
Copyright © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE 

must be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 

component of this work in other works. 

 

 

 

Nurunnabi, Abdul and Belton, David and West, Geoff. 2012. Robust segmentation in 

laser scanning 3D point cloud data, in Proceedings of the International Conference 

on Digital Image Computing Techniques and Applications (DICTA), Dec 3-5 2012. 

Fremantle, WA: IEEE. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195646565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1 

Robust Segmentation in Laser Scanning  
3D Noisy Point Cloud Data  

 

X 
Department of Spatial Sciences 

Curtin University, Perth, Australia 
CRC for Spatial Information 

Email 

 Y 
Department of Spatial Sciences 

Curtin University, Perth, Australia 
CRC for Spatial Information 

Email 

Z  
Department of Spatial Sciences 

Curtin University, Perth, Australia 
CRC for Spatial Information 

Email 
 
 

Abstract— Segmentation is a most important intermediate step in 
point cloud data processing and understanding. Covariance 
statistics based local saliency features from Principal Component 
Analysis (PCA) are frequently used for point cloud segmentation. 
However it is well known that PCA is sensitive to outliers. Hence 
segmentation results can be erroneous and unreliable. The 
problems of surface segmentation in laser scanning point cloud 
data are investigated in this paper. We propose a region growing 
based statistically robust segmentation algorithm that uses a 
recently introduced fast Minimum Covariance Determinant 
(MCD) based robust PCA approach. Experiments for several 
real laser scanning datasets show that PCA gives unreliable and 
non-robust results whereas the proposed robust PCA based 
method gives more accurate and robust results for planar and 
non planar smooth surface segmentation.   

Keywords: Covariance technique; feature extraction; outlier; 
region growing; robust normal; robust statistics 

I. INTRODUCTION  
Segmentation plays a key role in surface reconstruction, 

feature extraction, 3D modeling and object recognition. All are 
strongly interrelated tasks in many areas including pattern 
recognition, computer vision, image processing, reverse 
engineering, photogrammetry and remote sensing [Besl and 
Jain, 1988; Klasing 2009; Liang et al. 2011; Liu and Xiong, 
2008; Pauly et al. 2002]. It is the process of separating and 
labeling the most similar surface points into a number of 
separate surfaces. Segmentation in point cloud data is not a 
trivial task because the 3D points in a point cloud are usually 
unorganized, incomplete, without any connection information, 
sparse, and have uneven distribution. In addition the surface 
shape can be arbitrary with sharp features and there is no 
statistical distributional pattern in the data [Liang et al. 2011; 
Sotoodeh, 2006]. Moreover, the physical limitations of the 
sensors, boundaries between 3D features, occlusions, multiple 
reflectance and noise can produce off-surface points that 
appear to be outliers [Sotoodeh, 2006]. The true data combined 
with the presence of outliers make the segmentation process 
more complex and harder.   

Conventional approaches to the segmentation problem can 
be classified mainly into three categories: edge/border based 
[Fan et al. 87], region based [Besl and Jain, 88] and hybrid 
[Woo et al. 2002]. Edge based methods usually detect edge and 

boundary points, then group the points that are within the 
identified boundaries and connected edges. Region based 
approaches use local surface neighborhoods to combine nearby 
points that have similar properties (orientation etc.) to obtain 
homogeneity within regions and consequently find 
dissimilarity between the different regions. Hybrid methods 
involve both the edge and boundary based approaches to 
overcome the limitations in both to give better segmentation. It 
is true that the success of hybrid methods depends on the 
success of either or or both underlying methods. Scanline 
[Jiang et al. 1996] and geometric primitive based methods 
[Marshall et al. 2001] have been introduced for point cloud 
segmentation.  The scanline method is based on grouping the 
scan lines but has limitations [Powel et al. 1998]. The method 
is not good for unordered and uneven density point clouds, 
situations that commonly occur for real data.  Klasing [2009] 
identifies limitations of the geometric primitives based method 
including the problem of predicting the segmentation results  
and the high computational cost for large numbers of features. 
Region based methods are more robust to noise than edge-
based methods when using global information [Liu and Xiong, 
2008]. In the same paper the authors mention the problem of 
over or under segmentation, the problem of determining region 
borders accurately, and the sensitivity of the location of initial 
seed regions.  Similar comments have been made concerning 
the location of seed points [Chen and Stamos, 2007]. 
Inaccurate estimates of the normals of range points near region 
boundaries can cause inaccurate segmentation results. We 
consider all the points raised in Liu and Xiong [2008] and Chen 
and Stamos [2007] for finding a reliable segmentation 
algorithm.  

Principal Component Analysis (PCA) based local surface 
saliency features (e.g. normal and curvature) are used 
frequently for region growing and edge based methods in 
segmentation [Pauly et al. 2002; Hoppe et al. 1992]. Since 
classical PCA uses non-robust location and scatter in its 
analysis, the consequent estimates (saliency features, e.g. 
normal and curvature) are erroneous and results in 
segmentation are inaccurate, unreliable and non-robust. Mitra 
and Nguyen [2003] state that the sensitivity of PCA to outliers 
means it fails to accurately fit planes. The literature reveals 
most of the limitations in the region growing process are 
related directly and/or indirectly to outlier problems. One of the 
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major problems of outliers is it is not possible to get accurate 
and robust normals in presence of outliers. If correct normals 
are robustly estimated for each point, the geometry of even 
strongly corrupted point-clouds can be perceived [Li et al. 
2010]. Robust PCA can provide robust covariance statistics 
and as a result we get robust normals and curvatures.  

To reduce outlier effects on the estimates, this paper 
proposes a statistically robust segmentation algorithm based on 
the robust PCA approach. The proposed method is beneficial 
because of its high resistance to outliers. It can efficiently 
handle over and/or under segmentation, select robust seed 
points, detect border/edge points and gaps and reduce outlier 
effects for the whole process. The algorithm is efficient for non 
planar smooth surfaces as well as for planar surfaces.  

The rest of the paper is organized as follows. Section II 
briefly discusses the relevant principles and methods. We 
propose the robust segmentation algorithm in Section III. In 
Section IV, experiments are performed using real laser scanner 
data to show the efficiency of the new algorithm followed by 
conclusions in Section V.  

II. RELATED PRINCIPLES AND METHODS   

A. Principal Component Analysis 
PCA is one of the most popular statistical techniques for 

dimension reduction and visualization of the data structure. It 
finds Principal Components (PCs) that are linear combinations 
of the original variables ranked in terms of the variability in the 
data given by the variances. The corresponding orthogonal 
directions re given by the eigenvectors of the Covariance 
matrix (C) of the data. As a result, the PCs describe the data 
variances in different orthogional directions. PCA works as a 
basis transformation to diagonalize an estimate of the 
covariance matrix: 
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In 3D point cloud data, a point pi = (xi, yi, zi) (pi ∈P ∈R3; P is 
a dataset), and p is the centre of k points. To perform the 
transformation one has to solve the eigenvalue equation: 

                                         CVV =λ .                                     (2) 

Solving the equation by Singular Value Decomposition (SVD) 
on C, we can easily get the eigenvalues λ (λ2 ≥λ1 ≥λ0) and 
eigenvectors V (v2, v1 and v0). Since C is a symmetric and 
positive semi-definite matrix all λi ≥ 0, and λi describes the 
variation along vi.  

B. Saliency Features 
Saliency features are based on the covariance statistics (λ 

and V in Eq. (2)) PCA has been used for points classification 
and region growing in segmentation [Pauly et al. 2002; Hoppe 
et al., 1992]. C in Eq. (1) for a local neighborhood Npi of a 
point pi has k neighbours, with the neighborhood size chosen to 
be sufficiently small to approximate the points as lying in a 
local planar surface. Since every PC describes as much of the 
data variance as it can with the highest PC describing the most 

variance, the first two PCs are enough to explain a planar 
surface. Thus v0 approximates the surface normal n for pi, λ0 
describes the variation along the surface normal, and the 
surface variation (curvature) is defined as [Pauly et al. 2002]: 
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Most of the existing techniques [Pauly et al. 2002; Hoppe et 
al. 1992; Pauly et al. 2003; Rabbani et al. 2006; Oehler et al. 
2011] use PCA to get the saliency features. Unfortunately the 
PCA estimates for saliency features are very sensitive to 
outliers and gives inaccurate and non-robust segmentation 
results.  

C. Robust Principal Component Analysis   
To reduce outlier effects and to get robust estimates of 

saliency features, we use Robust PCA (RPCA) and compute 
the eigenvalues and eigenvectors in a robust way. Many robust 
centre (mean) and covariance estimators have been introduced 
in the literature [Maronna and Yohai, 1998] to get robust 
variants of PCA. We use the robust PCA proposed by Hubert 
and Rousseeuw [2005] that combines the idea of Projection 
Pursuit (PP) with the fast-MCD (FMCD). The PP is used to 
pre-process the data so that the transformed data are lying in a 
subspace whose with dimension  is less than the total number 
of data points. T, and then the FMCD [Rousseeuw and 
Driessen, 1999] estimators are used to get the robust centre and 
covariance matrix. In PP, if a point is a multivariate outlier, 
then there must be some one-dimensional projection of the data 
for which the point is a univariate outlier [Maronna and Yohai, 
1995]. Since, "PP uses trimmed global measures; it has the 
advantage of robustness against outliers" [Friedman nd Tukey, 
1974]. The FMCD has better statistical efficiency and it is 
asymptotically normal [Rousseeuw and Driessen, 1999]. In 
RPCA, first the data is compressed to the PCs defining 
potential directions. Then, each ith direction is scored by its 
corresponding value of “outlyingness”. The Stahel-Donoho 
[Stahel, 1981; Donoho, 1982] measure of outlyingness is 
defined as:  
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where the maximum is used for all directions, v is a univariate 
direction and pivT denotes a projection of the ith observation pi 
on the direction v. For every direction a re-weighted robust 
centre cMCD and scatter ΣMCD of the projected data points pivT 
are computed. Next, a fraction h (>k/2) of observations with the 
smallest values of wi are used to construct a re-weighted robust 
covariance matrix Σ. In our experiments, we use h=0.75k. 
Finally, robust PCA projects the data points onto the r-
dimensional subspace spanned by the r (r = 2 for plane fitting) 
largest eigenvectors (PCs) of Σ and computes their centre and 
scatter by the re-weighted FMCD. The eigenvectors of Σ then 
determine the robust PCs, and the eigenvalues can be used to 
get the robust saliency features.  

In the PCA context, an outlier can be defined in two ways. 
Orthogonal outlier, that is determined from the orthogonal 
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distance (the distance between an observation and its projection 
in the r dimensional PCA subspace) defined as: 

                                  |||| iii ppOD ⌢
−= ,                                (5) 

where ip
⌢ is the projection of pi onto the PCA subspace. The 

other type of outlier is measured by the scored distance within 
the PCA subspace. These are then the points that lie far from 
the bulk of the points within the projected space (e.g. in case of 
plane fitting, the best fit plane). RPCA has the advantage of 
being able to find these two types of outliers as a by-product in 
a diagnostic way.   

III. SEGMENTATION   
It is known that point cloud data do not follow any statistical 
distribution, so it is not possible to determine any pattern or 
mathematical model a priori. We formulate the problems in 
segmentation for identifying underlying patterns in an 
unsupervised non-parametric fashion.  

It is proposed that every surface point in a sufficiently-
small local region/surface (neighborhood) can be considered to 
be lying on a planar surface. This principle allows us to use the 
local saliency feature information to check the behaviour of a 
point with respect to a smooth surface. It can be shown that 
points on some local planar surface may lie on a smooth co-
surface under certain conditions. Fig. 1 illustrates the various 
aspects when considering the segmentation of data into three 
planes (shown in 1D for clarity).  

 
Figure 1.  (a) Planar surfaces (b) non-planar smooth surface   

If we think that the gaps between the two boundary points of 
different planar surfaces are not enough to consider them 
separate then they may be co-surface points with certain 
coherence criteria, otherwise discontinuity appears in the gaps. 
In Fig. 1 (a), we see three planar surfaces that appear to have 
disjoint/discontinuities (gaps) between them. The first two 
planes appear to have a jump edge (as in Fig. 2 (b)) and the last 
two planes appear to have a crease edge (as in Fig. 2 (a)) at 
their boundaries.  In Fig. 1, points near gaps and edges are the 
major concern when determining which points belong to which 
surface. Therefore careful analysis is needed around edges and 
gaps for good segmentation.  

A. Problems: Edges, Gaps and Outliers  
Edges, gaps and outliers are considered as the three main 

and unavoidable problems when segmenting point cloud data. 
Hence a proper understanding about them is vital for providing 
better solutions for accurate and reliable surface segmentation 
and reconstruction.  

1) Edges: Many authors deal with edges as a means of 
delineating object boundaries. Usually, three types of edges 
are considered (see Fig. 2): (a) crease/corner edges such as 

those where two sides of a roof meet, and where the surface 
point normals are influenced by different planes, (b) jump/step 
edges that occur where a surface undergoes discontinuty and 
close to the boundary points on the two planes have the same 
orientation, and (c) smooth/virtual edges that can be 
charaterised by similar normals but there is a change of 
curvature.  

 

 
Figure 2.   (a) crease edge (b) jump edge (c) smooth edge  

2) Gaps: Unexpected interruption in data acquisition, a 
faulty sensor, any obstacles hat obstruct the laser pulse and/or 
uneven surface point density may cause gaps (discontinuties 
and holes) in the acquired data points. Gaps of the types 
shown in Fig. 3 are usually seen. Misleading gaps can be filled 
by boundary extension, which is possible given a thorough 
analysis of the neighbouring surface points.  

 

 
Figure 3.  Gaps in different surface positions  

3) Outliers/noise: Outlier issues further exacerbate the 
problem of edges and gaps. A common idea about outliers is 
that they are classified as points that are far from the majority 
points in a dataset, or do not follow the same pattern as the 
majority follows. Hence in a general sense noise can appear as 
outliers in many cases. Outliers contaminate local 
neighborhood based covariance statistics giving inaccurate 
normals and curvature values.  Most of the time, points in a 
local neighborhood with outliers result in the tangent plane 
being biased in the direction of the outlier. The presence of 
outliers in different positions (especially on the edges and 
boundaries) on a surface results in errors in the estimates of 
local saliencies (e.g. normals). Fig 4 shows outliers between 
pairs of surfaces that can join them erroneously, and can 
change the orientations of the two planar surfaces. Even 
outliers between two points in a neighborhood can produce 
erroenous discontinuties in a surface.  

 
Figure 4.  (a) Outlier as an off-surface point (b) outlier between two co-

planar planes (c) outlier between two non-coplanar parallel planes   
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B. Proximity and Coherence Criteria  
1) Normals: Visual surface orientation is a useful 

criterion for feature surface reconstruction and object 
recognition. This orientation can be represented by the unit 
normal to the best fitted plane at a point of interest pi. Surface 
reconstruction and segmentation depend on normal estimation 
because the fastest and more robust surface reconstruction 
algorithms requires points with normals [Yoon et al. 2007]. 
Many approaches are available in the literature [e.g. Hoffman 
and Jain, 1987; Hoppe et al., 1992; Wang et al., 2001; Yang 
and Feng, 2005] for normal estimation. A recent survey 
[Klasing et al. 2009] shows that the PCA based approach in 
[Hoppe et al. 1992] is one of the most efficient and popular. To 
show that PCA is sensitive to outliers and gives inaccurate 
normals in the presence of outliers/noise, we take a small 
sample from a planar surface in a point cloud and contaminate 
it with 20% outliers (Fig. 5(a)). Fig. 5(b) shows the influence 
of outliers on PCA normals producing errors where outliers are 
present. In surface reconstruction, the quality of the 
approximation of the output surface depends on how well the 
estimated normals approximate the true normals of the sampled 
surface [Tamal et al. 2005]. Robust and accurate normals are 
essential to detect and reconstruct sharp/edge features. Yoon et 
al. [2007] show that outlier normal error estimation is the most 
likely source of problems when using state-of-the-art surface 
reconstruction techniques. We use RPCA to reduce the outlier 
problem. Fig. 5 (c) shows RPCA normals that can be seen to be 
not influenced by the outliers as they all pointing in a similar 
direction.  

 
Figure 5.  (a) Point cloud planar surface with outliers (red points) (b) PCA 

normals (c) RPCA normals  

2) Neighborhood: A problem related to proper normal 
estimation is obtaining the proper neighborhood of a point. 
Two common neighborhood selection methods are Fixed 
Distance Neighbors (FDN) and k Nearest Neighbors (kNN). 
kNN has the advantage that it can deal with data that has an  
uneven point density and can adapt the Area of Interest (AOI) 
with respect to the data density.  We use the K-D tree search 
algorithm based kNN to get a local neighborhood NPi of pi, 
mainly because of our interest in mobile mapping data 
(acquired from scanning lasers on vehicles), which has varying 
point density because of the movement of the vehicle. 
Neighborhood size is a major concern for reliable local 
saliency estimation. Hoffman and Jain [1987] note that smaller 
neighborhoods give normals more susceptible to noise. Many 
authors suggest using a larger k for better normals [Besl and 
Jain, 1988; Hoffman and Jain, 1987; Rabbani et al. 2006]. 
Yang and Feng [2005] point out that using a large number of 
points can adversely affect the local characteristics of the 
normal vector but the local geometry is better represented by a 
smaller number of points. Since the quality of the surface 
normals depend heavily on the structure of the surface 

geometry it is better to investigate the problem empirically 
rather than analytically by simulation or related real data 
experimentation and find the best value for k. A neighborhood 
size should be sufficiently large so that neighbours in the local 
neighborhood become co-planar. Fig. (6) shows that for RPCA 
noise has lerss influence for neighborhood size and gives more 
consistent estimates (e.g. curvature) than PCA.  

 

 
Figure 6.  (a) Planar surface, (b) non-planar smooth surface; magenta points 

are in a local neighborhood, k=500;  line diagrams of σ(p) vs k, (c) points from 
planar surface, (d) points from non-planar smooth surface, (e) box-plots for 

σ(p) from non-planar smooth surface points 

3)  Curvature: Curvature is another criterion for proximity. 
It measures the rate of change of surface normal, which is 
fairly popular in point cloud data analysis. Many authors use 
different types of curvature measures from different methods in 
many ways for segmentation [Besl and Jain, 1988; Pauly et al. 
2002; Rabbani et al. 2006]. Gaussian and mean curvature is 
proposed [Besl and Jain, 1988], but its limitations analysed 
[Powel et al. 1998; Rabbani et al. 2006] for its over 
segmentation and inefficiency even on very simple scenes with 
low noise.  The residual with a percentile based cut-off value is 
proposed [Rabbani et al. 2006] as curvature, and Klasing 
[2009] discusses its limitations for segmentation. One of the 
limitations is that the residual is not normalized and its cut-off 
is fixed. We consider σ(p) in Eq. (3) as the curvature and use it 
to determine the seed points for region growing. This 
normalized measure considers surface variations in all 
directions. It does not need extra computation and is available 
as a by-product of PCA. The problem is that PCA based σ(p) is 
sensitive to outliers, and an alternative remedy is to use of 
RPCA [Nurunnabi et al. 2012]. Fig. 6(c, d) shows the RPCA 
based values of σ(p)  are more consistent than those that are 
PCA based, both for planar surfaces (Fig. 6(a)) and non- planar 
smooth surfaces (Fig. 6(b)). Box-plots in Fig. 6(e) show a 
comparative summary of robustness for PCA and RPCA based 
curvatures.  

C. Algorithm Formulation 
The algorithm proposed is based on region (surface) 

growing. It uses various local surface point proximity and/or 
coherence criteria. It begins with a seed points identified as the 
local surface points that have the least curvature σ(p) values 
because it is expected that region growing will be more 
successful for areas where the surface variation is the least. We 
take a k neighborhood (NPi) for the seed point pi.  
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To make the surface smooth and at the same time to reduce 
outlier effects (if any), we use the point to plane Orthogonal 
Distance (OD) for all the neighbours of pi that we can calculate 
at the time of normal estimation. The OD for the ith point pi to 
its best fit plane generated by its neighbors can be defined as: 

                                      npppOD T
ii

⌢.)()( −=
,                  (6)  

where p and n⌢ are the centre (mean) and the unit normal of the 
best fit plane. We follow the general rule to get the OD 
threshold (ODth): (median (.) + a × MAD (.)) (a =1 to 3) for 
smooth co-surface points. To make the threshold robust we use 
the median and Median Absolute Deviation (MAD) instead of 
mean and standard deviation. We consider the ith point as a co-
planar surface point if: 

thiii ODNPODMADNPODmedianpOD =×+< )}({2)}({)( , (7) 

where {OD(NPi)} is the set of all ODs for all the points in the 
neighborhood, and: 

                       |)(|. jjii
pmedianpmedianbMAD −= ,          (8) 

where b = 1.4826 to make the estimator consistent [Rousseeuw 
and Croux, 1993].  

In region growing, two points defined to be spatially 
connected means that they should be locally close. Hence the 
distance between two points needs to be measured. They 
should be as close as the majority of the points that are close to 
each other in their neighborhood. We use the Euclidian 
Distance (ED) to compute the point to point distance 
(closeness) between a pair of points: 

                                       ||||)( jiij pppED −= ,                   (9) 

where pi is the seed point and pj is one of its neighbours. We 
consider pj to be spatially connected to pi if 
ED(pij)<median{ED(pij)}=EDth, where {ED(pij)} is the set of 
all EDs between the seed point and its neighbours, and EDth is 
the ED threshold.   

It is usually the case that an angle between two points from 
different feature surfaces (i.e. different local tangent planes) 
will be larger than a minimum angle threshold (θth), and on a 
smooth surface the angle between the two spatially close points 
will be much less. The angle (θ, sometimes termed the bias 
angle) between two points can be defined as: 

                               ||arccos j
T
iij nn ⌢⌢=θ ,                             (10)   

where in
⌢  and jn

⌢  are the two unit normals for the ith point and 
one of its neighbors pj. To avoid the 180° ambiguity of the 
normal vectors, we use absolute values in Eq. (10). Two 
spatially close points will be co-surface points if θ is less than a 
predefined threshold θth.  

Some of the proposed techniques in the literature use only 
θ, some use θ and curvature, and some suggest θ and ED for 
region growing in their segmentation algorithms. We argue all 
the three criteria (OD, ED and θ) are necessary for region 
growing. We illustrate this requirement by taking two datasets 
from two planar surfaces that have same orientation but parallel 
offsets (Fig. 7(a)).   We add 20% noise to make the surface non 
smooth, Fig. 7(b). First we use only θ as a criterion to separate 
the planes but it fails, (Fig. 7(c)) because the surfaces have 
similar normals. The use of ED is necessary to make the 
surfaces different (Fig. 7(e)), and OD is necessary to make the 
surfaces smooth (Fig. 7(d)). Fig. 7(f) shows the advantage of 
using all three criteria for proper segmentation.  

 
Figure 7.  Region growing flow (a) step planar surface data (b) outlier (red 

points) contaminated data; robust segmentations based on (c) θ (d) θ and OD 
(e) θ and ED (f) θ, OD and ED, showing only those points that are determined 

to not be outliers 

The region growing algorithm used is derived from the well 
known one based on seed points and iteratively growing each 
region by adding more points. After getting an initial seed point 
pi and its neighbours for a current region Rc, we add a 
neighbour pj to Rc and the current seed point list Sc with the 
conditions: (i) OD(pj)<ODth (ii) ED(pij)<EDth and (iii) θij<θth, 
and remove it from P (the point cloud). Now pj will be 
considered as the next seed point for the Rc. The Rc will grow 
until any new seed point is available for Rc. If the size of Rc is 
less than a minimum number (Rmin) of points then the region 
will be considered as insignificant. After getting a complete 
region, we select a seed point for the next region from the 
remaining points in P that has the least σ(p). This process will 
continue until P is empty. The process is summarized below in 
Algorithm 1 and a diagram for the proposed robust 
segmentation is sketched in Fig. 8.  

 



 6 

 
Figure 8.  Robust segmentation diagram 

 
Algorithm 1: Segmentation 

Input: 
Point cloud P={pi}, set of normals N={ in

⌢ }, set of curvature 
values {σ(pi)}, set of ODs={ODi}, angle threshold θth, 
minimum region size Rmin, current region Rc=[ ], current seed 
point list Sc=[ ], list of regions R=[ ].  
Output: 

R={Rc} ← List of regions 
while P is not empty do  

find initial seed point pi from P with minimum σ(pi) 
insert this seed point pi into Rc and Sc  
for each seed point in Sc do  

find k-nearest neighborhood NPi   
calculate EDij from seed point pi to its neighbors pj  
calculate EDth using the EDs (Eq. (9)) of neighbouring 
points of  NPi  
calculate ODth using ODs of  neighbouring points NPi 
using Eq. (7) 
calculate θij between seed point pi and its neighbour pj 
using Eq. (10) 
for each neighbor in NPi  do  

if pj is in P and ODj< ODth and EDij< EDth and θij<θth 
then  

insert pj into Rc and Sc, and remove it from P 
end if  

end for  
end for 
if size of Rc >Rmin  then 

insert Rc into R 
else   

 the region is insignificant 
end if  
clear Rc and Sc  

end while 
sort the regions in R 
return R 

IV. EXPERIMENTS  
The segmentation algorithm is demonstrated and evaluated 

in this section through experiments on three real laser scanning 
point cloud datasets. We compare the results in segmentation 
based on the covariance estimates using both of PCA and 
RPCA. We also see the neighborhood size and angle threshold 
have an effect on both PCA and RPCA segmentation.  

A. Data set 1 
This dataset contains 25,749  points of several type of 

roadside inventories (poles and signposts) (Fig. 9(a)). The 
dataset is a real laser scanning point cloud captured by a mobile 
mapping system. This data consists of a number of planar 
regions (road signs), long cylindrical and approximately 
cylindrical surfaces (poles) and more complex surfaces 
(lamps). We colour each data point to show the separate 
resultant segments determined by the algorithms. Based on 
preliminary experiments not reported here, we set the 
parameters k=50, θth =15° and Rmin=10. Fig. 9(b), shows the 
result of PCA based segmentation. Over and under 
segmentation occurs in many regions. The results based on 
RPCA shown in Fig. 9(c), show almost perfect segmentation 
for the objects under study. The far right road sign shows some 
leakage of points from the two upright poles into the planar 
road sign. For the same road sign, the points describing the tops 
of the two poles protruding above the sign have been 
erroneously classed as outliers. 

 

 
Figure 9.  (a) Real point cloud data (b) PCA segmentation (c) RPCA 

segmentation, 
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B. Data Set 2 
Fig. 10(a), this is a real point cloud data consisting of 

12,769 points acquired from the mobile mapping system. It 
contains a streetlight pole (non-planar smooth surface) and a 
signpost (planar surface). To illustrate the performance in the 
presence of outliers, we add 2% (255) extra points with 0.2 
normal variance are added. We set k=50, θth =18° and Rmin=10. 
The PCA based result (Fig. 10(b)) shows that there are four 
cases of under segmentation and one case of over segmentation 
(pole is attached with the ground). Fig. 10(c) shows that RPCA 
segments the data properly into seven segments. To see how 
the neighborhood size change affects segmentation, we change 
the neighborhood size to k=40 and 60 and keep the same values 
for. θth and Rmin as before. Fig. 10(d, e, f, g) show that for both 
neighborhood sizes 40 and 60, the results for RPCA are 
significantly better than for PCA. RPCA based segmentation is 
more consistent than PCA as a function of neighbourhood size 
although there are some less than perfect results for RPCA e.g. 
Fig. 10(g) in which one of the branches of the light has been 
separated from the rest of the lamp. 

 

 

 

 
Figure 10. (a) Real point cloud data (b) PCA segmentation, k=50  (c) RPCA 
segmentation, k=50 (d) PCA segmentation, k=40 (e) RPCA segmentation, 

k=40 (f) PCA segmentation, k=60 (g) RPCA segmentation, k=60  

C. Data set 3  
This dataset (Fig. 11(a)) consists of 18,191 points for one road 
side building (shop), again captured from the mobile mapping 
system. We set k=30, θth =10°, and Rmin=10. We add 5% 
outliers (noise). Fig. 11(b) shows the presence of over 
segmentation and under segmentation for PCA, whereas Fig. 
11(c) shows perfect segmentation for RPCA. To see the effects 
of change in the angle threshold, we set θth=13° but still get 
unsatisfactory results for PCA segmentation (Fig. 11(d)). In 
Fig. 11(e), RPCA gives consistent segmentation and 
significantly better results than PCA. The different features 
around the windows as well as the vertical window bars have 
been separated from the main building and the umbrella poles 
have been segmented as complete features. 
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Figure 11. (a) Real point cloud data (b) PCA segmentation, θth =10°, (c) 

RPCA segmentation, θth =10°, (d) PCA segmentation, θth =13°, (e) RPCA 
segmentation, θth =13° 

V. CONCLUSIONS 
A region growing based statistically robust segmentation 

algorithm is proposed for planar and non-planar smooth surface 
extraction from laser scanning 3D point cloud data. The 
algorithm uses robust PCA, to make the saliency features used 
for region growing more resistance to outliers. Results for 
experiments on real mobile mapping point cloud datasets show 
that the proposed RPCA based algorithm outperforms PCA for 
segmentation producing more correct results. The RPCA 
results are more consistent over changes in neighborhood size 
and angle threshold. The algorithm breaks down at more than 
50% outliers and the increase in outlier tolerance level and 
efficient segmentation for non-smooth surface are the subjects 
of future research.   
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