2 research outputs found

    Robust Priority Assignments for Extending Existing Controller Area Network Applications

    No full text
    The usage of the controller area network (CAN) as an in-vehicle communication bus requires finding feasible and robust priority orders such that each message transmitted on the bus meets its specified deadline and tolerates potential transmission errors. Although such priority orders can be determined by available algorithms whenever they exist, it is always assumed that a CAN priority order is computed from scratch. In practical applications, it is frequently necessary to extend an existing message set by new messages. In this case, a feasible priority order that retains the standardized IDs of the existing messages and assigns suitable priorities to the new messages needs to be found. This paper proposes an algorithm for the computation of robust priority orders that solves the stated problem of extending existing message sets. First, bounds for the priorities of new messages are determined and then the most robust priority order that keeps the IDs of the existing messages is computed. The obtained algorithms are proved to yield correct results and are illustrated by detailed scheduling examples

    A Review of Priority Assignment in Real-Time Systems

    Get PDF
    It is over 40 years since the first seminal work on priority assignment for real-time systems using fixed priority scheduling. Since then, huge progress has been made in the field of real-time scheduling with more complex models and schedulability analysis techniques developed to better represent and analyse real systems. This tutorial style review provides an in-depth assessment of priority assignment techniques for hard real-time systems scheduled using fixed priorities. It examines the role and importance of priority in fixed priority scheduling in all of its guises, including: preemptive and non-pre-emptive scheduling; covering single- and multi-processor systems, and networks. A categorisation of optimal priority assignment techniques is given, along with the conditions on their applicability. We examine the extension of these techniques via sensitivity analysis to form robust priority assignment policies that can be used even when there is only partial information available about the system. The review covers priority assignment in a wide variety of settings including: mixed-criticality systems, systems with deferred pre-emption, and probabilistic real-time systems with worstcase execution times described by random variables. It concludes with a discussion of open problems in the area of priority assignment
    corecore