embedded so that it can resist tampering and be used to identify the original owners of the media. Steganography, another form of data hiding, embeds data for the purpose of secure and secret communication. This survey summarises recent developments in deep learning techniques for data hiding for the purposes of watermarking and steganography, categorising them based on model architectures and noise injection methods. The objective functions, evaluation metrics, and datasets used for training these data hiding models are comprehensively summarised. Finally, we propose and discuss possible future directions for research into deep data hiding techniques

    VGFlow: Visibility guided Flow Network for Human Reposing

    Full text link
    The task of human reposing involves generating a realistic image of a person standing in an arbitrary conceivable pose. There are multiple difficulties in generating perceptually accurate images, and existing methods suffer from limitations in preserving texture, maintaining pattern coherence, respecting cloth boundaries, handling occlusions, manipulating skin generation, etc. These difficulties are further exacerbated by the fact that the possible space of pose orientation for humans is large and variable, the nature of clothing items is highly non-rigid, and the diversity in body shape differs largely among the population. To alleviate these difficulties and synthesize perceptually accurate images, we propose VGFlow. Our model uses a visibility-guided flow module to disentangle the flow into visible and invisible parts of the target for simultaneous texture preservation and style manipulation. Furthermore, to tackle distinct body shapes and avoid network artifacts, we also incorporate a self-supervised patch-wise "realness" loss to improve the output. VGFlow achieves state-of-the-art results as observed qualitatively and quantitatively on different image quality metrics (SSIM, LPIPS, FID).Comment: 9 pages, 18 figures, computer visio

    Visual Privacy Protection Methods: A Survey

    Get PDF
    Recent advances in computer vision technologies have made possible the development of intelligent monitoring systems for video surveillance and ambient-assisted living. By using this technology, these systems are able to automatically interpret visual data from the environment and perform tasks that would have been unthinkable years ago. These achievements represent a radical improvement but they also suppose a new threat to individual’s privacy. The new capabilities of such systems give them the ability to collect and index a huge amount of private information about each individual. Next-generation systems have to solve this issue in order to obtain the users’ acceptance. Therefore, there is a need for mechanisms or tools to protect and preserve people’s privacy. This paper seeks to clarify how privacy can be protected in imagery data, so as a main contribution a comprehensive classification of the protection methods for visual privacy as well as an up-to-date review of them are provided. A survey of the existing privacy-aware intelligent monitoring systems and a valuable discussion of important aspects of visual privacy are also provided.This work has been partially supported by the Spanish Ministry of Science and Innovation under project “Sistema de visión para la monitorización de la actividad de la vida diaria en el hogar” (TIN2010-20510-C04-02) and by the European Commission under project “caring4U - A study on people activity in private spaces: towards a multisensor network that meets privacy requirements” (PIEF-GA-2010-274649). José Ramón Padilla López and Alexandros Andre Chaaraoui acknowledge financial support by the Conselleria d'Educació, Formació i Ocupació of the Generalitat Valenciana (fellowship ACIF/2012/064 and ACIF/2011/160 respectively)

    TimbreTron: A WaveNet(CycleGAN(CQT(Audio))) Pipeline for Musical Timbre Transfer

    Full text link
    In this work, we address the problem of musical timbre transfer, where the goal is to manipulate the timbre of a sound sample from one instrument to match another instrument while preserving other musical content, such as pitch, rhythm, and loudness. In principle, one could apply image-based style transfer techniques to a time-frequency representation of an audio signal, but this depends on having a representation that allows independent manipulation of timbre as well as high-quality waveform generation. We introduce TimbreTron, a method for musical timbre transfer which applies "image" domain style transfer to a time-frequency representation of the audio signal, and then produces a high-quality waveform using a conditional WaveNet synthesizer. We show that the Constant Q Transform (CQT) representation is particularly well-suited to convolutional architectures due to its approximate pitch equivariance. Based on human perceptual evaluations, we confirmed that TimbreTron recognizably transferred the timbre while otherwise preserving the musical content, for both monophonic and polyphonic samples.Comment: 17 pages, published as a conference paper at ICLR 201

    Learning Iterative Neural Optimizers for Image Steganography

    Full text link
    Image steganography is the process of concealing secret information in images through imperceptible changes. Recent work has formulated this task as a classic constrained optimization problem. In this paper, we argue that image steganography is inherently performed on the (elusive) manifold of natural images, and propose an iterative neural network trained to perform the optimization steps. In contrast to classical optimization methods like L-BFGS or projected gradient descent, we train the neural network to also stay close to the manifold of natural images throughout the optimization. We show that our learned neural optimization is faster and more reliable than classical optimization approaches. In comparison to previous state-of-the-art encoder-decoder-based steganography methods, it reduces the recovery error rate by multiple orders of magnitude and achieves zero error up to 3 bits per pixel (bpp) without the need for error-correcting codes.Comment: International Conference on Learning Representations (ICLR) 202
    corecore