458 research outputs found

    Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds

    Full text link
    A novel multi-scale operator for unorganized 3D point clouds is introduced. The Difference of Normals (DoN) provides a computationally efficient, multi-scale approach to processing large unorganized 3D point clouds. The application of DoN in the multi-scale filtering of two different real-world outdoor urban LIDAR scene datasets is quantitatively and qualitatively demonstrated. In both datasets the DoN operator is shown to segment large 3D point clouds into scale-salient clusters, such as cars, people, and lamp posts towards applications in semi-automatic annotation, and as a pre-processing step in automatic object recognition. The application of the operator to segmentation is evaluated on a large public dataset of outdoor LIDAR scenes with ground truth annotations.Comment: To be published in proceedings of 3DIMPVT 201

    Robust segmentation in laser scanning 3D point cloud data

    Get PDF
    Segmentation is a most important intermediate step in point cloud data processing and understanding. Covariance statistics based local saliency features from Principal Component Analysis (PCA) are frequently used for point cloud segmentation. However it is well known that PCA is sensitive to outliers. Hence segmentation results can be erroneous and unreliable. The problems of surface segmentation in laser scanning point cloud data are investigated in this paper. We propose a region growing based statistically robust segmentation algorithm that uses a recently introduced fast Minimum Covariance Determinant (MCD) based robust PCA approach. Experiments for several real laser scanning datasets show that PCA gives unreliable and non-robust results whereas the proposed robust PCA based method has intrinsic ability to deal with noisy data and gives more accurate and robust results for planar and non planar smooth surface segmentation

    3D point cloud video segmentation oriented to the analysis of interactions

    Get PDF
    Given the widespread availability of point cloud data from consumer depth sensors, 3D point cloud segmentation becomes a promising building block for high level applications such as scene understanding and interaction analysis. It benefits from the richer information contained in real world 3D data compared to 2D images. This also implies that the classical color segmentation challenges have shifted to RGBD data, and new challenges have also emerged as the depth information is usually noisy, sparse and unorganized. Meanwhile, the lack of 3D point cloud ground truth labeling also limits the development and comparison among methods in 3D point cloud segmentation. In this paper, we present two contributions: a novel graph based point cloud segmentation method for RGBD stream data with interacting objects and a new ground truth labeling for a previously published data set. This data set focuses on interaction (merge and split between ’object’ point clouds), which differentiates itself from the few existing labeled RGBD data sets which are more oriented to Simultaneous Localization And Mapping (SLAM) tasks. The proposed point cloud segmentation method is evaluated with the 3D point cloud ground truth labeling. Experiments show the promising result of our approach.Postprint (published version

    AUTOMATIC FAÇADE SEGMENTATION FOR THERMAL RETROFIT

    Get PDF
    Abstract. In this paper we present an automated method to derive highly detailed 3D vector models of modern building facades from terrestrial laser scanning data. The developed procedure can be divided into two main steps: firstly the main elements constituting the facade are identified by means of a segmentation process, then the 3D vector model is generated including some priors on architectural scenes. The identification of main facade elements is based on random sampling and detection of planar elements including topology information in the process to reduce under- and over-segmentation problems. Finally, the prevalence of straight lines and orthogonal intersections in the vector model generation phase is exploited to set additional constraints to enforce automated modeling. Contemporary a further classification is performed, enriching the data with semantics by means of a classification tree. The main application field for these vector models is the design of external insulation thermal retrofit. In particular, in this paper we present a possible application for energy efficiency evaluation of buildings by mean of Infrared Thermography data overlaid to the facade model

    Extraction robuste de primitives géométriques 3D dans un nuage de points et alignement basé sur les primitives

    Get PDF
    Dans ce projet, nous Ă©tudions les problĂšmes de rĂ©tro-ingĂ©nierie et de contrĂŽle de la qualitĂ© qui jouent un rĂŽle important dans la fabrication industrielle. La rĂ©tro-ingĂ©nierie tente de reconstruire un modĂšle 3D Ă  partir de nuages de points, qui s’apparente au problĂšme de la reconstruction de la surface 3D. Le contrĂŽle de la qualitĂ© est un processus dans lequel la qualitĂ© de tous les facteurs impliquĂ©s dans la production est abordĂ©e. En fait, les systĂšmes ci-dessus nĂ©cessitent beaucoup d’intervention de la part d’un utilisateur expĂ©rimentĂ©, rĂ©sultat souhaitĂ© est encore loin soit une automatisation complĂšte du processus. Par consĂ©quent, de nombreux dĂ©fis doivent encore ĂȘtre abordĂ©s pour atteindre ce rĂ©sultat hautement souhaitable en production automatisĂ©e. La premiĂšre question abordĂ©e dans la thĂšse consiste Ă  extraire les primitives gĂ©omĂ©triques 3D Ă  partir de nuages de points. Un cadre complet pour extraire plusieurs types de primitives Ă  partir de donnĂ©es 3D est proposĂ©. En particulier, une nouvelle mĂ©thode de validation est proposĂ©e pour Ă©valuer la qualitĂ© des primitives extraites. À la fin, toutes les primitives prĂ©sentes dans le nuage de points sont extraites avec les points de donnĂ©es associĂ©s et leurs paramĂštres descriptifs. Ces rĂ©sultats pourraient ĂȘtre utilisĂ©s dans diverses applications telles que la reconstruction de scĂšnes on d’édifices, la gĂ©omĂ©trie constructive et etc. La seconde question traiĂ©e dans ce travail porte sur l’alignement de deux ensembles de donnĂ©es 3D Ă  l’aide de primitives gĂ©omĂ©triques, qui sont considĂ©rĂ©es comme un nouveau descripteur robuste. L’idĂ©e d’utiliser les primitives pour l’alignement arrive Ă  surmonter plusieurs dĂ©fis rencontrĂ©s par les mĂ©thodes d’alignement existantes. Ce problĂšme d’alignement est une Ă©tape essentielle dans la modĂ©lisation 3D, la mise en registre, la rĂ©cupĂ©ration de modĂšles. Enfin, nous proposons Ă©galement une mĂ©thode automatique pour extraire les discontinutĂ©s Ă  partir de donnĂ©es 3D d’objets manufacturĂ©s. En intĂ©grant ces discontinutĂ©s au problĂšme d’alignement, il est possible d’établir automatiquement les correspondances entre primitives en utilisant l’appariement de graphes relationnels avec attributs. Nous avons expĂ©rimentĂ© tous les algorithmes proposĂ©s sur diffĂ©rents jeux de donnĂ©es synthĂ©tiques et rĂ©elles. Ces algorithmes ont non seulement rĂ©ussi Ă  accomplir leur tĂąches avec succĂšs mais se sont aussi avĂ©rĂ©s supĂ©rieus aux mĂ©thodes proposĂ©es dans la literature. Les rĂ©sultats prĂ©sentĂ©s dans le thĂšse pourraient s’avĂ©rĂ©r utilises Ă  plusieurs applications.In this research project, we address reverse engineering and quality control problems that play significant roles in industrial manufacturing. Reverse engineering attempts to rebuild a 3D model from the scanned data captured from a object, which is the problem similar to 3D surface reconstruction. Quality control is a process in which the quality of all factors involved in production is monitored and revised. In fact, the above systems currently require significant intervention from experienced users, and are thus still far from being fully automated. Therefore, many challenges still need to be addressed to achieve the desired performance for automated production. The first proposition of this thesis is to extract 3D geometric primitives from point clouds for reverse engineering and surface reconstruction. A complete framework to extract multiple types of primitives from 3D data is proposed. In particular, a novel validation method is also proposed to assess the quality of the extracted primitives. At the end, all primitives present in the point cloud are extracted with their associated data points and descriptive parameters. These results could be used in various applications such as scene and building reconstruction, constructive solid geometry, etc. The second proposition of the thesis is to align two 3D datasets using the extracted geometric primitives, which is introduced as a novel and robust descriptor. The idea of using primitives for alignment is addressed several challenges faced by existing registration methods. This alignment problem is an essential step in 3D modeling, registration and model retrieval. Finally, an automatic method to extract sharp features from 3D data of man-made objects is also proposed. By integrating the extracted sharp features into the alignment framework, it is possible implement automatic assignment of primitive correspondences using attribute relational graph matching. Each primitive is considered as a node of the graph and an attribute relational graph is created to provide a structural and relational description between primitives. We have experimented all the proposed algorithms on different synthetic and real scanned datasets. Our algorithms not only are successful in completing their tasks with good results but also outperform other methods. We believe that the contribution of them could be useful in many applications
    • 

    corecore