7 research outputs found

    Robust optimization for a maritime inventory routing problem

    Get PDF
    We consider a single product maritime inventory routing problem in which the production and consumption rates are constant over the planning horizon. The problem involves a heterogeneous fleet and multiple production and consumption ports with limited storage capacity. Maritime transportation is characterized by high levels of uncertainty, and sailing times can be severely influenced by varying and unpredictable weather conditions. To deal with the uncertainty, this paper investigates the use of adaptable robust optimization where the sailing times are assumed to belong to the well-known budget polytope uncertainty set. In the recourse model, the routing, the order of port visits, and the quantities to load and unload are fixed before the uncertainty is revealed, while the visit time to ports and the stock levels can be adjusted to the scenario. We propose a decomposition algorithm that iterates between a master problem that considers a subset of scenarios and an adversarial separation problem that searches for scenarios that make the solution from the master problem infeasible. Several improvement strategies are proposed aiming at reducing the running time of the master problem and reducing the number of iterations of the decomposition algorithm. An iterated local search heuristic is also introduced to improve the decomposition algorithm. A computational study is reported based on a set of real instances.publishe

    Faster Algorithms for Min-max-min Robustness for Combinatorial Problems with Budgeted Uncertainty

    Get PDF
    International audienceWe consider robust combinatorial optimization problems where the decision maker can react to a scenario by choosing from a finite set of k solutions. This approach is appropriate for decision problems under uncertainty where the implementation of decisions requires preparing the ground. We focus on the case that the set of possible scenarios is described through a budgeted uncertainty set and provide three algorithms for the problem. The first algorithm solves heuristically the dualized problem, a non-convex mixed-integer non-linear program (MINLP), via an alternating optimization approach. The second algorithm solves the MINLP exactly for k = 2 through a dedicated spatial branch-and-bound algorithm. The third approach enumerates k-tuples, relying on strong bounds to avoid a complete enumeration. We test our methods on shortest path instances that were used in the previous literature and on randomly generated knapsack instances, and find that our methods considerably outperform previous approaches. Many instances that were previously not solved within hours can now be solved within few minutes, often even faster

    Stability metrics for a maritime inventory routing problem under sailing time uncertainty

    Get PDF

    Speed optimization in maritime inventory routing

    Get PDF

    Speed Optimization in a Maritime Inventory Routing Problem

    Get PDF

    Robust optimization for a maritime inventory routing problem

    No full text
    We consider a single product maritime inventory routing problem in which the production and consumption rates are constant over the planning horizon. The problem involves a heterogeneous fleet and multiple production and consumption ports with limited storage capacity. Maritime transportation is characterized by high levels of uncertainty, and sailing times can be severely influenced by varying and unpredictable weather conditions. To deal with the uncertainty, this paper investigates the use of adaptable robust optimization where the sailing times are assumed to belong to the well-known budget polytope uncertainty set. In the recourse model, the routing, the order of port visits, and the quantities to load and unload are fixed before the uncertainty is revealed, while the visit time to ports and the stock levels can be adjusted to the scenario. We propose a decomposition algorithm that iterates between a master problem that considers a subset of scenarios and an adversarial separation problem that searches for scenarios that make the solution from the master problem infeasible. Several improvement strategies are proposed aiming at reducing the running time of the master problem and reducing the number of iterations of the decomposition algorithm. An iterated local search heuristic is also introduced to improve the decomposition algorithm. A computational study is reported based on a set of real instances
    corecore