571 research outputs found

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    Real time coordination of overcurrent relays by means of optimization algorithm.

    Get PDF
    Protection is widely used in all different voltage levels of the electrical power system: generation, transmission, sub-transmission and distribution etc. An overcurrent relay is a protection that is widely implemented in the sub-transmission and distribution systems due to its competing cost. Depending on the operative conditions and fault locations in a mesh system, the load or fault currents can circle in or out of the overcurrent relay's protective zone. Hence directional overcurrent relays are used to discriminate whether the fault is located in or out of the protective zone. The propose of coordinating the overcurrent relays is to encounter settings that minimize the operation time for faults within the protective zone and at the same time offering pre-specified timed backup for relays that are in the adjacent zones. So the maximum fault current that the relay detects in its protective zone must be greater than the fault currents in the adjacent zones. The above condition is met in radial systems, one source mesh systems and two source mesh systems where the sources are located symmetrically at the end. But the above condition is not always met in the multi-source mesh systems due to the numerous operative configurations. Since the systems cannot operate in the absence of protection, other protection principles must be used, i.e. impedance relay. It is then said that for certain operative configurations of mesh system, overcurrent protection principle is out of range or in other words reaches the limit of its protection principle [1]

    Omega grey wolf optimizer (ωGWO) for optimization of overcurrent relays coordination with distributed generation

    Get PDF
    Inverse definite minimum time (IDMT) overcurrent relays (OCRs) are among protective devices installed in electrical power distribution networks. The devices are used to detect and isolate the faulty area from the system in order to maintain the reliability and availability of the electrical supply during contingency condition. The overall protection coordination is thus very complicated and could not be satisfied using the conventional method moreover for the modern distribution system. This thesis apply a meta-heuristic algorithm called Grey Wolf Optimizer (GWO) to minimize the overcurrent relays operating time while fulfilling the inequality constraints. GWO is inspired by the hunting behavior of the grey wolf which have firm social dominant hierarchy. Comparative studies have been performed in between GWO and the other well-known methods such as Differential Evolution (DE), Particle Swarm Optimizer (PSO) and Biogeographybased Optimizer (BBO), to demonstrate the efficiency of the GWO. The study is resumed with an improvement to the original GWO’s exploration formula named as Omega-GWO (ωGWO) to enhance the hunting ability. The ωGWO is then implemented to the realdistribution network with the distributed generation (DG) in order to investigate the drawbacks of the DG insertion towards the original overcurrent relays configuration setting. The GWO algorithm is tested to four different test cases which are IEEE 3 bus (consists of six OCRs), IEEE 8 bus (consists of 14 OCRs), 9 bus (consists of 24 OCRs) and IEEE 15 bus (consists of 42 OCRs) test systems with normal inverse (NI) characteristic curve for all test cases and very inverse (VI) curve for selected cases to test the flexibility of the GWO algorithm. The real-distribution network in Malaysia which originally without DG is chosen, to investigate and recommend the optimal DG placement that have least negative impact towards the original overcurrent coordination setting. The simulation results from this study has established that GWO is able to produce promising solutions by generating the lowest operating time among other reviewed algorithms. The superiority of the GWO algorithm is proven with relays’ operational time are reduced for about 0.09 seconds and 0.46 seconds as compared to DE and PSO respectively. In addition, the computational time of the GWO algorithm is faster than DE and PSO with the respective reduced time is 23 seconds and 37 seconds. In Moreover, the robustness of GWO algorithm is establish with low standard deviation of 1.7142 seconds as compared to BBO. The ωGWO has shown an improvement for about 55% and 19% compared to other improved and hybrid method of GA-NLP and PSO-LP respectively and 0.7% reduction in relays operating time compared to the original GWO. The investigation to the DG integration has disclosed that the scheme is robust and appropriate to be implemented for future system operational and topology revolutions

    Optimal Overcurrent Relays Coordination using an Improved Grey Wolf Optimizer

    Get PDF
    Recently, nature inspired algorithms (NIA) have been implemented to various fields of optimization problems. In this paper, the implementation of NIA is reported to solve the overcurrent relay coordination problem. The purpose is to find the optimal value of the Time Multiplier Setting (TMS) and Plug Setting (PS) in order to minimize the primary relays’ operating time at the near end fault. The optimization is performed using the Improved Grey Wolf Optimization (IGWO) algorithm. Some modifications to the original GWO have been made to improve the candidate’s exploration ability. Comprehensive simulation studies have been performed to demonstrate the reliability and efficiency of the proposed modification technique compared to the conventional GWO and some well-known algorithms. The generated results have confirmed the proposed IGWO is able to optimize the objective function of the overcurrent relay coordination problem

    Application of evolutionary algorithms for optimal directional overcurrent relay coordination

    Get PDF
    Includes bibliographical references.Relay coordination is necessary to ensure that while protection relays operate as fast as possible, they are also able to isolate only the faulted parts of the system from the network, ensuring that a power system disturbance does not result in interruption of the power supply to a larger part of the power system network. Optimal relay coordination for overcurrent relays depends on two parameters, namely, Time Multiplier and Pickup Current Setting. The conventional method of setting these two parameters for overcurrent relays applied on the power system network is to first determine the main and backup relay pairs which form part of the clockwise and anti-clockwise loops around the power system network. The relays are then set through an iterative process to ensure coordination. Initially, a general rule of setting relays to operate in 0.2 seconds for faults in the primary zone, to ensure fast operation, and in 0.2 seconds plus additional grading time, to ensure coordination, for faults in the backup zone is applied. The next relay in the loop is tested to check if it fulfils the requirements of the initial general rule. If the conditions of the general rule are not met, the previous relay’s setting is adjusted to meet the requirements. This process is repeated until all the relays around the loop are set. Conventional relay coordination process has a limitation in the sense that it is deterministic and the settings of subsequent relays depend on the initial guess of the settings of the initial relay. Therefore, this method does not necessarily provide solutions which guarantee optimal relay coordination but the best of the solutions tried

    Highly sensitive multifunction protection coordination scheme for improved reliability of power systems with distributed generation (PVs)

    Get PDF
    The high penetration of distribution generators (DGs), such as photovoltaic (PV), has made optimal overcurrent coordination a major concern for power protection. In the literature, the conventional single or multi‐objective function (OF) for phase overcurrent relays (OCRs) scheme faces challenges in terms of stability, sensitivity, and selectivity to handle the integration of DGs and ground fault scenarios. In this work, a new optimal OCR coordination scheme has been developed as a multifunction scheme for phase and ground events using standard and non‐standard tripping characteristics. This research introduces and validates a coordinated optimum strategy based on two new optimization approaches, the Tug of War Optimization algorithm (TWO) and the Charged System Search algorithm (CSS), to mitigate the effects of DGs on fault currents and locations across the power network. Industrial software is used to create a case study of a CIGRE power network equipped with two 10 MW PV systems, and the results of the proposed new optimum coordination scheme are compared to traditional schemes. The findings show that the proposed multifunction OCR scheme is able to reduce the tripping time of OCRs over different fault and grid operation scenarios and increase the sensitivity of the relays in islanding operation mode

    The recent development of protection coordination schemes based on inverse of AC microgrid: A review

    Get PDF
    Integration of distributed generation systems and diversity of microgrid operations led to a change in the structure of the power system. Due to this conversion, new challenges have arisen when employing traditional overcurrent protection schemes. As a consequence, non‐classical protection schemes have attracted significant attention in the last few years. Engineers and scholars have proposed different non‐standard methods to increase the power protection system and ensure the highly selectivity performance. Although the non‐standard characteristics and their requirements, in general, have been outlined and analyzed in the available literature, protection coordination based on voltage current–time inverse, as a branch of non‐standard optimization methods, has not yet been thoroughly discussed, compared, or debated in detail. To close this gap, this review introduces a broad overview of recent research and developments of the voltage current–time inverse based protection coordination. Focuses on assessing the potential advantages and disadvantages of related studies and provide a classification and analysis of these studies. The future trends and some recommendations have been included in this review for improving fault detection sensitivity and coordination reliability

    Optimizing the protection of an auto-recloser in a DG integrated distribution network.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.The integration of distributed generation into distribution networks is growing as most of the distributed generators have a sustainable power supply and can be used to improve the voltage profile. However, the type of a distributed generator and location in the distribution network can determine how a voltage profile behaves in a distribution feeder. They also contribute fault current in a new or same direction as the fault current from the utility. With this change in the fault current, the existing protection scheme may maloperate since the protection scheme was designed for fault current from the utility generator. One of the protection devices that can mal-operate is the auto-recloser. This is a device used for the self-remediation of the distribution network when there is a temporary fault. The IEEE and IEC standard for the international use of auto-reclosers in voltages between 1000 V and 38 kV states that the minimum tripping current shall be stated by the manufacturer with a tolerance not exceeding +/- 10% or 3 A, and the preferred operating sequence for auto-reclosers shall be; open – time delay of 0.5 seconds - close and open-second time delay 2 seconds - close and open - third-time delay of 5 seconds - close and open then lock out. However, these parameters can be violated when distributed generators are introduced into the distribution network. The change in the fault current may vary the operating time of the auto-recloser and it may not operate in this manner. The inverse time-current characteristics of the auto-recloser relay cause this. However, the operating time problem can be optimized. The inverse time-current characteristic of the auto-recloser relay can be used to formulate the auto-recloser operating time problem. The settings can be optimized to reduce the time and mitigate mal-operations such as protection blinding, fuse and auto-recloser losing coordination, and sympathetic tripping. To optimize the settings, optimization algorithms can be applied. In this research, the development of a single-shot auto-recloser is conducted. The IEEE 13-node and 34- node radial distribution feeders are used as a passive distribution network. The Wind Turbine and Solar Photovoltaic systems are distributed generators. MATLAB/Simulink is used for simulations, and the results obtained show that the integration of the distributed generators into a passive distribution network causes mal-operations in the auto-recloser when there is a fault. The factors that contribute to these mal-operations is the fault location, fault type, distributed generator type, distributed generator penetration and location. However, the auto-recloser shows improvement when the settings are optimized in these conditions

    Protection and fault location schemes suited to large-scale multi-vendor high voltage direct current grids

    Get PDF
    Recent developments in voltage source converter (VSC) technology have led to an increased interest in high voltage direct current (HVDC) transmission to support the integration of massive amounts of renewable energy sources (RES) and especially, offshore wind energy. VSC-based HVDC grids are considered to be the natural evolution of existing point-to-point links and are expected to be one of the key enabling technologies towards expediting the integration and better utilisation of offshore energy, dealing with the variable nature of RES, and driving efficient energy balance over wide areas and across countries. Despite the technological advancements and the valuable knowledge gained from the operation of the already built multi-terminal systems, there are several outstanding issues that need to be resolved in order to facilitate the deployment of large-scale meshed HVDC grids. HVDC protection is of utmost importance to ensure the necessary reliability and security of HVDC grids, yet very challenging due to the fast nature of development of DC faults and the abrupt changes they cause in currents and voltages that may damage the system components. This situation is further exacerbated in highly meshed networks, where the effects of a DC fault on a single component (e.g. DC cable) can quickly propagate across the entire HVDC grid. To mitigate the effect of DC faults in large-scale meshed HVDC grids, fast and fully selective approaches using dedicated DC circuit breaker and protection relays are required. As the speed of DC fault isolation is one order of magnitude faster than typical AC protection (i.e. less than 10 ms), there is a need for the development of innovative approaches to system protection, including the design and implementation of more advanced protection algorithms. Moreover, in a multi-vendor environment (in which different or the same type of equipment is supplied by various manufacturers), the impact of the grid elements on the DC fault signature may differ considerably from case to case, thus increasing the complexity of designing reliable protection algorithms for HVDC grids. Consequently, there is a need for a more fundamental approach to the design and development of protection algorithms that will enable their general applicability. Furthermore, following successful fault clearance, the next step is to pinpoint promptly the exact location of the fault along the transmission medium in an effort to expedite inspection and repair time, reduce power outage time and elevate the total availability of the HVDC grid. Successful fault location becomes increasingly challenging in HVDC grids due to the short time windows between fault inception and fault clearance that limit the available fault data records that may be utilised for the execution of fault location methods. This thesis works towards the development of protection and fault location solutions, designed specifically for application in large-scale multi-vendor HVDC grids. First, a methodology is developed for the design of travelling wave based non-unit protection algorithms that can be easily configured for any grid topology and parameters. Second, using this methodology, a non-unit protection algorithm based on wavelet transform is developed that ensures fast, discriminative and enhanced protection performance. Besides offline simulations, the efficacy of the wavelet transform based algorithm is also demonstrated by means of real-time simulation, thereby removing key technical barriers that have impeded the use of wavelet transform in practical protection applications. Third, in an effort to reinforce the technical and economic feasibility of future HVDC grids, a thorough fault management strategy is presented for systems that employ efficient modular multilevel converters with partial fault tolerant capability. Finally, a fault location scheme is developed for accurately estimating the fault location in HVDC grids that are characterised by short post-fault data windows due to the utilisation of fast acting protection systems.Recent developments in voltage source converter (VSC) technology have led to an increased interest in high voltage direct current (HVDC) transmission to support the integration of massive amounts of renewable energy sources (RES) and especially, offshore wind energy. VSC-based HVDC grids are considered to be the natural evolution of existing point-to-point links and are expected to be one of the key enabling technologies towards expediting the integration and better utilisation of offshore energy, dealing with the variable nature of RES, and driving efficient energy balance over wide areas and across countries. Despite the technological advancements and the valuable knowledge gained from the operation of the already built multi-terminal systems, there are several outstanding issues that need to be resolved in order to facilitate the deployment of large-scale meshed HVDC grids. HVDC protection is of utmost importance to ensure the necessary reliability and security of HVDC grids, yet very challenging due to the fast nature of development of DC faults and the abrupt changes they cause in currents and voltages that may damage the system components. This situation is further exacerbated in highly meshed networks, where the effects of a DC fault on a single component (e.g. DC cable) can quickly propagate across the entire HVDC grid. To mitigate the effect of DC faults in large-scale meshed HVDC grids, fast and fully selective approaches using dedicated DC circuit breaker and protection relays are required. As the speed of DC fault isolation is one order of magnitude faster than typical AC protection (i.e. less than 10 ms), there is a need for the development of innovative approaches to system protection, including the design and implementation of more advanced protection algorithms. Moreover, in a multi-vendor environment (in which different or the same type of equipment is supplied by various manufacturers), the impact of the grid elements on the DC fault signature may differ considerably from case to case, thus increasing the complexity of designing reliable protection algorithms for HVDC grids. Consequently, there is a need for a more fundamental approach to the design and development of protection algorithms that will enable their general applicability. Furthermore, following successful fault clearance, the next step is to pinpoint promptly the exact location of the fault along the transmission medium in an effort to expedite inspection and repair time, reduce power outage time and elevate the total availability of the HVDC grid. Successful fault location becomes increasingly challenging in HVDC grids due to the short time windows between fault inception and fault clearance that limit the available fault data records that may be utilised for the execution of fault location methods. This thesis works towards the development of protection and fault location solutions, designed specifically for application in large-scale multi-vendor HVDC grids. First, a methodology is developed for the design of travelling wave based non-unit protection algorithms that can be easily configured for any grid topology and parameters. Second, using this methodology, a non-unit protection algorithm based on wavelet transform is developed that ensures fast, discriminative and enhanced protection performance. Besides offline simulations, the efficacy of the wavelet transform based algorithm is also demonstrated by means of real-time simulation, thereby removing key technical barriers that have impeded the use of wavelet transform in practical protection applications. Third, in an effort to reinforce the technical and economic feasibility of future HVDC grids, a thorough fault management strategy is presented for systems that employ efficient modular multilevel converters with partial fault tolerant capability. Finally, a fault location scheme is developed for accurately estimating the fault location in HVDC grids that are characterised by short post-fault data windows due to the utilisation of fast acting protection systems
    • 

    corecore