1,120 research outputs found

    Hand pose recognition using a consumer depth camera

    Get PDF
    [no abstract

    Review of constraints on vision-based gesture recognition for human–computer interaction

    Get PDF
    The ability of computers to recognise hand gestures visually is essential for progress in human-computer interaction. Gesture recognition has applications ranging from sign language to medical assistance to virtual reality. However, gesture recognition is extremely challenging not only because of its diverse contexts, multiple interpretations, and spatio-temporal variations but also because of the complex non-rigid properties of the hand. This study surveys major constraints on vision-based gesture recognition occurring in detection and pre-processing, representation and feature extraction, and recognition. Current challenges are explored in detail

    Hand Gesture Recognition for Sign Language Transcription

    Get PDF
    Sign Language is a language which allows mute people to communicate with other mute or non-mute people. The benefits provided by this language, however, disappear when one of the members of a group does not know Sign Language and a conversation starts using that language. In this document, I present a system that takes advantage of Convolutional Neural Networks to recognize hand letter and number gestures from American Sign Language based on depth images captured by the Kinect camera. In addition, as a byproduct of these research efforts, I collected a new dataset of depth images of American Sign Language letters and numbers, and I compared the presented method for image recognition against a similar dataset but for Vietnamese Sign Language. Finally, I present how this work supports my ideas for the future work on a complete system for Sign Language transcription

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    Hand gesture recognition using Kinect.

    Get PDF
    Hand gesture recognition (HGR) is an important research topic because some situations require silent communication with sign languages. Computational HGR systems assist silent communication, and help people learn a sign language. In this thesis. a novel method for contact-less HGR using Microsoft Kinect for Xbox is described, and a real-time HCR system is implemented with Microsoft Visual Studio 2010. Two different scenarios for HGR are provided: the Popular Gesture with nine gestures, and the Numbers with nine gestures. The system allows the users to select a scenario, and it is able to detect hand gestures made by users. to identify fingers, and to recognize the meanings of gestures, and to display the meanings and pictures on screen. The accuracy of the HGR system is from 84% to 99% with single hand gestures, and from 90% to 100% if both hands perform the same gesture at the same time. Because the depth sensor of Kinect is an infrared camera, the lighting conditions. signers\u27 skin colors and clothing, and background have little impact on the performance of this system. The accuracy and the robustness make this system a versatile component that can be integrated in a variety of applications in daily life
    • …
    corecore